BIOHYDROGEN PRODUCTION BY A MICROBIAL CONSORTIUM ISOLATED FROM LOCAL HOT SPRING

SITI HALIMAH HASMONI

UNIVERSITI TEKNOLOGI MALAYSIA
BIOHYDROGEN PRODUCTION BY A MICROBIAL CONSORTIUM
ISOLATED FROM LOCAL HOT SPRING

SITI HALIMAH BINTI HASMONI

A thesis submitted in fulfilment of the
requirement for the award of degree of
Doctor of Philosophy (Bioscience)

Faculty of Science
Universiti Teknologi Malaysia

SEPTEMBER 2018
As I lay in bed, watching my son and my husband asleep, I can’t believe that Allah swt has granted me a family of my own.... This is for both of them...my family
ACKNOWLEDGMENT

Alhamdulillah, I am thankful to Allah S.W.T., the Almighty, the most Merciful, for his blessings and guidance throughout my PhD journey. My upmost gratitude to my supervisors; Assoc Prof Dr. Shafinaz Shahir and Prof Dr. Zaharah Ibrahim for their intellectual supports and guidance throughout my PhD research. My sincere appreciation to all laboratory staff in FBME especially En Yusnizam, En Hairol, En Afiezy and Puan Suhaidah Suleiman for their kindness and assistance during my laboratory work. My heartfelt gratefulness is dedicated to my friends, Puan Amalina Ramli for showing me guidance, Fahmi Mubarak for helping a noob big sister out, to my listening ear Munirah Ramli, to my little sister in the lab Nur Sahslin Irwan Shah, to Syamimi Md Jamal for helping me with my DGGE, to finally my peer with the same age as mine Noradilin Abdullah whom always is a friend in need and last but not least to my ‘kakak’ Nurliyana Ahmad Zawawi, with lots of wisdom and useful advices, thank you all for all the help and wonderful advices. To all the friends and acquaintances I made throughout my PhD journey, thank you for your kindness and help in easing in my PhD journey. My warmest gratitude is dedicated to my family and my in laws for the du’as and the support. Finally, my greatest and warmest and loads of appreciation and gratitude for my ever loving husband, Naeim for understanding and supporting me and loving me. Your love to me makes me stronger everyday and you made me be the better version of myself. Not forgetting my son, Rafiqi, half of me, all of me, it seems that you grew up in parallel with my PhD studies. You have given me so much joy and I look forward everyday to spend time with you ever since you are born. You are my greatest gift of all, to have you in my PhD journey is the best thing a student mom could ever asked for. #sayangrafiqi
ABSTRACT

Biohydrogen production from microorganism is a form of renewable energy that could supplement the depletion of fossil fuels. In producing biohydrogen, microbial consortia are more feasible than pure cultures because of its operational ease and stability and it is more favourable energetically at elevated temperatures which enables thermophiles to reach higher biohydrogen production than mesophiles. The aim of this study was to isolate, enrich and screen microbial consortium from local hot spring for its potential in producing biohydrogen, to optimize the selected consortium for optimal biohydrogen production and to identify the microbial diversity community of the consortium. Sampling was conducted at Gadek, Cherana Putih, Gersik and Selayang hot spring and the samples were enriched in Mineral Salt Succinate medium. The enriched consortia were screened for biohydrogen production using Gas Chromatography-Thermal Conductivity Detector (GC-TCD) and the biohydrogen production of the selected consortium was optimized by one factor at a time (OFAT) method. The kinetic analysis of the growth and biohydrogen production of the consortium were analyzed using the modified Logistic growth equation and modified Gompertz equation respectively. The microbial diversity community of the consortia were observed using 16S rRNA polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). To determine the microbial population dynamics of the consortia, 16S rRNA clone library were constructed for the consortia before and after optimization and sequencing data were analyzed using Mothur. Microbial consortium from Gadek hot spring (GDC) yielded the highest biohydrogen production compared to other consortia. The optimized condition (15% (v/v) inoculum size, 50°C, pH 7, 2 g/L sodium pyruvate and 0.5 g/L tryptone) showed a maximal biomass growth of 0.563 g dry cell weight/L and apparent specific growth rate of 0.959 h⁻¹. Whilst the optimized hydrogen production potential was 86.2 mmol H₂/L culture with the maximal production rate of 4.117 mmol/L h⁻¹, biohydrogen yield obtained was 135.7 mmol H₂/g biomass and the lag phase time was 5.1 hours. DGGE showed a slight microbial shift between the consortia before and after optimization. From the 16S rRNA clone library, 21 clones were obtained and a total of four operational taxonomic unit (OTU) were detected. Both consortia showed Firmicutes and Proteobacteria as the predominant phyla which have phylogeny affiliations to hydrogen producers. However, OTU_4 (Sporoacetogenium mesophilum) was only present in the consortium before optimization, OTU_1 (Thauera sp), OTU_2 (Paenibacillus barengoltzii) and OTU_3 (Sporomusaceae g. sp) were present in both consortia. Analysis showed the presence of OTU_2 and OTU_3 and the abundance of OTU_1 in the optimized consortium led to an increased in biohydrogen production of about 8 fold more from the consortium before optimization. In conclusion, this is the first study that reports a unique combination of Thauera sp., Paenibacillus barengoltzii and Sporomusaceae g. sp. which are able to produce a high amount of biohydrogen at the optimized condition.
ABSTRAK

Penghasilan biohidrogen daripada mikroorganisma ialah sejenis tenaga diperbaharui yang dapat menambah kekurangan sumber bahan api. Dalam menghasilkan biohidrogen, konsortia mikrob adalah lebih sesuai berbanding kultur tulen kerana operasi yang mudah dan kestabilannya dan ia lebih sesuai digunakan dari segi tenaga pada suhu tinggi yang membolehkan termofil mencapai penghasilan yang lebih tinggi berbanding mesofil. Tujuan kajian ini adalah untuk memencil, memperkaya, dan menyaring konsortium mikrob dari kolam air panas tempatan untuk keupayaanya menghasilkan biohidrogen. Selain itu, tujuan kajian ini juga adalah untuk mengoptimumkan konsortium terpilih bagi penghasilan biohidrogen yang optimum. dan untuk mengenal pasti kepelbagaian komuniti mikrob di dalam konsortium tersebut. Pensampelan dilakukan di kolam air panas Gadek, Cherana Putih, Gersik dan Selayang dan sampel diperkaya dalam medium garam mineral suksinat. Konsortia diperkayakan disaring untuk penghasilan biohidrogen dengan menggunakan Kromatografi Gas- Pengesan Termal Kekonduksian (GC-TCD) dan penghasilan biohidrogen oleh konsortium terpilih dioptimumkan dengan kaedah satu faktor pada satu masa (OFAT). Analisis kinetik terhadap pertumbuhan dan penghasilan biohidrogen oleh konsortium masing-masing dianalisis dengan menggunakan persamaan pertumbuhan Logistik terubah suai dan persamaan Gompertz terubah suai. Keadaan optimum (15% (v/v) saiz inokulum, 50°C, pH 7, 2 g/L natrium piruvat dan 0.5 g/L tripton) menunjukkan pertumbuhan biojisim maksimum sebanyak 0.563 g berat kering sel/L dan kadar pertumbuhan spesifik ketara, 0.959 h⁻¹. Sementara itu, penghasilan biohidrogen optimum adalah sebanyak 86.2 mmol H₂/L dengan kadar penghasilan maksimum 4.117 mmol/L h⁻¹, hasil biohidrogen adalah sebanyak 135.7 mmol H₂/g biojisim dan fasa lamban selama 5.1 jam. DGGE menunjukkan sedikit anjakan mikrob antara konsortia sebelum dan selepas pengoptimuman. Dari pada perpustakaan klon 16S rRNA, 21 klon diperoleh dan sebanyak empat unit taksonomi operasi (OTU) dikesan. Kedua-dua konsortia menunjukkan Firmikut dan Proteobakteria sebagai filum pradominan yang mempunyai hubungan filogeni dengan penghasil hidrogen. Walau bagaimanapun, OTU_4 (Sporoacetegenium mesophilum) hanya terdapat pada konsortium sebelum pengoptimuman, OTU_1 (Thauera sp), OTU_2 (Paenibacillus barengoltzii) dan OTU_3 (Sporomusaceae g. sp) hadir dalam kedua-dua konsortia. Analisis menunjukkan kehadiran OTU_2 dan OTU_3 dan kelimpahan OTU_1 dalam konsortium yang dioptimumkan membawa kepada penghasilan biohidrogen meningkat lebih kurang 8 kali pada sebelum pengoptimuman. Kesimpulannya, ini adalah kajian pertama yang melaporkan kombinasi unik Thauera sp., Paenibacillus barengoltzii dan Sporomusaceae g. sp. yang mampu menghasilkan biohidrogen dengan jumlah yang tinggi pada keadaan optimum.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxix</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of Study 1
1.2 Problem Statement 4
1.3 Research Objectives 7
1.5 Scope of Study 7
1.6 Significance of Study 9

2 LITERATURE REVIEW 10

2.1 Hydrogen 10
2.2 Hydrogen Production Methods 13
2.3 Biological Hydrogen Production and its Mechanism 14
 2.3.1 Mechanism of Biological Hydrogen Production 16
 2.3.1.1 Biophotolysis by Cyanobacteria and Microalgae 16
 2.3.1.2 Anoxygenic Photoproduction of Hydrogen 18
 2.3.2 Single Pure Culture vs Mix Culture (Consortium) for Biohydrogen Production 29
 2.3.3 Thermophiles 34
 2.3.3.1 Thermophiles for Hydrogen Production 36
 2.3.4 Conclusion on Biological Hydrogen Production 37
2.4 Environmental Factors Affecting Hydrogen Production 38
 2.4.1 Effects of Lighting Condition 38
 2.4.2 Effects of Temperature 39
 2.4.3 Effects of pH 40
 2.4.4 Effects of Carbon Source and its Concentration 41
 2.4.5 Effects of Nitrogen Source and its Concentration 42
2.5 Kinetic Analysis 44
2.6 Population Dynamic Studies 46
2.7 Bioinformatic Software on Population Dynamics 48
2.8 Conclusion 50

3 MATERIAL AND METHODS 50
 3.1 Research Outline 51
 3.2 Materials 52
 3.2.1 Chemicals and biologicals 52
 3.2.2 Culture Medium 52
 3.2.2.1 Mineral Salts-Succinate (MSS) Medium 52
 3.3 Sampling, Enrichment and Characterization of the Consortium 53
 3.3.1 Sampling 53
 3.3.2 Enrichment and Isolation of the Consortium in MSS medium 53
 3.3.3 Characterization of the Consortium 54
 3.3.3.1 Gram Staining 54
 3.3.3.2 Pigment analysis 54
 3.3.3.3 Screening for Biohydrogen Production 55
3.4 Analytical Methods
 3.4.1 Cell dry weight of the Consortium
 3.4.2 Measurement of Biohydrogen Production
 3.4.3 Analysis of Biohydrogen Production
 3.4.4 Substrate Conversion Efficiency (SCE)

3.5 Optimization of Hydrogen Production
 3.5.1 Effect of Inoculum size
 3.5.2 Effect of the Lighting Condition
 3.5.3 Effect of Initial pH
 3.5.4 Effect of Incubation Temperature
 3.5.5 Effect of Carbon Source and its Concentration
 3.5.6 Effect of Nitrogen Source and its Concentration

3.6 Kinetics Analysis
 3.6.1 Kinetic Analysis of Microbial Growth
 3.6.2 Kinetic Analysis of Hydrogen Production

3.7 Statistical Analysis

3.8 Identification of the Microbial Communities of the Consortium
 3.8.1 Genomic DNA Extraction
 3.8.2 Agarose Gel Electrophoresis
 3.8.3 16S rRNA Polymerase Chain Reaction (PCR)
 3.8.4 Purification of PCR Product
 3.8.5 Quantitative Analysis of DNA
 3.8.6 16s rRNA Gene Analysis
 3.8.7 Construction of Phylogenetic Tree

3.9 Identification of the Microbial Communities of the Consortium via
 DGGE
 3.9.1 16s rRNA Amplification PCR for DGGE
 3.9.2 Denaturing Gradient Gel Electrophoresis

3.10 Identification of the Consortium via Cloning of the 16S rRNA
 PCR Product
 3.10.1 Analysis of 16S rRNA Sequences of the Cloning Samples
 3.10.2 Mothur Analysis for Microbial Community of the Consortium.
4 ENRICHMENT AND SCREENING OF MICROBIAL CONSORTIUM FOR BIOHYDROGEN PRODUCTION

4.1 Introduction
4.2 Results and Discussions
 4.2.1 Physical Parameters of the Hot Springs
 4.2.2 Enrichment of PNSB from the Hot Springs
 4.2.3 Characterization of Enriched Consortium
 4.2.4 Screening for Hydrogen Production
 4.2.5 Isolation and Identification of GDC Consortium
 4.2.6 Identification of Isolate PJa via 16S rRNA
 4.2.7 Screening for Hydrogen Production between Pure and Consortium

4.3 Conclusion

5 OPTIMIZATION OF BIOHYDROGEN PRODUCTION OF THE MICROBIAL CONSORTIUM

5.1 Introduction
5.2 Results and Discussion
 5.2.1 Effect of Inoculum Sizes on Hydrogen Production
 5.2.2 Effect of Lighting Condition on Hydrogen Production
 5.2.3 Effect of Initial pH
 5.2.4 Effect of Temperature on Hydrogen Production
 5.2.5 Effect of Carbon Source on Hydrogen Production
 5.2.6 Effect of Initial Carbon Source Concentration on Hydrogen Production
 5.2.7 Effect of Nitrogen Source on Hydrogen Production
 5.2.8 Effect of Initial Nitrogen Source Concentration on Hydrogen Production
 5.2.9 Comparative Studies

5.3 Conclusion

6 MICROBIAL DIVERSITY ANALYSIS OF THE CONSORTIUM

6.1 Introduction
6.2 Results and Discussion

6.2.1 Identification of Bacterial Diversity in the Consortium via DGGE

6.2.1.1 PCR Amplification of 16S rRNA Gene for DGGE

6.2.1.2 16S rRNA Amplified PCR Product Analyzed via DGGE

6.2.2 Identification of Bacterial Diversity in the Consortium via 16S rRNA Clone Library

6.2.2.1 Construction of 16S rRNA Clone Library of the Consortium

6.2.2.2 Microbial Diversity and Phylogenetic Analysis of the Consortium

6.3 Conclusion

7 CONCLUSION AND FUTURE WORKS

7.1 Conclusion

7.2 Further Works

REFERENCES

Appendices A-K
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Examples of Hydrogen end use application taken from Energy Information Administration. U.S Department Energy 2008</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of biological hydrogen mechanism</td>
<td>28</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of hydrogen production by pure cultures and mix culture in batch culture</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>The universal primers used for the amplification of 16S rRNA gene</td>
<td>64</td>
</tr>
<tr>
<td>3.2</td>
<td>PCR reaction</td>
<td>65</td>
</tr>
<tr>
<td>3.3</td>
<td>Primers used for PCR reaction for DGGE</td>
<td>67</td>
</tr>
<tr>
<td>3.4</td>
<td>PCR reaction</td>
<td>68</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of the physical parameters of the hot springs</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>Chemical analysis of the hot spring taken from Baioumy et al. (2015)</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Chemical analysis of the hot spring taken from Samsudin et al. (1997)</td>
<td>78</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.4</td>
<td>Pigment analysis for all of the enrichment culture</td>
<td>80</td>
</tr>
<tr>
<td>5.1</td>
<td>Effects of initial inoculum size on cell growth of the consortium calculated on logistic equation</td>
<td>94</td>
</tr>
<tr>
<td>5.2</td>
<td>Effects of initial inoculum size on hydrogen production calculated on modified Gompertz equation and SCE</td>
<td>95</td>
</tr>
<tr>
<td>5.3</td>
<td>Effects of lighting condition on cell growth of the consortium calculated on logistic equation</td>
<td>97</td>
</tr>
<tr>
<td>5.4</td>
<td>Effects of light regime on hydrogen production calculated on modified Gompertz equation and SCE</td>
<td>99</td>
</tr>
<tr>
<td>5.5</td>
<td>Effects of Initial pH on cell growth of the consortium calculated on Logistic Equation</td>
<td>103</td>
</tr>
<tr>
<td>5.6</td>
<td>Effects of initial pH on hydrogen production calculated on modified Gompertz equation and SCE</td>
<td>105</td>
</tr>
<tr>
<td>5.7</td>
<td>Effects of temperature on cell growth of the consortium calculated on Logistic equation</td>
<td>107</td>
</tr>
<tr>
<td>5.8</td>
<td>Effects of temperature on hydrogen production calculated on modified Gompertz equation and SCE</td>
<td>109</td>
</tr>
<tr>
<td>5.9</td>
<td>Effects of different carbon source on cell growth of the consortium calculated on Logistic Equation</td>
<td>112</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>5.10</td>
<td>Effects of different carbon source on hydrogen production calculated on modified Gompertz equation and SCE</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>Effects of various initial carbon concentration cell growth of the consortium calculated on Logistic Equation</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>Effects of various initial carbon concentration on hydrogen production calculated on modified Gompertz equation and SCE</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.13</td>
<td>Effects of various nitrogen source on cell growth of the consortium calculated on Logistic Equation</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.14</td>
<td>Effects of various nitrogen source on hydrogen production calculated on modified Gompertz equation and SCE</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.15</td>
<td>Effects of initial nitrogen source concentration on cell growth of the mix culture calculated on Logistic Equation</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.16</td>
<td>Effects of initial tryptone concentration on hydrogen production calculated on modified Gompertz Equation and SCE</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.17</td>
<td>Comparison of hydrogen production obtained in this study to those cited in literature</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.1 Identification of the DGGE bands from the consortium 144

6.2 The consortium samples indices calculated by Mothur 148

6.3 Phylogenetic affiliation of OTU which was generated by Mothur 148
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Biological production from microorganism (Ghimire et al., 2015)</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Carbon cycle of hydrogen producing systems. (McKinlay and Harwood, 2010b)</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Biological hydrogen mechanism of indirect and direct biophotolysis (Kim and Kim, 2011)</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Biological hydrogen production mechanism in photo-fermentation (Kim and Kim, 2011)</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Biodegradation and biochemical pathways involved in fermentative breakdown of biomass (Ghimire et al., 2015)</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Metabolic pathway of hydrogen production in dark fermentation (Hallenbeck, 2013)</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>A curve for modified Gompertz (Wang and Wan 2009b)</td>
<td>45</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview of the research methodology in achieving three objectives</td>
<td>52</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.2</td>
<td>Gas Chromatography-Thermal Conductivity detector machine</td>
<td>57</td>
</tr>
<tr>
<td>4.1</td>
<td>Location of the hot springs</td>
<td>76</td>
</tr>
<tr>
<td>4.2</td>
<td>Pigmented Cultures</td>
<td>79</td>
</tr>
<tr>
<td>4.3</td>
<td>Biohydrogen production of the consortiums at 50°C and 30°C.</td>
<td>82</td>
</tr>
<tr>
<td>4.4</td>
<td>Biohydrogen production of the consortium incubated for 7 days incubated at 50°C</td>
<td>84</td>
</tr>
<tr>
<td>4.5</td>
<td>Gel electrophoresis of PCR product and DNA ladder</td>
<td>86</td>
</tr>
<tr>
<td>4.6</td>
<td>Phylogenetic tree based on 16S rRNA gene sequence showing the relationship between bacteria genus Thauera and Azoarcus with isolate PJa</td>
<td>87</td>
</tr>
<tr>
<td>4.7</td>
<td>GC-TCD chromatograph for hydrogen production of Pure Isolate (PJa)</td>
<td>88</td>
</tr>
<tr>
<td>4.8</td>
<td>GC-TCD chromatograph for hydrogen production of GDC mix culture</td>
<td>89</td>
</tr>
<tr>
<td>4.9</td>
<td>Growth and hydrogen production of the consortium GDC</td>
<td>90</td>
</tr>
<tr>
<td>5.1</td>
<td>Logistic model growth curve of the consortium at different initial inoculum size using STATISTICA 8.0</td>
<td>94</td>
</tr>
<tr>
<td>5.2</td>
<td>Modified Gompertz model equation plot for hydrogen production of the consortium at different initial inoculum size using STATISTICA 8.0</td>
<td>95</td>
</tr>
<tr>
<td>5.3</td>
<td>Logistic model growth curve of the consortium at different light regime using STATISTICA 8.0</td>
<td>98</td>
</tr>
</tbody>
</table>
5.4 Modified Gompertz model equation plot for hydrogen production of the consortium at different light regime using STATISTICA 8.0.

5.5 Logistic model growth curve of the consortium at different initial pH using STATISTICA 8.0

5.6 Modified Gompertz model equation plot for hydrogen production of the consortium at different initial pH using STATISTICA 8.0.

5.7 Logistic model growth curve of the consortium at different incubation temperature using STATISTICA 8.0

5.8 Modified Gompertz model equation plot for hydrogen production of the consortium at different temperature using STATISTICA 8.0.

5.9 Logistic model growth curve of the consortium at different carbon source using STATISTICA 8.0

5.10 Modified Gompertz model equation plot for hydrogen production of the consortium at different carbon source using STATISTICA 8.0.

5.11 Logistic model growth curve of the consortium at different initial pyruvate concentration using STATISTICA 8.0

5.12 Modified Gompertz model equation plot for hydrogen production of the consortium at different initial pyruvate concentration using STATISTICA 8.0.
5.13 Logistic model growth curve of the consortium with various types of nitrogen source using STATISTICA 8.0 122

5.14 Modified Gompertz model equation plot for hydrogen production of the consortium at different types of nitrogen source using STATISTICA 8.0. 124

5.15 Logistic model growth curve of the consortium with different tryptone concentration using STATISTICA 8.0 129

5.16 Modified Gompertz model equation plot for hydrogen production of the consortium at different tryptone concentration using STATISTICA 8.0. 130

6.1 Genomic DNA extraction of the consortium 139

6.2 DGGE profiles of the bacterial communities of the consortium 141

6.3 Re-PCR product of the excised band 143

6.4 The PCR amplification of 16S rRNA gene of the consortium 147

6.5 Visualization by MEGAN 5.0 showing the percentage of clones and their phylogenetic affiliations of the consortium after optimization (G) and before optimization (18) based on Mothur analysis with EzBiocloud as reference sequence. 150
6.6 Number or clones and their phylogenetic affiliations of the consortium after optimization (G) and before optimization (18) based on Mothur analysis with EzBiocloud as reference sequence which was visualized by MEGAN 5.0. 151

6.7 Phylogenetic tree of the OTUs in the both consortium and their close relatives based on partial 16S rRNA gene sequences. 152

6.8 Visualization by MEGAN 5.0 of the phylogenetic tree of only the taxonomy of the consortium generated by Mothur. 153
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>DGGE</td>
<td>Denaturing Gradient Gel electrophoresis</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>GC-TCD</td>
<td>Gas Chromatography Thermal Conductivity Detector</td>
</tr>
<tr>
<td>LH</td>
<td>light harvesting</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide adenosine dinucleotide</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>OFAT</td>
<td>one factor at a time</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PNSB</td>
<td>Purple non sulphur bacteria</td>
</tr>
<tr>
<td>RC</td>
<td>reaction centre</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>SCE</td>
<td>Substrate conversion efficiency</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate-EDTA</td>
</tr>
<tr>
<td>TCA</td>
<td>tricarboxylic acid</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>Symbol</td>
<td>Unit Definition</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>% (v/v)</td>
<td>percentage volume per volume</td>
</tr>
<tr>
<td>°C</td>
<td>celcius</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>g/L</td>
<td>gram per litre</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base pair</td>
</tr>
<tr>
<td>kPa</td>
<td>kilo Pascal</td>
</tr>
<tr>
<td>L</td>
<td>litres</td>
</tr>
<tr>
<td>μL</td>
<td>microliter</td>
</tr>
<tr>
<td>mL</td>
<td>mililiter</td>
</tr>
<tr>
<td>min</td>
<td>minutes</td>
</tr>
<tr>
<td>mM</td>
<td>milimolar</td>
</tr>
<tr>
<td>ng/L</td>
<td>nanogram per litre</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>rpm</td>
<td>rotation per minute</td>
</tr>
<tr>
<td>Tm</td>
<td>melting point</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cell dry weight predictions</td>
<td>188</td>
</tr>
<tr>
<td>B</td>
<td>Analytical analysis of hydrogen gas in GC-TCD</td>
<td>190</td>
</tr>
<tr>
<td>C</td>
<td>Promega Wizard® Genomic DNA Purification kit Protocol</td>
<td>192</td>
</tr>
<tr>
<td>D</td>
<td>PCR Product Cloning Workflow</td>
<td>194</td>
</tr>
<tr>
<td>E</td>
<td>Nucleotide Sequence of 16s rRNA Gene from Strain PJa</td>
<td>195</td>
</tr>
<tr>
<td>F</td>
<td>Statistical Analysis via ANOVA and Tukey’s test</td>
<td>196</td>
</tr>
<tr>
<td>G</td>
<td>Calculation of yield of product in terms of biomass</td>
<td>199</td>
</tr>
<tr>
<td>H</td>
<td>Relationship between biomass growth and product formation</td>
<td>200</td>
</tr>
<tr>
<td>I</td>
<td>Calculation of carbon mass in carbon co-substrate</td>
<td>206</td>
</tr>
<tr>
<td>J</td>
<td>Calculation of nitrogen mass in nitrogenous co-substrate</td>
<td>207</td>
</tr>
<tr>
<td>K</td>
<td>Logfile of Mothur done for cloning sequences</td>
<td>209</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Currently, fossil fuels such as coal, oil and natural gas are massively used for industrialization, transportations, generation of electricity, and overall the sole global energy (Huntley and Redalje, 2007; Hallenback et al., 2009; Chandrasekhar et al., 2015). However, enormous consumption of fossil fuel has caused major environmental destruction, changes in global climate, global warming, emission of greenhouse gasses and health problems (Chang et al., 2006; Jamali et al., 2016). Hydrogen is one of the most abundant elements in the universe in its ionic form and is odourless, colourless, tasteless and non-poisonous gas (Das et al., 2001; Chong et al., 2009). Thus, it is recommended that hydrogen could replace fossil fuels and minimize the environmental pollution because of its clean and renewable energy properties.

Hydrogen gas is the simplest element and is the most abundance element in the universe. The atmosphere contains 0.07 % of hydrogen and the Earth’s surface has 0.14 % of hydrogen (Das et al., 2001). Furthermore, hydrogen is a promising energy carrier of the future and can be derived from a variety of energy sources. Hydrogen is used in fuel cells with high efficiency of 142.35 kJ/g which means that on burning 1 g of hydrogen, 142.35 kJ of energy is produced (Singh, 2013). Hydrogen can either be
used as the fuel for direct combustion of engine or as the fuel for a fuel cell (Das and Veziroglu, 2008). Moreover, hydrogen is categorized as a clean fuel because upon oxidation, it only produces water which can be recycled again to produce more hydrogen, thus making it a source of renewable energy (Singh and Wahid, 2015). Furthermore, by only producing water upon combustion or oxidation hydrogen is a non-polluting and carbon-free alternative in comparison to fossil fuels which produces carbon dioxide upon combustion thus further increase the effects of greenhouse gases (Singh, 2013; Singh and Wahid, 2015).

Currently, hydrogen is used for hydrogenation of many products, foods, and ammonia for fertilizer and is also used in the petroleum industries (Das and Veziroglu, 2008; Kim and Kim, 2012). Furthermore, it has been reported that the demand for hydrogen is increasing and hydrogen could be the future of energy for power and transportation due to its many advantageous trait (Singh, 2013). Thus, a significant use of hydrogen has been demonstrated in the recent years for hydrogen-fueled transit buses, ships and submarines, including chemical and petrochemical applications (Singh and Wahid, 2015). However, unlike fossil fuels, hydrogen gas is not readily available in nature, and the commonly used production methods are quite expensive (Singh and Wahid, 2015). At present 40% hydrogen is produced from natural gases, 30% from heavy oil and naphtha, 18% from coal, 4% from electrolysis and about 1% from biomass (Sinha and Pandey, 2011). Most of this hydrogen production are exclusively made by methane steam reforming and coal gasification by using fossil fuels, which emits a significant amount of greenhouse gases (Kim and Kim, 2012). Therefore, renewable energy sources have to be employed for sustainable hydrogen production. Thus, biological hydrogen production are becoming important due to its renewable energy resources and its ability to operate at ambient temperature and atmospheric pressure (Wang and Wan, 2009; Loss et al., 2013).

Biohydrogen production are mainly from microorganisms that are able to produce hydrogen inside its metabolic pathway such as the photosynthetic bacteria (purple non sulfur bacteria (PNSB), cyanobacteria, purple sulfur bacteria) and fermentative hydrogen production bacteria (Clostridium sp). Both of these type of bacteria are extensively isolated and studied in mesophilic condition for its ability to produce high amount of hydrogen. However, Lazaro et al. (2015) concluded that mix cultures are more feasible in producing hydrogen in comparison to the pure cultures.
Furthermore, they also observed that mixed cultures are the preferred choice because of its operational ease, stability, diversity of biochemical functions, and the possibility to use a wide range of substrates (Han et al., 2012). Apart from that, it is known that biological hydrogen production is more favourable energetically at elevated temperatures which enables thermophiles to reach higher hydrogen production than mesophiles (Pawar and van Niel, 2013).

Hot Springs in Malaysia is a known hotspot for tourism. According to Baioumy et al. (2015), there are more than sixty hot springs in West Malaysia with the variation temperature of 41°C to 99°C and pH values varies in the range of 4.5 to 9.9 and the hot springs in West Malaysia are non-volcanic hot springs. However, biological studies are rare because of the lack comprehensive information of their microbial communities. Thus far, Chan et al. (2017) via independent cultivation, reported that generally, Firmicutes and Proteobacteria dominated the bacterial communities in all hot springs along the flank of the Banjaran Titiwangsa mountain range. For the past 5 years, a few of bacterial species has been successfully isolated from Malaysian hot spring which are *Rhodococcus vanniellii* (Ainon et al., 2006), *Geobacillus thermoleovorans* CCB_US3_UF5 (Sakaff et al., 2012), and Sulphur oxidizing bacteria isolate (Hidayat et al., 2017). Furthermore, hot springs in Thailand (Puhakka et al., 2012) and Turkey (Jessen et al., 2015) observe the existence of hydrogen producer bacteria which produces high yield of hydrogen. Nevertheless, to the best of our knowledge, there are no reports in the public domain regarding the ability of bacteria from hot springs in Malaysia to produce hydrogen. However, Ainon et al., (2006) reported the presence of a PNSB, *Rhodococcus vanniellii*, a PNSB from Gadek hot spring in Melaka. PNSB is known to possess a metabolic pathway to produce hydrogen. Therefore in the present study, microbes were isolated from a few hot springs in Malaysia to explore their ability to produce biohydrogen. Furthermore, it would be beneficial to produce hydrogen in a higher scale for a future of clean and renewable energy source.
1.2 Problem Statement

Energy is the most vital source and is used daily for electricity, transportation, technology, manufacturing and industrialization. To date, these global energy requirements are heavily dependent on fossil fuels such as oil, coal and natural gaseous. There is an urgency to search for replacement source of energy since the depletion of limited fossil fuels source is inevitable. Furthermore, the global warming and the climate change that the world is enduring right now is causing worry due to the extensive use of fossil fuels where there is a tremendous emission of carbon dioxide during combustion of fossil fuels (Chong et al., 2009). Therefore, for these reasons, researches are looking for alternative fuels that could tackle the environmental issues mentioned. Thus, hydrogen is the best substitute for fossil fuel due to its abundance in the environment and it is a form of renewable energy (Jamali et al., 2016). This is because production of hydrogen only produces water upon oxidation and the water could be recycled again to produce hydrogen (Singh and Wahid, 2015). Hence, making it a form of renewable energy. Also it is a clean energy source due to the lack of emission of the greenhouse gases in the process of producing hydrogen and thus making it environmentally friendly (Singh, 2013; Singh and Wahid, 2015; Jamali et al., 2016). Moreover, biological process in producing hydrogen is an eco-friendly method which uses microorganisms via biochemical pathway in comparison to the conventional method which uses about 98% of fossil fuels (Singh and Wahid, 2015).

However, there are some limitations in production of biohydrogen such as:

i. Limitations of biohydrogen production in pure cultures

In recent years, studies on biohydrogen production via pure cultures are more leaning towards modifications of its genetic information and its metabolic pathway (Cai and Wang, 2014; Mohd Yasin et al., 2013; Ma et al., 2012; Rey et al, 2007; Morimoto et al., 2005; Kondo et al., 2002). Thus, making the hydrogen production costly and prevents the commercial application of the technology (Cai et al., 2012). Furthermore, pure cultures require sterile conditions and strict control of environmental conditions making it difficult for large-scale process in producing hydrogen for future energy source (de Sá et al., 2013). In comparison, mix cultures are easy to control, due to the
absence of sterilization and being adaptive to variations in feedstock or condition due to its interaction between different microorganisms in the mix culture making it favourable for large-scale processing (Bao et al., 2012; Loss et al., 2013; Sivagurunathan et al., 2014; Zhang et al., 2015). In addition, mix cultures are robust and able to convert a wide array of substrates because of their metabolic flexibility to utilize short-chain fatty acids and carbon dioxide and produce hydrogen (Shanmugam et al., 2014). Thus, resulting in mix cultures and co-cultures producing higher hydrogen production rather than pure cultures without any genetic modifications (Zhang et al., 2015).

ii. Abundance of different types of bacteria in a mix culture could lead to instability of biohydrogen production system.

To date, biohydrogen producing enriched consortia are mainly isolated from Palm Oil Mill Effluent (POME) which produces hydrogen in dark fermentation (Jamali and Md Jahim, 2016; Rasdi et al., 2009; Singh et al., 2013; Vijayaraghavan and Ahmad, 2006; Yossan et al., 2012). However, there is an underlying problem whereby instability of the consortium isolated from POME occurs due to the abundance of bacterial community (Singh and Wahid, 2015). The abundance of bacterial community usually consist of hydrogen consumers such as methanogens, homoacetogens, sulphate and nitrate reducing bacteria (Singh, 2013). Furthermore, this resulted in depleting the amount of hydrogen yield from 11% to 43% due to these bacteria consuming hydrogen in the mix culture (Saady, 2013). In addition, low hydrogen yield were reported due to the less efficiency in converting substrates to hydrogen because most thermal enthalpies are lost in the formation of volatile fatty acids (VFA) (Wong et al., 2005). Thus, another environmental source are needed for the production of hydrogen with an optimal bacterial community to produce high yield of hydrogen.

iii. Lack of data for local thermophilic isolates and their biohydrogen production

Hydrogen production by mix culture has shown to be higher at higher temperatures (O-Thong et al., 2008; Akutsu et al., 2009; Puhakka et al., 2012; Zhang et al., 2016). Thus, it is possible that thermophilic enrich culture may be capable of producing high
amount of hydrogen. Enrich cultures taken from the hot springs reportedly yield high amount of hydrogen (Prasertsan and O-Thong, 2011; Puhakka et al., 2012; Phummala et al., 2014). At thermophilic condition, the hydrogen community producer becomes energetically favorable and hydrogen consuming reactions become less favorable, better pathogenic destruction, higher rate of hydrolysis and thus higher hydrogen yields (Das, 2001; Chong et al., 2009; Md Jahim, 2016; Roy et al., 2014). However, although the thermophiles are cultivated at elevated temperatures with highly intensive energy requirements, their hydrogen production can be closer to the theoretical yield in comparison to mesophiles by overwhelming the thermodynamic barrier (Chandrasekhar et al., 2015). Thus, a higher temperature is more feasible for hydrogen production due to favorable thermodynamics and hold tremendous promise for the forthcoming generations as well as for the commercial production of hydrogen fuel (Hasyim et al., 2011). However, to date, in the public domain, research done to investigate the ability of the microbial community of the hot spring in producing hydrogen are sparse.

iv. Lack of data in bacterial consortium containing PNSB for biohydrogen production via photo fermentation

As for photo fermentation in biohydrogen production, it usually involves PNSB that utilizes sunlight to oxidize organic compounds and generate the electron potential needed to drive hydrogen production (Azwar et al., 2014). Additionally, photo fermentation is widely used for wastewater remediation and stabilization due to its versatility in sources of metabolic substrate (Ghadamshetty et al., 2008; Kim and Kim, 2012). Thus, solar energy can be utilized in producing hydrogen with minimal non-renewable energy inputs and by utilizing low cost substrates or waste streams and, by collecting and recycling useful by-products (Gadhamshetty et al., 2008). Also, PNSB can potentially divert 100% of electrons from an organic substrate to hydrogen production (Azwar et al., 2014). Hence, biohydrogen production via photo fermentation is favourable due to its potential in producing high amount of hydrogen and its versatility in consuming various substrate which could be utilized as wastewater remediation apart from producing hydrogen. Thus far, consortium containing PNSB for one step biohydrogen production has been reported from only the mesophilic environment (Yanling et al., 2008, Loss et al., 2013 and Lazaro et al., 2015). Also, there are no studies yet available in the public domain using consortium containing PNSB isolated from the hot springs for biohydrogen production.
Therefore, in this research, microbes from hot springs samples were isolated and further analyzed its biohydrogen production potential and its environmental effect on biohydrogen production. In addition, the microbial diversity of the mix culture taken from the hot spring is further studied to understand its role and its abundance in a consortium. Overall, in this present study, consortium from hot spring were assessed for their ability to produce hydrogen for future energy source.

1.3 Research Objectives

This study was carried out to investigate the ability of an enriched mix bacterial culture (consortium) from a local hot spring to produce high amount of biohydrogen and identify the microbial population that is responsible for hydrogen production. The specific objectives of this studies were:

1) To isolate, enrich, characterize and screen the consortium for biohydrogen production from various hot springs samples.
2) To characterize and optimize the maximal biohydrogen production of the selected consortium in batch mode.
3) To identify the microbial community diversity of the consortium before and after biohydrogen production optimization.

1.4 Scope of Study

In this study, water samples from Selayang hot spring, Selangor, Cherana Putih and Gadek hot springs in Melaka were enriched in a medium for PNSB with the aim of obtaining a consortium with PNSB. This is because PNSB are versatile and able to break down any organic substrate into hydrogen production whilst having the potential to divert 100% of electrons from an organic substrate to hydrogen production (Azwar et al., 2014). Apart from producing hydrogen, PNSB could simultaneously remediate
wastewater due to its ability in utilizing any form of substrate and also its ability to survive in an extreme habitat (Seifert et al., 2010; Seifert and Zagrodnik, 2009). Chan et al. (2017) reported that the dominant phyla in most of Malaysian hot springs are Proteobacteria. PNSB is from the phyla of Proteobacteria. Hence, it could be hypothesize that PNSB from hot springs could produce a high amount of hydrogen due to its efficiency in converting its substrate to hydrogen (Azwar et al., 2014). Moreover, at elevated temperatures, production can be closer to the theoretical yield by overwhelming the thermodynamic barrier (Chandrasekhar et al., 2015).

Next, the various consortium were screened for its ability to produce hydrogen via gas chromatography-thermal conductivity detector (GC-TCD). Isolation and identification of the consortium with the highest hydrogen production was done and the isolated pure cultures were screened for hydrogen production. The environmental effects on hydrogen production of the consortium was further studied. Parameters such as the light illumination protocol, inoculum size, initial pH of the medium, incubation temperature, effects of carbon sources and its concentration and effects of nitrogen sources and its concentration which influence the hydrogen production of the consortium were optimized conventionally using one factor at a time method (OFAT). The biohydrogen production of the consortium was kinetically analyzed using the modified Gompertz equation and the growth and biomass production of the consortium was analyzed using the Logistic growth model. Furthermore, the relationship between biomass growth and the production of hydrogen by the consortium were also analyzed. The microbial community diversity of the consortium before and after optimization of hydrogen production was done via denaturing gradient gel electrophoresis to screen a microbial shift in bacterial population. Then, identification of the microbial population of the consortium before and after optimization of hydrogen production was done by construction of 16S rRNA gene clone library and analyzed using Bioedit and Mothur.
1.5 Significance of Study

This study provides information of the ability of a bacterial consortium taken from the hot spring to produce hydrogen. Biohydrogen production has been vastly studied around the world, however new information arises that thermophilic bacterial consortium produce much higher hydrogen production (Shin et al., 2004; Puhakka et al., 2012; Zhang et al., 2016). Only a few studies were found in the public domain on the ability of bacterial communities taken from hot springs to produce hydrogen such as Puhakka et al. (2012) and Jessen et al. (2015). Thus, in this research, biohydrogen production from bacterial culture of hot springs in Malaysia has been studied to further provide the information of the ability of a bacterial consortium in hot spring Malaysia to produce hydrogen.

This research will also provide important environmental parameters and its kinetic analysis in enhancing the production of hydrogen in the consortium. The production of hydrogen is influenced by many factors such as temperature, pH, its carbon source and also its nitrogen source. Different type of microorganisms and consortiums has different effects on hydrogen production and its growth base on the variation of the environmental parameters. Furthermore, kinetic models were developed and applied for growth and hydrogen production to describe the progress of growth and hydrogen production process respectively. It is unknown whether a certain combination of many environmental parameters could yield high amount of hydrogen by the bacterial consortium of the hot spring. Thus, by investigating the environmental factors and its kinetic analysis, it will provide a better evaluation of the kinetic growth and hydrogen production of the consortium and its effects towards different environmental parameters.

Furthermore, this study provides an in depth analysis of the microbial community dynamics of the consortium that is responsible for producing high hydrogen production. Knowledge of the microbial composition of the major hydrogen producing microorganisms would result in efficient and optimal operation of fermentative hydrogen producing systems (O-Thong et al., 2008). Apart from identifying the bacterial consortium, little information concerning microbial population structures and its dynamic changes in hydrogen production is available. Therefore in this research,
REFERENCES

loading rate as tools for improving biohydrogen production in fixed-bed reactors. *Biotechnology Reports*, 5, 46–54.

d’Ippolito, G., Dipasquale, L., Vella, F. M., Romano, I., Gambacorta, A., Cutignano,

Han, W., Ye, M., Zhu, A. J., Huang, J. G., Zhao, H. T., and Li, Y. F. (2015). A combined bioprocess based on solid-state fermentation for dark fermentative
hydrogen production from food waste. *Journal of Cleaner Production*, 112, 3744–3749.

Hung, C.-H., Chang, Y.-T., and Chang, Y.-J. (2011). Roles of microorganisms other than *Clostridium* and *Enterobacter* in anaerobic fermentative biohydrogen production systems – A review. *Bioresource Technology*, 102(18), 8437-8444.

strain *Klebsiella oxytoca* HP1 from a hot spring. *Research in Microbiology*, 156(1), 76–81.

powder solution in an anaerobic fluidized bed reactor: Effect of hydraulic retention time and initial substrate concentration. *International Journal of Hydrogen Energy*, 2 (42), 4848-4860

Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., Glöckner, F. O. (2007). SILVA: A comprehensive online resource for quality checked and

Toolset and the analysis of 16S rRNA microbial sequences. *BMC bioinformatics*, 13(S11) 1-11

Appendix C

Promega Wizard® Genomic DNA Purification kit Protocol

1 mL of the overnight culture was centrifuged at 16,000 x g for two minutes to obtain cell pellet. This step was repeated about five times with the overnight culture to obtain higher amount of pellet. Then, the cells were suspended thoroughly in 480 µl of 50 mM EDTA followed by addition of 120 µL of lysozyme and was mixed gently. The purpose of this pre-treatment was to weaken the cell wall so that cell lysis could efficiently take place. Next, the sample was incubated at 37°C for 60 minutes on the Thermomixer® (Eppendorf) and then was centrifuged for 2 minutes at 16,000 x g. After that, the supernatant was discarded. Then, 600 µL of Nuclei Lysis solution was added and mix gently.

Next, the cells were lysed by incubation at 80°C on the Thermomixer® (Eppendorf) for 5 minutes and then was cooled at room temperature. Three µl of RNase solution was added to the cell lysate and the tube was inverted 2-5 times to mix. After that, the tube was incubated at 37°C for 60 minutes before it was cooled at room temperature. Then, 200 µL Protein Precipitation Solution was added to the RNase-treated cell lysate and then was vortexed vigorously at high speed for 20 seconds. Next, the sample was incubated for 5 minutes on ice and followed by centrifugation at 16,000 x g for 3 minutes.

Then, the supernatant containing the DNA was carefully transferred to a clean 1.5 mL microcentrifuge tube containing 600 µL of room temperature isopropanol. The supernatant was carefully transferred without any contamination of the pellet which is the precipitated protein. The tube containing the mixture was gently inverted until a thread-like strands of DNA form a visible mass. The mixture was centrifuged at 16,000 x g for 2 minutes. Then, carefully the supernatant was poured off and drained from the tube on clean absorbent paper. After that, about 600 µL 70% (v/v) ethanol was added and the tube was gently inverted several times to wash the DNA pellet. Again, the tube was centrifuged at the same power for 2 minutes and excess ethanol was carefully aspirated. The tube was drained on a clean absorbent paper and the pellet was
allowed to air dry for 10 to 15 minutes. Then, 50 µL of DNA rehydration solution was added to the tube and the DNA was rehydrated by incubating at 65°C for 1 hour on the Thermomixer® (Eppendorf). The solution was periodically mixed by gently tapping the tube. Alternatively, the DNA was rehydrated by incubating the solution overnight at 4°C. Finally, the DNA was stored at 2-8°C to use as a working solution or was stored at -20°C for longer storage.