MAGNETIC NANOPARTICLES SUPPORTED BIO-STABILISED PALLADIUM CATALYST FOR THE COPPER-FREE SONOGASHIRA REACTION

NURAFIQAH BINTI NORDIN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy

Faculty of Science
Universiti Teknologi Malaysia

DECEMBER 2018
In the name of Allah, the Beneficent and the Most Merciful,
and peace be upon Muhammad, His messenger.

To my dearest family for the immense love and support,
and to my beloved cats Mimo, Puteh and Mimi for the great companions.
ACKNOWLEDGEMENT

Alhamdulillah, all praises to Allah for the great bounties He bestowed to enable me to successfully finish this thesis. My most special and loving gratitude is dedicated to my parents, my mother Rosnah binti Wakid@Wahid, my father Nordin bin Yusof, and Sidek bin Madon for the never ending du’a in their prayers, for the unconditional love and endless support throughout my precious life. And to my beloved siblings which always been the source of my courage, Mohd. Firdaus, Fatin Nadzirah, Farah Hazwani, Amar Syazwan and Nur Laila Maisarah. They have been such a great emotional support for me throughout this Master of philosophy journey.

I would like to express my sincerest appreciation to my supervisor, Prof. Dr. Mustaffa Shamsuddin for the opportunity given to me to do this research under his lead. I am grateful for his trust and confidence he put on me in achieving the objectives of this research. I am also very thankful for his professional and upbringing supervision, guidance, opinion, feedback, experience and knowledge he has shared that made this formidable task attainable.

I am also indebted to the Ministry of Higher Education (MOHE) for the scholarship and research funding (Vot 12H53) and Universiti Teknologi Malaysia (UTM) for the facilities and hospitality. I would also like to thank Prof. Dr. Yun Yeong-Sang from Chonbuk National University (CBNU) for his generous help for the characterisation of my sample and Prof. Dr. Gopinathan Sankar from University College London (UCL) for his valuable time and opinion he gave on my presentation of research progress.

My special gratitude is extended to the laboratory assistants and fellow laboratory members of Makmal Penyelidikan Kimia Tak Organik 1 (MPKTO1), Mdm. Asma, Suhaila, Wong Sze Ting, Fadzilah, Falynee, Gul naz, Fazreen, Nurul Huda, Fazleen, Omar and Misitura. They have been such a great friends and companions. Thank you for the ideas, opinions, advices, laugh and humour we have shared which I embrace the most. May Allah ease our hardships and give us strengths in seeking knowledge because indeed it is a lifetime treasure hunting. Finally, to those who were indirectly involved, thank you for being the part of this great journey which made everything much more meaningful and worthwhile.
ABSTRACT

Palladium mediated catalysis has achieved an impressive place in numerous commercial chemical processes. In particular, due to its high surface area to volume ratio, palladium nanoparticles (PdNPs) show high reactivity that makes them a powerful catalyst for many organic transformations. Green synthesis of PdNPs employing plant extract has been suggested as eco-friendly alternatives to chemical and physical methods. In this research, the synthesis of PdNPs using Artocarpus altilis aqueous leaf extract was investigated. The biomolecules present in the Artocarpus altilis leaf extract are believed to act as reducing and as capping agent for the formation of PdNPs. Effect of reaction time, metal ion concentration, volume of leaf extract and pH of the extract on the formation of PdNPs were investigated and monitored using UV-vis spectroscopic analysis. The optimised conditions were used in the synthesis of PdNPs supported on the amine functionalised silica-coated magnetite nanoparticles. The use of magnetite as catalyst support is attractive since magnetic separation has emerged as a robust, highly efficient, and rapid catalyst separation tool. Meanwhile, ligand assisted method employing 3-(2-aminoethylamino)propyl trimethoxysilane (AEAPTS) covalently anchored the PdNPs thus controlled the PdNPs size and prevented agglomeration. The bio-stabilised PdNPs supported on the amine functionalised silica-coated magnetite (Fe₃O₄-SiO₂-AEAPTS-PdNPs) catalyst was characterised using Fourier transform infrared spectroscopy (FTIR), CHN analysis, X-ray diffraction (XRD), flame atomic absorption spectrophotometry (FAAS), high resolution transmission electron microscopy-energy dispersive X-ray spectroscopy (HRTEM-EDX), vibrating-sample magnetometer (VSM), zeta potential and X-ray photoelectron spectroscopy (XPS) analyses. The Fe₃O₄-SiO₂-AEAPTS-PdNPs catalyst was then tested in the copper-free Sonogashira reaction under aerobic condition in water. Effect of base, catalyst amount, and temperature on the reaction conversion was investigated and monitored using gas chromatography-flame ionisation detection (GC-FID). The optimisation reaction between phenylacetylene and iodobenzene to yield diphenylacetylene successfully gave 90% conversion using 0.2 mol% of Fe₃O₄-SiO₂-AEAPTS-PdNPs catalyst with triethylamine as base at 60°C for 24 h. Fe₃O₄-SiO₂-AEAPTS-PdNPs showed an impressive catalytic performance with turnover number of 450 and turnover frequency of 18.8 h⁻¹. In addition, the recycle test result showed that the catalyst can be used up to four cycles without significant loss of catalytic activity. Fe₃O₄-SiO₂-AEAPTS-PdNPs catalyst was further examined in the reaction between phenylacetylene and less reactive aryl halides which reacted well at 80°C and gave desired products with good yields. The coupling of bromobenzene and phenylacetylene gave good conversion of 49% while activated bromobenzene such as 4-bromoacetophenone and 1-bromo-4-nitrobenzene, bearing electron-withdrawing group at their para-positions gave better conversion of 53% and 56%, respectively. All crude products were isolated and purified using column chromatography and were characterised using gas chromatography-mass spectrometry (GC-MS) and FTIR. ¹H nuclear magnetic resonance (¹H-NMR) and ¹³C nuclear magnetic resonance (¹³C-NMR) spectroscopic analyses.
ABSTRAK

Pemangkinan pengantara palladium telah mencapai status yang mengagumkan dalam pelbagai proses kimia komersial. Khususnya, disebabkan nisbah luas permukaan kepada isipadunya yang tinggi, nanopartikel palladium (PdNPs) menunjukkan kererektifan yang tinggi yang menjadikannya sebagai mangkin yang berkuaa bagi kebanyakan transformasi organik. Sintesis hijau PdNPs yang menggunakan ekstrak tumbuhan telah dicadangkan sebagai alternatif yang mesra alam berbanding kaedah kimia dan fizikal. Dalam penyelidikan ini, sintesis PdNPs menggunakan ekstrak akueus daun Artocarpus altilis telah dikaji. Biomolekul yang terdapat di dalam ekstrak daun Artocarpus altilis dipercaayai berfungsi sebagai agen penurun dan penukup untuk pembentukan PdNPs. Kesaran masa tindak balas, kepekatan ion logam, isipadu ekstrak daun dan pH ekstrak terhadap pembentukan PdNPs telah disiasat dan dipantau menggunakan teknik spektroskopi ultra lembayung-nampak (UV-vis). Keadaan optimum telah diguna dalam sintesis PdNPs yang disokong pada nanopartikel magnetit bersalut silika berkefungsi amin. Penggunaan magnetit sebagai penyokong mangkin adalah menarik kerana pengasingan magnetit telah muncul sebagai alat pengasingan mangkin yang jeguh, sangat cekap dan cepat. Sementara itu, kaedah berbantukan ligan menggunakan 3-(2-aminaetilamina)propil trimetoksisisil (AEAPTS) telah memegang PdNPs secara kovalen, dengan itu dapat mengawal saiz PdNPs dan menghalang aglomerasi. Mangkin bio-stabil PdNPs yang disokong pada magnetit bersalut silika berkefungsi amin (Fe₃O₄-SiO₂-AEAPTS-PdNPs) telah dicirikan menggunakan analisis spektroskopi inframerah transformasi Fourier (FTIR), analisis CHN, pembelauan sinar-X (XRD), spektrofotometri penyerapan atom nyala (FAAS), mikroskopi elektron penghantaran resolusi tinggi spektroskopi serakan tenaga sinar-X (HRTEM-EDX), magnetometer sampel bergetar (VSM), potensi zeta dan spektroskopi fotoelektron sinar-X (XPS). Mangkin Fe₃O₄-SiO₂-AEAPTS-PdNPs kemudian telah diuji dalam tindak balas Sonogashira bebas-tembaga di bawah keadaan aerobik di dalam air. Kesaran bes, jumlah mangkin, dan suhu terhadap penukaran tindak balas telah dikaji dan dipantau menggunakan kromatografi gas-pengesanan pengionan nyala (GC-FID). Pengoptimuman tindak balas antara fenilasetilena dan iojobenzena untuk menghasilkan difenilasetilena dan iodobenzena untuk menghasilkan difenilasetilena telah berjaya memberikan 90% penukaran menggunakan 0.2 mol% mangkin Fe₃O₄-SiO₂-AEAPTS-PdNPs dengan trietilamina sebagai bes pada 60°C selama 24 jam. Fe₃O₄-SiO₂-AEAPTS-PdNPs menunjukkan prestasi mengkagumkan dengan jumlah perolehan 450 dan kekerapan perolehan 18.8 h⁻¹. Tambahan lagi, hasil ujian kitar semula menunjukkan bahawa mangkin itu boleh digunakan sehingga empat kitaran tanpa kehilangan aktiviti pemangkin yang ketara. Mangkin Fe₃O₄-SiO₂-AEAPTS-PdNPs selanjutnya diuji dalam tindak balas antara fenilasetilena dan aril halida yang kurang reaktif bertindak balas pada 80°C dan memberikan produk dikehendaki dengan hasil yang baik. Gabungan bromobenzena dan fenilasetilena memberikan penurunan yang baik iaitu 49% sementara bromobenzena diaktifkan misalnya 4-bromoasetofenon dan 1-bromo-4-nitrobenzena, yang mengandungi kumpulan penarik elektron pada kedudukan-para memberikan penurunan yang lebih baik, iaitu masing-masing 53% dan 56%. Semua produk mentah telah diaisian dan ditulenkan menggunakan kromatografi turus dan dicirikan menggunakan analisis kromatografi gas-spektrometri jisim (GC-MS) dan spektroskopi FTIR, resonans magnet nucleus \(^1\)H (\(^1\)H-NMR) dan resonans magnet nucleus \(^{13}\)C (\(^{13}\)C-NMR).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of Research 1

1.2 Problem Statement 3

1.3 Objectives 4

1.4 Scope of Research 5

1.5 Significance of Research 5

2 LITERATURE REVIEW 7

2.1 Supported Metal Nanoparticles 7

2.1.1 Magnetite (Fe₃O₄) as Magnetic Catalyst Support 8

2.1.2 Surface Chemistry of Silica 9

2.2 Palladium Catalyst 11

2.3 Palladium Nanoparticles (PdNPs) 12

2.4 Biogenic Synthesis of PdNPs 13

2.4.1 PdNPs Mediated by Microbial Entities 14
2.4.2 PdNPs Mediated by Plant Extracts

2.4.3 Size and Morphology of PdNPs Mediated by Plant Extract

2.4.4 Artocarpus altillis (Breadfruit) as Reducing and Stabilising Agent

2.5 Coupling Reaction

2.5.1 Sonogashira Cross-coupling Reaction

3 METHODOLOGY

3.1 Materials

3.2 Instrumentation

3.3 Experimental

3.3.1 Preparation of Magnetite (Fe₃O₄) Nanoparticles

3.3.2 Preparation of Silica-coated Magnetite (Fe₃O₄-SiO₂)

3.3.3 Preparation of AEAPTS-functionalised Silica-coated Magnetite (Fe₃O₄-SiO₂-AEAPTS)

3.3.4 Determination of the Amount of Amino Surface Group by Titration Method

3.3.5 Preparation of Artocarpus altillis Leaf Extract

3.3.6 Determination of Ferric Reducing Antioxidant Power (FRAP)

3.3.7 Optimisation of Bio-reduction of PdNPs

3.3.8 Immobilisation of Pd(II) Ions on AEAPTS-functionalised Silica-coated Magnetite (Fe₃O₄-SiO₂-AEAPTS)

3.3.9 Bio-reduction of Immobilised Pd(II) Ions on AEAPTS-functionalised Silica-coated Magnetite (Fe₃O₄-SiO₂-AEAPTS-Pd(II))

3.3.10 Sonogashira Cross-coupling Reaction
3.3.11 Recyclability of Catalyst 32
3.3.12 Hot Filtration Test 32

4 RESULT AND DISCUSSION 33
4.1 Synthesis and Characterisation of Colloidal PdNPs 33
4.1.1 Ferric Reducing Antioxidant Power (FRAP) 33
4.1.2 Biosynthesis of PdNPs 34
4.1.3 Ultraviolet Visible (UV-Vis) Spectroscopic Analysis 35
4.1.4 Fourier Transform Infrared (FTIR) Spectroscopic Analysis 37
4.1.5 High-Resolution Transmission Electron Microscopy (HRTEM) Analysis 39
4.2 Synthesis and Characterisation of Supported Palladium Nanoparticles (Fe3O4-SiO2-AEAPTS-PdNPs) 41
4.2.1 Fourier Transform Infrared (FTIR) Spectroscopic Analysis 42
4.2.2 Elemental Analysis 43
4.2.3 Vibrating Sample Magnetometer (VSM) Analysis 43
4.2.4 Zeta Potential Analysis 45
4.2.5 X-ray Powder Diffraction (XRD) Analysis 46
4.2.6 High-Resolution Transmission Electron Microscopic (HRTEM) Analysis 47
4.2.7 Energy Dispersive X-ray (EDX) Analysis 48
4.2.8 X-ray Photoelectron Spectroscopy (XPS) Analysis 49
4.3 Catalytic Application of Fe3O4-SiO2-AEAPTS-PdNPs in Copper-free Sonogashira Cross-coupling Reaction 51
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1</td>
<td>Effect of Different Bases</td>
<td>52</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Effect of Amount of Catalyst</td>
<td>53</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Effect of Reaction Temperature</td>
<td>54</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Recyclability of Catalyst</td>
<td>55</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Hot Filtration Test</td>
<td>56</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Comparison of Catalytic Performance of Fe₃O₄-SiO₂-AEAPTS-PdNPs with</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Previous Literatures</td>
<td></td>
</tr>
<tr>
<td>4.3.7</td>
<td>Substrate Tolerance of Fe₃O₄-SiO₂-AEAPTS-PdNPs Catalyst in Copper-free</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Sonogashira Cross-coupling Reaction</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Isolation and Characterisation of Copper-free Sonogashira Cross-coupling Products</td>
<td>59</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Isolation of Diphénylacetylene (3a)</td>
<td>59</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Isolation of 1-(4-phenylethynyl-phenyl)ethanone (3b)</td>
<td>62</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Isolation of 1-nitro-4-phenylethynyl-benzene (3c)</td>
<td>65</td>
</tr>
</tbody>
</table>

5 CONCLUSION AND SUGGESTION

5.1 Conclusion

5.2 Suggestion

REFERENCES

Appendices A-J 85-115
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Biosynthesis of PdNPs using plant extracts</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Cross-coupling reaction which involve the use of Palladium catalyst</td>
<td>21</td>
</tr>
<tr>
<td>4.1</td>
<td>Amino surface group amount of Fe₃O₄-SiO₂-AEAPTS determined using titration method and N elemental analysis</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Magnetic properties value of Fe₃O₄ and Fe₃O₄-SiO₂-AEAPTS</td>
<td>44</td>
</tr>
<tr>
<td>4.3</td>
<td>Studies on copper-free Sonogashira cross-coupling reaction between phenylacetylene and iodobenzene using water as solvent under aerobic atmosphere</td>
<td>57</td>
</tr>
<tr>
<td>4.4</td>
<td>Copper-free Sonogashira cross-coupling reaction between phenylacetylene and aryl halides (^a)</td>
<td>58</td>
</tr>
<tr>
<td>4.5</td>
<td>FTIR spectral data of compound (3a) (Appendix H2)</td>
<td>60</td>
</tr>
<tr>
<td>4.6</td>
<td>(^1)H-NMR spectral data of compound (3a) (Appendix H3)</td>
<td>60</td>
</tr>
<tr>
<td>4.7</td>
<td>(^13)C-NMR spectral data of compound (3a) (Appendix H4)</td>
<td>61</td>
</tr>
<tr>
<td>4.8</td>
<td>FTIR spectral data of compound (3b) (Appendix I2)</td>
<td>62</td>
</tr>
<tr>
<td>4.9</td>
<td>(^1)H-NMR spectral data of compound (3b) (Appendix I3)</td>
<td>63</td>
</tr>
<tr>
<td>4.10</td>
<td>(^13)C-NMR spectral data of compound (3b) (Appendix I4)</td>
<td>63</td>
</tr>
<tr>
<td>4.11</td>
<td>FTIR spectral data of compound (3c) (Appendix J2)</td>
<td>65</td>
</tr>
<tr>
<td>4.12</td>
<td>(^1)H-NMR spectral data of compound (3c) (Appendix J3)</td>
<td>65</td>
</tr>
<tr>
<td>4.13</td>
<td>(^13)C-NMR spectral data of compound (3c) (Appendix J4)</td>
<td>66</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Original reaction scheme of Sonogashira cross-coupling reaction (Sonogashira et al., 1975)</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>Surface species of silica (Zhuravlev, 2000)</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Fruit and Leaves of Artocarpus altilis (Breadfruit)</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Flavanoid structures found in various part of genus of Artocarpus (Moracae) plant (Veitch and Grayer, 2011)</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Flavonoid structure found in the leaves of Artocarpus altilis (Riasari et al., 2015)</td>
<td>19</td>
</tr>
<tr>
<td>3.1</td>
<td>Operational of research framework</td>
<td>26</td>
</tr>
<tr>
<td>4.1</td>
<td>Digital photographs taken at different time showing the colour change of the reaction mixture [PdCl₂ aqueous solution (2 mM; 10 mL) + 3 mL Artocarpus altilis extract (2%)]</td>
<td>35</td>
</tr>
<tr>
<td>4.2</td>
<td>(a) UV-Vis spectra of palladium colloids formed from different volume of 2% Artocarpus altilis leaf extract with 10 mL of 2 mM aqueous PdCl₂: 1, 3 and 5 mL of leaf extracts. (b) UV-Vis spectra for time intervals of 10 mL PdCl₂ solution (2 mM) and 3 mL of 2% Artocarpus altilis leaf extract reaction mixture. (c) UV-Vis spectra of PdNPs in Artocarpus altilis mixture and washed PdNPs</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>FTIR spectra for (a) Artocarpus altilis leaf extract and (b) washed and dried PdNPs</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>Possible reaction route for formation of catechol stabilised PdNPs</td>
<td>39</td>
</tr>
<tr>
<td>4.5</td>
<td>(a), (b), (c), (d) HRTEM images of PdNPs and (e) Particle size distribution of 100 PdNPs measured by Image-J software (f) XRD pattern of PdNPs</td>
<td>40</td>
</tr>
</tbody>
</table>
4.6 Synthesis of bio-stabilised Fe₃O₄-SiO₂-AEAPTS-PdNPs
4.7 FTIR spectra of magnetite (Fe₃O₄), silica-coated magnetite nanoparticles (Fe₃O₄-SiO₂) and amine functionalised silica-silica coated magnetite (Fe₃O₄-SiO₂-AEAPTS)
4.8 Magnetisation curve of Fe₃O₄ and Fe₃O₄-SiO₂-AEAPTS
4.9 Zeta potential analysis of Fe₃O₄-SiO₂, Fe₃O₄-SiO₂-AEAPTS, and Fe₃O₄-SiO₂-AEAPTS-PdNPs
4.10 XRD pattern of Fe₃O₄, Fe₃O₄-SiO₂ and Fe₃O₄-SiO₂-AEAPTS-PdNPs. The shapes represent: ▼ Amorphous peak of silica layer, ▲ crystalline peak of Fe₃O₄
4.11 HRTEM images of (a), (b) Fe₃O₄-SiO₂-AEAPTS and (d), (e) Fe₃O₄-SiO₂-AEAPTS-PdNPs at different magnifications, particle size distribution of (c) Fe₃O₄ and (f) PdNPs as measured by Image-J software
4.12 EDX spectra of (a) Fe₃O₄-SiO₂-AEAPTS and (b) Fe₃O₄-SiO₂-AEAPTS-PdNPs
4.13 XPS (a) wide scan spectrum of Fe₃O₄-SiO₂-AEAPTS-PdNPs (b) High-resolution scan spectrum of Pd species
4.14 Reaction scheme of copper-free Sonogashira cross-coupling reaction between phenylacetylene and iodobenzene
4.15 Effect of different bases
4.16 Structure, classification and pKₐ values of organic bases
4.17 Effect of catalyst amount
4.18 Effect of reaction temperature
4.19 Recycle test of Fe₃O₄-SiO₂-AEAPTS-PdNPs catalyst
4.20 Hot filtration test for Fe₃O₄-SiO₂-AEAPTS-PdNPs catalyst
4.21 Structure of compound (3a)
4.22 Structure of compound (3b)
4.23 Structure of compound (3c)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>atomic absorption spectrometry</td>
</tr>
<tr>
<td>AEAPTS</td>
<td>amino ethyl amino propyl trimethoxy silane</td>
</tr>
<tr>
<td>CDCl₃</td>
<td>deuterated chloroform</td>
</tr>
<tr>
<td>CHNS</td>
<td>carbon, hydrogen, nitrogen, sulphur analysis</td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
</tr>
<tr>
<td>DIPEA</td>
<td>N, N-Diisopropylethylamine</td>
</tr>
<tr>
<td>EDX</td>
<td>energy dispersed X-ray</td>
</tr>
<tr>
<td>Fcc</td>
<td>face-centred cubic</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>FeO</td>
<td>wustite</td>
</tr>
<tr>
<td>FeCl₂.4H₂O</td>
<td>Ferrous chloride tetrahydrate</td>
</tr>
<tr>
<td>FeCl₃.6H₂O</td>
<td>Ferric chloride hexahydrate</td>
</tr>
<tr>
<td>FRAP</td>
<td>Ferric reducing antioxidant power</td>
</tr>
<tr>
<td>FeSO₄</td>
<td>Ferrous sulphate</td>
</tr>
<tr>
<td>FTIR</td>
<td>fourier transform infrared spectra</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Ferric oxides</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>magnetite</td>
</tr>
<tr>
<td>Fe₃O₄-SiO₂</td>
<td>silica-coated magnetite</td>
</tr>
<tr>
<td>Fe₃O₄-SiO₂-AEAPTS</td>
<td>AEAPTS functionalised Fe₃O₄-SiO₂</td>
</tr>
<tr>
<td>Fe₃O₄-SiO₂-AEAPTS-Pd(II)</td>
<td>Pd(II) ions immobilised on Fe₃O₄-SiO₂-AEAPTS</td>
</tr>
<tr>
<td>Fe₃O₄-SiO₂-AEAPTS-PdNPs</td>
<td>Fe₃O₄-SiO₂-AEAPTS supported PdNPs</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>GC-FID</td>
<td>gas chromatography-flame ionisation detector</td>
</tr>
<tr>
<td>GC-MS</td>
<td>gas chromatography mass spectrometry</td>
</tr>
<tr>
<td>Hₑ</td>
<td>coercivity</td>
</tr>
<tr>
<td>HCl</td>
<td>hydrochloric acid</td>
</tr>
</tbody>
</table>
HRTEM - high-resolution transmission electron microscopy
KBr - potassium bromide
KBSI - Korea Basic Science Institute
K₂CO₃ - potassium carbonate
MCM-41-S-Pd(0) - MCM-41-supported thioether palladium(0) complex
Mr - remanence
MRI - magnetic resonance imaging
Ms - saturation magnetisation
NaOH - sodium hydroxide
Na₂CO₃ - sodium carbonate
NHC - N-heterocyclic carbene
NH₄OH - ammonium hydroxide
Ni - Nickel
N₂ - nitrogen gas
Pd - Palladium
PdCl₂ - Palladium chloride
PdNPs - Palladium nanoparticles
pKₐ - acid dissociation constant
PNP-SSS - Palladium nanoparticles on a silica-starch substrate
PS-PEG-terpyridine-Pd(II) - polystyrene-poly(ethylene glycol) resin-supported terpyridine-palladium complex
SiO₂ - silica
TEOS - tetraethyl orthosilicate
TOF - turnover frequency
TON - turnover number
TPTZ - 2,4,6-tris(2-pyridyl)-5-triazine
UTM - Universiti Teknologi Malaysia
UKM - Universiti Kebangsaan Malaysia
UV-Vis - ultraviolet-visible spectroscopy
VSM - vibrating sample magnetometer
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray powder diffraction analysis</td>
</tr>
<tr>
<td>1H-NMR</td>
<td>1H nuclear magnetic resonance</td>
</tr>
<tr>
<td>13C-NMR</td>
<td>13C nuclear magnetic resonance</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

% - percent
\(\lambda \) - wavelength
\(^\circ \) - degree angle
\(^\circ C \) - degree Celsius
\(^\circ C \text{ min}^{-1} \) - degree Celsius per minute
\(\mu L \) - microlitre
2\(\theta \) - Bragg angle
\(\AA \) - Angstrom
cm - centimetre
cm\(^{-1} \) - frequency
Cu K\(\alpha \) - X-ray diffraction from copper energy levels
emu/g - magnetic moment per gram
eV - electron volt
g - gram
g mL\(^{-1} \) - density
g mol\(^{-1} \) - gram per mole
h - hour
h\(^{-1} \) - per hour
Hz - Hertz
kV - kilovolt
M - Molarity
m - metre
mA - milliampere
mg - milligram
MHz - Mega Hertz
min - minute(s)
\(mL \) - millilitre
mm - millimetre
mM - milliMolar
<table>
<thead>
<tr>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmol</td>
<td>millimole</td>
</tr>
<tr>
<td>mmol g(^{-1})</td>
<td>millimole per gram</td>
</tr>
<tr>
<td>mol g(^{-1})</td>
<td>mole per gram</td>
</tr>
<tr>
<td>mol%</td>
<td>mole percent</td>
</tr>
<tr>
<td>mV</td>
<td>millivolt</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>Oe</td>
<td>Oersted</td>
</tr>
<tr>
<td>ppm</td>
<td>part per million</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>R(^2)</td>
<td>coefficient of determination</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Calibration curve of ferric reducing antioxidant power assay method</td>
<td>85</td>
</tr>
<tr>
<td>B</td>
<td>Measurement of d-spacing crystal lattice using Gatan digital micrograph software: (a), (b) Colloidal PdNPs, (c) Fe\textsubscript{3}O\textsubscript{4} and (d) PdNPs immobilised on Fe\textsubscript{3}O\textsubscript{4}-SiO\textsubscript{2}-AEAPTS surface</td>
<td>86</td>
</tr>
<tr>
<td>C</td>
<td>Calculations of nanoparticles crystallite size using Debye-Scherrer’s equation</td>
<td>87</td>
</tr>
<tr>
<td>D</td>
<td>Amino surface group amount of Fe\textsubscript{3}O\textsubscript{4}-SiO\textsubscript{2}-AEAPTS determined using (a) titration method and (b) N elemental analysis</td>
<td>88</td>
</tr>
<tr>
<td>E</td>
<td>Calculation of Fe\textsubscript{3}O\textsubscript{4}-SiO\textsubscript{2}-AEAPTS-PdNPs actual catalyst loading and amount of mole based on FAAS analysis</td>
<td>90</td>
</tr>
<tr>
<td>F1</td>
<td>A) GC-FID chromatograms of copper-free Sonogashira cross coupling between phenylacetylene and iodobenzene; (a) control reaction and (b) catalysed by Fe\textsubscript{3}O\textsubscript{4}-SiO\textsubscript{2}-AEAPTS-PdNPs</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>B) GC-FID calibration curve of peak area ratio of iodobenzene substrate to mesitylene internal standard against concentration of iodobenzene</td>
<td></td>
</tr>
<tr>
<td>F2</td>
<td>A) GC-FID chromatogram of copper-free Sonogashira cross coupling between phenylacetylene and bromobenzene catalysed by Fe\textsubscript{3}O\textsubscript{4}-SiO\textsubscript{2}-AEAPTS-PdNPs</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>B) GC-FID calibration curve of peak area ratio of bromobenzene substrate to mesitylene internal standard against concentration of bromobenzene</td>
<td></td>
</tr>
<tr>
<td>F3</td>
<td>A) GC-FID chromatogram of copper-free Sonogashira cross coupling between phenylacetylene and 4-</td>
<td>93</td>
</tr>
</tbody>
</table>
bromoacetophenone catalysed by Fe$_3$O$_4$-SiO$_2$-AEAPTS-PdNPs

B) GC-FID calibration curve of peak area ratio of 4-bromoacetophenone substrate to mesitylene internal standard against concentration of 4-bromoacetophenone

A) GC-FID chromatogram of copper-free Sonogashira cross coupling between phenylacetylene and 1-nitro-4-bromobenzene catalysed by Fe$_3$O$_4$-SiO$_2$-AEAPTS-PdNPs

B) GC-FID calibration curve of peak area ratio of 1-nitro-4-bromobenzene substrate to mesitylene internal standard against concentration of 1-nitro-4-bromobenzene

G1 FTIR spectrum of substrate (1a) 95
G2 1H-NMR spectrum of substrate (1a) 96
G3 13C-NMR spectrum of substrate (1a) 97
G4 FTIR spectrum of substrate (2c) 98
G5 1H-NMR spectrum of substrate (2c) 99
G6 13C-NMR spectrum of substrate (2c) 100
G7 FTIR spectrum of substrate (2d) 101
G8 1H-NMR spectrum of substrate (2d) 102
G9 13C-NMR spectrum of substrate (2d) 103
H1 GC-MS spectrum of compound (3a) 104
H2 FTIR spectrum of product (3a) 105
H3 1H-NMR spectrum of compound (3a) 106
H4 13C-NMR spectrum of compound (3a) 107
I1 GC-MS spectrum of compound (3b) 108
I2 FTIR spectrum of compound (3b) 109
I3 1H-NMR spectrum of compound (3b) 110
I4 13C-NMR spectrum of compound (3b) 111
J1 GC-MS spectrum of compound (3c) 112
J2 FTIR spectrum of compound (3c) 113
J3 1H-NMR spectrum of compound (3c) 114

J4 13C-NMR spectrum of compound (3c) 115
1.1 Background of Research

Sonogashira cross-coupling reaction is one of the earliest discovery of organic synthesis to form carbon-carbon bonds (Figure 1.1) (Sonogashira, Tohda, & Hagihara, 1975). Due to its mild reaction conditions, Sonogashira cross-coupling reaction become highly useful in the synthesis of various compounds (Chinchilla & Najera, 2011; Kniess & Wust, 2003), including heterocycles (Aronica, Albano, Giannotti, & Meucci, 2017) and pharmaceuticals (Biajoli, Schwalm, Limberger, Claudino, & Monteiro, 2014; Leyva-pe, Cabrero-antonino, Rubio-marque, & Al-resayes, 2014). Since it was first reported in the year 1975, a tremendous development has taken place especially in terms of reaction conditions (Liang, Dai, Chen, & Yang, 2005; Strappaveccia et al., 2015; Zhong, Wang, Li, & Wang, 2014). Traditional reaction condition for Sonogashira reaction requires copper as co-catalyst to the palladium catalyst. Today, the reaction can even be carried out without copper as co-catalyst. This copper-free sonogashira reaction is the result of wise modification as copper can cause unwanted side products from the copper acetylide homocoupling.

Figure 1.1 Original reaction scheme of Sonogashira cross-coupling reaction (Sonogashira et al., 1975)
In earlier development of Sonogashira cross-coupling reaction, variety of Palladium (Pd) complexes have been used as catalyst (Chinchilla & Najera, 2007). Example of such Pd catalyst include, most commonly used Pd-phosphorus complexes, Pd-nitrogen complexes, N-heterocyclic carbene (NHC) Pd complexes as well as palladacycle. However, these catalysts have some drawbacks especially in terms of reaction conditions, catalyst separation and environmental concerns. To overcome these issues, many attempts have been done to modify and enhance the catalyst to afford wide range of potentials for the best catalytic performance. One of the major works was the immobilisation of homogenous palladium catalyst onto various solid supports such as silica (Polshettiwar, Len, & Fihri, 2009), polymers (Qi, Longfeng, Zhenhua, Xiangju, & Feng-shou, 2012), and magnetic iron oxides (Sydnes, 2017). On the other hand, interest on the development of Pd nanoparticles (PdNPs) as catalyst was also growing (Cuenya, 2010; Mandali & Chand, 2014). These two efforts received significant attentions which lead to the evolution of much better and versatile catalyst for cross-coupling reactions such as Sonogashira.

In recent years, the use of magnetic supported metal nanoparticles to replace the conventional metal complexes as catalyst in any C-C coupling reaction has becomes prominent (Salemi, Kaboudin, Kazemi, & Yokomatsu, 2016; Sydnes, 2017). This type of catalyst system exhibits unique properties as it can bridge the gap between homogenous and heterogenous system. Metal nanoparticles provide larger surface area to volume ratio compared to bulk metal. Since the catalyst particles are in the nano-sized scale, more exposed surface area of the active components become readily and easily available to come into contact with the reactants, resulting in higher selectivity and catalytic activity. While the magnetic support such as well-known magnetite (Fe₃O₄) behave as a robust, highly efficient, and rapid catalyst separation tool. Energy such as heat is not required throughout the separation process while the mass of catalyst loss can be prevented, and operation time will also be reduced. By using magnetite (Fe₃O₄) as the main support, the catalyst can be separated from reaction mixture easily with the aid of an external magnet. As compared to other conventional separation techniques such as filtration and centrifugation, magnetic separation is often the best choice in terms of high efficiency and specificity.
Among all type of available iron oxides, magnetite (Fe_3O_4) is much favorable as magnetic support for catalysts due to its superparamagnetic properties which is strongly attracted to an applied magnetic field and instantaneously become non-magnetic material in the absence of an applied magnetic field. This is one of the important features that a support must have for efficient handling and application. The synthesis of Fe_3O_4 is also relatively easy as compared to other magnetic iron oxides. In addition, Fe_3O_4 is stable under most reaction condition such as temperature, pressure, solvents, reagents, substrates, and products. Fe_3O_4 can also be surface coated with silica which then can be functionalised with suitable ligands such as aminosilanes or alkoxysilanes. Moreover, coating with silica will stabilised Fe_3O_4 from attack by strong acids and protects Fe_3O_4 from oxidation to form maghemite.

1.2 Problem Statement

Conventionally, most synthesis of PdNPs is achieved via chemical reduction of Pd(II) ions by phosphine compounds. Phosphine has strong reducing properties and it can also be used as one of efficient activators and stabilisers especially for palladium species. However, despite all these great advantages, this toxicant gas is worrisome to handle. On the other hand, it is not only toxic and highly flammable, but also much expensive than palladium metal. Hence, synthesis of PdNPs in a greener procedure is highly desirable. Plant extract with high antioxidant content such as $\text{Artocarpus altilis}$ leaf extract promises a safer, environmental friendly and cheaper procedure for the reduction of Pd(II) to synthesis PdNPs.

One of the major challenges in synthesising transition-metal nanoparticles is to make sure that they are kinetically stabilised to avoid agglomeration as well as regeneration. This is typically achieved by using a protective stabiliser such as surfactants, dendrimers, polymers, and organic ligands. Sulfur-based ligand is frequently used as stabiliser for PdNPs. However, the poisoning effect of sulfur may somehow restrict the catalytic potential of PdNPs. Hence, nitrogen-based ligand such as 3-(2-aminoethylamino)propyl trimethoxysilane (AEAPTS) is much more
advantageous. The nitrogen lone pair from the two amines group will chemically adsorb onto the surface of the metal and the alkyl group preventing agglomeration via steric stabilisation.

Homogenous catalyst such as Pd complexes has known to perform a very excellent job in many catalytic reactions. However, no matter how effective homogenous catalyst can be, major problem arises when it comes to the recovery part. Not only products or catalyst itself are difficult to be collected and separated from the reaction mixture, but homogenous catalyst also seems impossible to be recycled and reused for several times. Thus, PdNPs immobilised onto magnetic support would be the best alternative solution since recovery of the catalyst can be simply done by using external magnetic field. In addition, PdNPs has very high surface area to volume ratio, hence it provides good catalytic activity mimicking the homogenous catalyst.

1.3 Objectives

The objectives of this study are:

1. To synthesise and characterise silica-coated magnetite functionalised with aminosilane derivatives.
2. To immobilise Pd(II) ions onto the modified surface of the silica-coated magnetite nanoparticles.
3. To reduce the supported Pd(II) ions to Pd(0) nanoparticles (PdNPs) via green approach using *Artocarpus altilis* aqueous leaf extract as the reducing and stabilising agent.
4. To evaluate the catalytic performance of the supported PdNPs catalyst in the copper-free Sonogashira cross-coupling reaction.
1.4 Scope of Research

This research focused on the synthesis of magnetic supported PdNPs which is useful for the catalytic application. Fe₃O₄ was first synthesised and used as the main support for the catalyst. The synthesised Fe₃O₄ was coated with a layer of silica using tetraethyl orthosilicate (TEOS). The silica surface was then modified with an aminosilane ligand of 3-(2-aminoethylamino)propyl trimethoxysilane (AEAPTS) which contained two amines group per molecule. The supported Pd(II) ions was then reduced to form PdNPs via biosynthetic method employing aqueous leaf extract of Artocarpus altulis. Effect of reaction time, metal ion concentration, the volume of leaf extract and pH of the extract on the formation of PdNPs were investigated and monitored by using UV-vis spectroscopic analysis. Bio-reduction approach was chosen because it is safe, environmentally friendly and cheaper as compared to chemically toxic approach. The synthesised supported PdNPs catalyst was then tested in the copper-free Sonogashira cross-coupling reaction between phenylacetylene and aryl halide derivatives with triethylamine base in water for 24 h.

1.5 Significance of Research

The supported palladium nanoparticles (PdNPs) prepared in this research could be a promising catalyst in providing excellent and impressive catalytic efficiency for C-C cross-coupling reaction such as Sonogashira reaction. Thus, it has the potential to supersede other catalysts which were conventionally used in the chemical industry. Also, supported PdNPs provide magnetic nanocatalyst recovery method which can be simply done with the aid of an external magnet. Hence, this ideal method will take off the tedious separation method such as distillation and crystallisation which require high temperature and cause the catalyst to be decomposed. In addition, Supported PdNPs can be recycled for several times and the preparation employing plant extract instead of toxic and hazardous chemicals open the new path toward more sustainable and green technology.
REFERENCES

Biomineralization and Magnetoreception in Organisms (Vol 5, pp. 17–38). Springer, Boston, MA.

Riasari, H., Sukrasno, & Ruslan, K. (2015). Metabolite Profile of Various Development Bread Fruit Leaves (*Artocarpus altilis*, Parkinson, Fosberg) and the

