EFFECTS OF MANGANESE OXIDE NANOPARTICLES EMBEDMENT ON OPTIC-MAGNETIC FEATURES OF MAGNESIUM BOROTELLURITE DOPED EUROPIUM GLASS

SITI MAISARAH BINTI AZIZ

UNIVERSITI TEKNOLOGI MALAYSIA
EFFECTS OF MANGANESE OXIDE NANOPARTICLES EMBEDMENT ON OPTIC-MAGNETIC FEATURES OF MAGNESIUM BOROTELLURITE DOPED EUROPIUM GLASS

SITI MAISARAH BINTI AZIZ

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Science
Universiti Teknologi Malaysia

FEBRUARY 2018
...dedicated to my lovely parent:

AZIZ IBRAHIM ❤ CHE NONG SU

for their unconditional love, motivation and support.
ACKNOWLEDGEMENT

Alhamdulillah, I am so grateful to Allah Almighty on His mercy and blessing for completing this research. First and foremost I owe my sincere gratitude to my supervisor, Prof. Dr. Md. Rahim Sahar for his constant support, guidance and enthusiasm throughout this research. I am also very thankful to Assoc. Prof. Dr. Sib Krishna Ghoshal and Dr. Supar Rohani for their guidance, advices and comments of the papers and thesis. Without their continued support and interest, this thesis would not have been the same as presented here.

I am also indebted to Ministry of Higher Education, Malaysia and Universiti Teknologi Malaysia for funding my Ph.D. study. Lab assistance at Faculty of Science and University Laboratory Management Unit (UTM), Universiti Sains Malaysia, Universiti Kebangsaan Malaysia and Universiti Putra Malaysia also deserve special thanks for their assistance during the experiment.

It would not have been possible to write this thesis without the support, help and prayers of my respected parents, Aziz Ibrahim and Che Nong Su and family for their never ending love and support. I would like to show gratitude to my seniors, Dr. Nurul Huda and Dr. Zahra Ashur for the advice and helpful discussion contributing to my research. I would like to express my immense gratitude to the rest who contribute to my research work; such as AOMRG members and lab assistants for their support. My sincere appreciation to all who have provided assistance for my research project.
This thesis reports the modified optical and magnetic properties of europium doped and manganese oxide nanoparticles (Mn$_3$O$_4$NPs) embedded magnesium borotellurite glass. Glass samples with composition of (59-x)TeO$_2$-30B$_2$O$_3$-10MgO-1Eu$_2$O$_3$-xMn$_3$O$_4$ with 0.0 ≤ x ≤ 2.0 mol % and (59-y)TeO$_2$-30B$_2$O$_3$-10MgO-yEu$_2$O$_3$-1Mn$_3$O$_4$ with 0.0 ≤ y ≤ 2.0 mol % were prepared by melt-quenching technique. The amorphous nature of the glass was determined by X-Ray Diffractometer (XRD) and the presence of Mn$_3$O$_4$ NPs was verified by using Transmission Electron Microscope (TEM) and High Resolution Transmission Electron Microscope (HRTEM). The thermal parameters were determined by Differential Thermal Analyzer (DTA) and spectroscopic properties were measured by Raman, Ultraviolet-Visible (UV-Vis) and Photoluminescence (PL) spectrometer. Magnetic properties were determined by Vibrating Sample Magnetometer (VSM) and Electron Spin Resonance (ESR) spectrometer. The XRD patterns confirmed the amorphous nature of all glasses and TEM images manifested the growth of Mn$_3$O$_4$ NPs with average diameter 15 nm. HRTEM result revealed that the lattice spacing of Mn$_3$O$_4$ NPs was 0.308 nm at (112) plane. The thermal analysis showed that the glass transition temperature, T_g increases with the increase of Mn$_3$O$_4$ NPs in the glass matrix. The glass with 1.0 mol % of Mn$_3$O$_4$ NPs and Eu$_2$O$_3$ showed the highest thermal stability, 126 °C and the glass forming tendency, 0.76. The Raman spectra displayed Mn$_3$O$_4$ NPs assisted alteration in the Te-O-Te, BO$_3$, BO$_4$, TeO$_4$ trigonal pyramidal and TeO$_4$ trigonal bipyramidal bonding vibrations. The UV-Vis spectra consist of three bands attributed to absorption from ground state (7F$_0$) to 5D$_0$, 3D$_1$ and 3D$_2$ excited states. Two surface plasmon resonance (SPR) peaks of Mn$_3$O$_4$ NPs were detected at 388 nm and 516 nm. The emission spectra of Eu$^{3+}$ ion under 390 nm excitations revealed four prominent peaks centered at 591 nm, 614 nm, 651 nm and 700 nm assigned to the transitions from 4D$_0$→7F$_J$ (J=1, 2, 3, 4) states, respectively. Quenching effect in the luminescence intensity due to the incorporation of Mn$_3$O$_4$ NPs was ascribed to the energy transfer from the Eu$^{3+}$ ion to Mn$_3$O$_4$ NPs. The calculated Judd-Ofelt intensity parameters (Ω_{λ}; λ=2, 4, 6), radiative parameter and stimulated emission cross section of Eu$^{3+}$ ions were found to be strongly influenced by Mn$_3$O$_4$ NPs. Prepared glass systems exhibit paramagnetic behavior with glass magnetization and susceptibility at room temperature in the range of (4.95-13.31×10$^{-2}$) emu$^{-1}$ and (4.12-11.09×10$^{-6}$) emuOe$^{-1}$g$^{-1}$ respectively. The ESR spectra of all glass samples exhibit two resonance signals with g values at 1.9 and 4.3 with higher signal observed at 1.9. In addition, correlations between the size of Mn$_3$O$_4$ NPs with saturation magnetization (M_s) and coercivity (H_c) were established. In conclusion, incorporation of Mn$_3$O$_4$ NPs in the glass system has improved the optical and magnetic properties of the glass.
ABSTRAK

Tesis ini melaporkan sifat optik dan magnet terubah suai yang berdopkan europium dan zarah nano mangan oksida (Mn₃O₄ NPs) berbenam kaca magnesium borotellurite. Sampel kaca dengan komposisi (59-x)TeO₂-30B₂O₃-10MgO-1Eu₂O₃-xMn₃O₄ dengan 0.0 ≤ x ≤ 2.0 mol % dan (59-y)TeO₂-30B₂O₃-10MgO-yEu₂O₃-1Mn₃O₄ dengan 0.0 ≤ y ≤ 2.0 mol % disediakan menggunakan teknik pelindapan leburan. Sifat amorfus kaca ditentukan oleh difraktometer Sinar-X (XRD) dan kehadiran Mn₃O₄ NPs disahkan dengan menggunakan mikroskop elektron penghantaran (TEM) dan mikroskop elektron penghantaran beresolusi tinggi (HRTEM). Parameter terma ditentukan dengan penganalisa terma pembeza (DTA) dan sifat spektroskopi diukur dengan spektrometer Raman, penyerapan ultra lembayung boleh nampak (UV-Vis) dan fotoluminesens (PL). Sifat magnet ditentukan menggunakan magnetometer getaran sampel (VSM) dan spektrometer resonans putaran elektron (ESR). Corak XRD mengesahkan sifat amorfus bagi semua kaca dan imej TEM menunjukkan kewujudan Mn₃O₄ NPs dengan diameter purata 15 nm. Keputusan HRTEM mendedahkan jarak kekisi bagi Mn₃O₄ NPs ialah 0.308 nm pada satah (112). Analisis terma menunjukkan bahawa suhu peralihan kaca, Tₜ meningkat dengan pertambahan Mn₃O₄ NPs yang disebabkan oleh susunan Mn₃O₄ NPs dalam matriks kaca. Kaca dengan 1.0 mol % Mn₃O₄ NPs dan Eu₂O₃ menunjukkan kestabilan terma tertinggi, 126 °C dan kecenderungan pembentukan kaca tertinggi, 0.76. Spektrum Raman menunjukkan Mn₃O₄ NPs mempengaruhi perubahan dalam getaran ikatan Te-O-Te, BO₃, BO₄, piramid trigonal TeO₃ dan bipyramidal trigonal TeO₄. Spektrum UV-Vis terdiri daripada tiga jalur yang berpadanan dengan penyerapan dari keadaan dasar (7F₀) kepada keadaan teruja 5D₀, 5D₁ dan 5D₂. Dua puncak resonans plasmon permukaan (SPR) bagi Mn₃O₄ NPs dicerap pada 388 nm dan 516 nm. Spektrum pancaran ion Eu³⁺ apabila diuji pada 390 nm memaparkan empat puncak yang berpusat pada 591 nm, 614 nm, 651 nm dan 700 nm masing-masing merujuk kepada peralihan 5D₀ → 7F₁ (J = 1, 2, 3, 4). Kesan penurunan keamanan luminesens yang disebabkan oleh kehadiran Mn₃O₄ NPs adalah disebabkan berlakunya pemindahan tenaga daripada Eu³⁺ ion kepada Mn₃O₄ NPs. Pengiraan parameter keamanan Judd-Ofelt (Ω₂ = 2, 4, 6), parameter sinaran dan keratan rentas pancaran terangsang ion Eu³⁺ sangat dipengaruhi oleh Mn₃O₄ NPs. Semua kaca yang disediakan bersifat paramagnet dengan kemagnetan kaca dan kerentanan pada suhu bilik masing-masing dalam jutal (4.95-13.31x10⁻²) emu/cm³ dan (4.12-11.09x10⁶) emuOe⁻¹g⁻¹. Spektrum ESR menunjukkan semua kaca mempamerkan dua isyarat resonans dengan nilai g pada 1.9 dan 4.3 dengan isyarat resonans lebih tinggi pada 1.9. Sebagai tambahan, korelasi antara saiz Mn₃O₄ NPs dengan pemagnetan tepu (Mₛ) dan coerciviti (Hᵥ) telah ditentukan. Kesimpulannya, kemasukan Mn₃O₄ NPs dalam sistem kaca telah menambahbaikkan sifat optik dan magnet kaca.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of Study 1
1.2 Problem Statement 5
1.3 Objectives of Study 6
1.4 Scope of Study 7
1.5 Significance of Study 8
LITERATURE REVIEW

2.1 Introduction

2.2 Borotellurite (BT) Glass

2.2.1 Rare Earth Doped BT Glass

2.2.2 Metallic Nanoparticles Embedded into Rare Earth Doped BT Glass

2.3 X-Ray Diffraction

2.4 Transmission Electron Microscope (TEM) and High Resolution Transmission Electron Microscope (HRTEM)

2.5 Raman Spectroscopy

2.6 UV-Visible Spectroscopy

2.7 Photoluminescence (PL) Spectroscopy

2.7.1 Magnetic Field Effect on Luminescence

2.7.2 Energy Transfer Process

2.7.3 Judd Ofelt and Radiative Transitions

2.8 Magnetic Studies

2.8.1 Vibrating Sample Magnetometer (VSM)

2.8.2 Electron Spin Resonance (ESR)

2.9 Heat Treatment Studies

METHODOLOGY

3.1 Introduction

3.2 Glass Preparation

3.3 Sample Characterization

3.3.1 X-Ray Diffraction (XRD)

3.3.2 Transmission Electron Microscope (TEM)

3.3.3 Differential Thermal Analysis (DTA)
3.3.4 Raman Spectroscopy 60
3.3.5 UV-Visible Spectroscopy 61
3.3.6 Photoluminescence (PL) Spectroscopy 62
3.3.7 Vibrating Sample Magnetometer (VSM) 63
3.3.8 Electron Spin Resonance (ESR) 64

4 RESULTS AND DISCUSSION 67
4.1 Introduction 67
4.2 Glass Preparation 67
4.3 Results and Discussion for Glass Series I and II 69
 4.3.1 X-Ray Diffraction (XRD) 69
 4.3.2 Transmission Electron Microscopy (TEM) and High Resolution Transmission Electron Microscopy (HRTEM) 70
 4.3.3 Thermal Analysis 72
 4.3.4 Raman Spectra 75
 4.3.5 UV-Visible Analysis 80
 4.3.6 Photoluminescence (PL) Analysis 85
 4.3.7 Magnetic Studies 99
4.4 Heat Treatment (Series III) 112
 4.4.1 X-ray Diffraction (XRD) 113
 4.4.2 Transmission Electron Microscopy (TEM) 114
 4.4.3 Photoluminescence (PL) Analysis 117
 4.4.4 Magnetic Properties Analysis 122

5 CONCLUSIONS AND RECOMMENDATIONS 129
5.1 Introduction 129
5.2 Conclusions 129
5.3 Recommendations for Future Study

REFERENCES

Appendices A-F

133

150-159
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Thermal stability, ($^\circ$C), phonon energy (cm$^{-1}$), transmission range (μm) and refractive index (n) for different host</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>The recent studies on RE doped glass embedded with magnetic NPs</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>The Raman peak positions and band assignments of BT glasses systems based on selected reports</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Wavenumbers and reduced matrix for $^5D_0 \rightarrow ,^7F_J$ ($J = 0\text{-}6$) transitions of the studied glass system.</td>
<td>38</td>
</tr>
<tr>
<td>2.5</td>
<td>Types of magnetism, magnetic susceptibility and a graphical summary of the different types of magnetic phenomena</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Nominal composition of BT glass system containing Mn$_3$O$_4$ NPs</td>
<td>54</td>
</tr>
<tr>
<td>4.1</td>
<td>Thermal properties of prepared glasses with different concentration of Mn$_3$O$_4$ NPs</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Thermal properties of prepared glasses with different concentration of Eu$_2$O$_3$</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>The Raman peak positions and band assignments for various concentrations of Mn$_3$O$_4$ NPs</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>The Raman peak positions and band assignments for various concentrations of Eu$_2$O$_3$</td>
<td>78</td>
</tr>
</tbody>
</table>
4.5 Indirect optical band gap (E_{opt}), Urbach energy (ΔE) and refractive index (n) of BT glass system with various concentrations of Mn$_3$O$_4$ NPs 84
4.6 Indirect optical band gap (E_{opt}), Urbach energy (ΔE) and refractive index (n) of BT glass system with various concentration of Eu$_2$O$_3$ 84
4.7 Judd-Ofelt ($\times 10^{-20}$ cm2) intensity parameter of glass samples with different Mn$_3$O$_4$ NPs concentration 91
4.8 Judd-Ofelt ($\times 10^{-20}$ cm2) intensity parameters of glasses with different Eu$_2$O$_3$ concentration 92
4.9 Radiative parameters of Eu$^{3+}$: Mn$_3$O$_4$ NPs synthesis BT glasses for various concentrations of Mn$_3$O$_4$ NPs 94
4.10 Radiative parameters of Eu$^{3+}$: Mn$_3$O$_4$ NPs synthesis BT glasses for various concentrations of Eu$_2$O$_3$ 95
4.11 Mn$_3$O$_4$ NPs concentration dependent for experimental (τ_{exp}) and calculated (τ_{cal}) lifetimes values and quantum efficiency (η) of $^5D_0\rightarrow^7F_{1,2,4}$ transitions 98
4.12 Eu$_2$O$_3$ concentration dependent for experimental (τ_{exp}) and calculated (τ_{cal}) lifetimes values and quantum efficiency (η) of $^5D_0\rightarrow^7F_{1,2,4}$ transitions 98
4.13 Values of M_s, M_r, H_c, M_d/M_s and χ_m of prepared BT glasses with different concentration of Mn$_3$O$_4$ NPs 106
4.14 Values of M_s, M_r, H_c, M_d/M_s and χ_m of prepared BT glasses with different concentration of Eu$_2$O$_3$ 106
4.15 Magnetic properties of prepared BT glasses at various concentrations of Mn$_3$O$_4$ NPs 110
4.16 Magnetic properties of prepared BT glasses at various concentration of Eu$_2$O$_3$ 112
4.17 Judd-Ofelt parameter Ω_{ij} for different heat treatment durations of 58TeO$_2$-30B$_2$O$_3$-10MgO-1Eu$_2$O$_3$-1Mn$_3$O$_4$ glass system 119
4.18 Radiative parameters of heat treated BTMEMn glasses with various durations 121
Magnetic properties of saturation magnetization (M_s), remanence magnetization (M_r), coercivity (H_c) and average particles diameter of BTMEmn glasses at different heat treatment duration
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structured unit of tellurite glass where (a) TeO4 trigonal bipyramidal (tbp) (b) TeO${3+1}$ and (c) TeO$_3$ trigonal pyramidal (tp)</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Emission spectra of Eu$^{3+}$ at 1 mol % doped BT glass (at $\lambda_{ex} = 395$ nm)</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Partial energy level diagram showing the possible emission transitions of Eu$^{3+}$ ions in BT glass (NR: Non-radiative and R: Radiative)</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Illustration of surface plasmon resonance for metallic nanoparticles with polarized light field</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>The schematic of Bragg law</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>XRD pattern of Er$^{3+}$ doped BT glass showing a broad hump</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>XRD pattern of Mn$_3$O$_4$ NPs</td>
<td>22</td>
</tr>
<tr>
<td>2.8</td>
<td>The TEM image of as-synthesized Mn$_3$O$_4$ NPs with aggregated and non-spherical. Inset shows the SAED pattern which confirms the diffraction from (111), (220) and (311) planes (b) the particles size distribution obtained from TEM image</td>
<td>23</td>
</tr>
<tr>
<td>2.9</td>
<td>(a) The TEM image of the sample. Inset shows the histogram of the diameter of the corresponding NPs image (b) HRTEM image of the Mn$_3$O$_4$ NPs. Inset</td>
<td></td>
</tr>
</tbody>
</table>
shows the Fast Fourier Transform (FFT) of the corresponding HRTEM image for Mn$_3$O$_4$ NPs

2.10 Three lines of scattered photon by a molecule. Stokes line appears more

2.11 A typical Raman spectra of 85TeO$_2$-15B$_2$O$_3$ glass

2.12 The absorption spectrum of Mn$_3$O$_4$ NPs showing two SPR peaks at 388 nm and 522 nm

2.13 A luminescence process in solid. Excitation and emission processes in PL

2.14 A schematic energy level diagram representation of fluorescence and phosphorescence

2.15 Resonant energy transfer by the donor-acceptor exchange interaction, due to the overlapping of D and A (shaded region)

2.16 Ferromagnetic hysteresis loop illustrating the origin of several magnetic parameters

2.17 The room temperature magnetization curve for P$_2$O$_5$-ZnO-Er$_2$O$_3$-Fe$_3$O$_4$ glasses

2.18 The energy level splitting of a free electron in an external magnetic field

2.19 The typical of (a) absorption band (b) first derivative of the ESR spectrum

2.20 ESR spectra of SrO-ZnO-B$_2$O$_3$ glasses containing manganese ions

2.21 A schematic illustration for Ostwald ripening process and coalescence of particles

3.1 Glass preparation flow chart

3.2 Schematic diagram of XRD

3.3 Schematic diagram of TEM

3.4 Schematic diagram of DTA

3.5 The setup of Raman spectrometer

3.6 A schematic diagram of UV-Visible Spectroscopy

3.7 Schematic diagram of PL experimental setup
3.8 Block diagram of VSM 64
3.9 Block diagram of microwave ESR spectrometer 65
3.10 Sample characterisations chart 66
4.1 Glass sample for (a) Series I (b) Series II and (c) Series III 68
4.2 XRD patterns for (a) Series I glasses (b) Series II glasses 69
4.3 (a) TEM image of the BTMEMn2.0 glass (b) HRTEM image at 20 nm, (c) lattice spacing of (112) plane direction, (d) SAED pattern of the red box in (c), and (e) NPs size distribution 71
4.4 DTA curves of synthesized glass for different concentration of Mn$_3$O$_4$ NPs system. Exo: Exothermic (upward) and Endo: Endothermic (downward) 73
4.5 (a) Raman spectra of BT glasses containing different concentration of Mn$_3$O$_4$ NPs and (b) spectral deconvolution for sample BTMEMn 76
4.6 Raman spectra of BT glasses at various concentration of Eu$_2$O$_3$ 77
4.7 Typical absorption spectra of BTMEMn0.0 sample 80
4.8 SPR band positions of Mn$_3$O$_4$ NPs 81
4.9 Typical Tauc plot for indirect energy band gap of BTMEMn glass sample 82
4.10 Typical graph of ln (α) against photon energy (hω) for BTMEMn glass 83
4.11 Mn$_3$O$_4$ NPs concentration dependent luminescence spectra of synthesized glasses 85
4.12 The variation of intensity against Mn$_3$O$_4$ NPs content for 614 nm transition band 86
4.13 A proposed mechanism of interactions between Eu$^{3+}$ and Mn$_3$O$_4$ NPs in BT system 88
4.14 Eu$_2$O$_3$ concentration dependent luminescence spectra of synthesized glasses 88
4.15 Partial energy diagram of Eu$^{3+}$ ion in the vicinity of Mn$_3$O$_4$ NPs inside the BT glass matrix (GSA: Ground State Absorption, ET: Energy Transfer, R: Radiative Decay and NR: Nonradiative Decay).

4.16 Decay curves of the 5D_0 excited state of the Eu$^{3+}$: Mn$_3$O$_4$ NPs synthesis BT glasses for various concentrations of Mn$_3$O$_4$ NPs

4.17 (a) The magnetization against external magnetic field of prepared glass samples with different Mn$_3$O$_4$ NPs concentration (b) The value of M_s and M_r for BTMEMn2.0 glass as obtained from the graph of M against H. The inset shows the samples coercivity (H_c).

4.18 M_s and M_r as a function of Mn$_3$O$_4$ NPs concentration

4.19 Variation of χ_m as a function of Mn$_3$O$_4$ NPs concentration

4.20 Mn$_3$O$_4$ NPs concentration dependent (a) coercivity (H_c), and (b) squareness (M_r/M_s) for all glass samples

4.21 Magnetic hysteresis loops of BT glass with different Eu$_2$O$_3$ concentration

4.22 ESR spectra of glass samples (a) at various concentrations of Mn$_3$O$_4$ NPs (b) The g values of 4.3 and 1.9 for BTMEMn glass

4.23 ESR spectra of glasses at various concentration of Eu$_2$O$_3$

4.24 XRD patterns of heat treated glass samples at various heat treatment durations

4.25 TEM images of all samples displaying the presence of Mn$_3$O$_4$ NPs (indicated by red circles), heat treated at temperature 380 °C for (a) 6 h (b) 12 h (c) 18 h and (d) 24 h

4.26 Size distribution of Mn$_3$O$_4$ NPs for heat treatment at temperature 380 °C for (a) 6 h (b) 12 h (c) 18 h and (d) 24 h
4.27 Heat treatment dependent growth of Mn$_3$O$_4$ NPs (dotted line is a guide to the eye).

4.28 BTMEMn luminescence spectra for different heat treatment duration

4.29 Decay curves of the 5D$_0$ excited state of the Eu$^{3+}$: Mn$_3$O$_4$ NPs synthesis BT glasses for varies heat treatment duration

4.30 VSM curves of Mn$_3$O$_4$ NPs of BTMEMn with various heat treatment durations. The inset shows the M_s of Mn$_3$O$_4$ NPs at 6, 12, 18 and 24 h.

4.31 Variation of coercivity (H_c) and remenance magnetization (M_r) with heat treatment duration of 6, 12, 18 and 24 h.

4.32 Relation between coercivity and particle sizes as a function of heat treatment duration
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Representation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2θ</td>
<td>Angle of diffraction</td>
<td></td>
</tr>
<tr>
<td>ΔE</td>
<td>Urbach energy</td>
<td></td>
</tr>
<tr>
<td>ΔH_{pp}</td>
<td>Peak-to-peak line width</td>
<td></td>
</tr>
<tr>
<td>ΔS</td>
<td>Thermal stability</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Magnetic field</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Crystal lattice planar spacing</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Energy</td>
<td></td>
</tr>
<tr>
<td>\tilde{E}</td>
<td>Electric field</td>
<td></td>
</tr>
<tr>
<td>E_{opt}</td>
<td>Optical band gap</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Gyromagnetic</td>
<td></td>
</tr>
<tr>
<td>H_c</td>
<td>Coercivity</td>
<td></td>
</tr>
<tr>
<td>H_r</td>
<td>Resonance magnetic field</td>
<td></td>
</tr>
<tr>
<td>$h\nu$</td>
<td>Photon energy</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Angular momentum</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>Magnetization</td>
<td></td>
</tr>
<tr>
<td>M_s</td>
<td>Remanence magnetization</td>
<td></td>
</tr>
<tr>
<td>M_t</td>
<td>Saturation magnetization</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>Refractive index</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>Orbital</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>Spin</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>Absorption coefficient</td>
<td></td>
</tr>
<tr>
<td>μ_B</td>
<td>Bohr magneton</td>
<td></td>
</tr>
<tr>
<td>ν</td>
<td>Wavenumber</td>
<td></td>
</tr>
<tr>
<td>χ</td>
<td>Susceptibility</td>
<td></td>
</tr>
<tr>
<td>T_m</td>
<td>Melting temperature</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>T_c</td>
<td>Crystallization temperature</td>
<td></td>
</tr>
<tr>
<td>T_g</td>
<td>Transition temperature</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BO</td>
<td>Bridging oxygens</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential thermal analysis</td>
</tr>
<tr>
<td>ESR</td>
<td>Electron spin resonance</td>
</tr>
<tr>
<td>ET</td>
<td>Energy transfer</td>
</tr>
<tr>
<td>GSA</td>
<td>Ground state absorption</td>
</tr>
<tr>
<td>HRTEM</td>
<td>High resolution transmission electron microscope</td>
</tr>
<tr>
<td>JCPDS</td>
<td>Joint Committee on Powder Diffraction Standard</td>
</tr>
<tr>
<td>J-O</td>
<td>Judd Ofelt</td>
</tr>
<tr>
<td>NBO</td>
<td>Non-bridging oxygen</td>
</tr>
<tr>
<td>NPs</td>
<td>Nanoparticles</td>
</tr>
<tr>
<td>NR</td>
<td>Nonradiative</td>
</tr>
<tr>
<td>PL</td>
<td>Photoluminescence</td>
</tr>
<tr>
<td>QEs</td>
<td>Quantum efficiency</td>
</tr>
<tr>
<td>R</td>
<td>Radiative</td>
</tr>
<tr>
<td>RE</td>
<td>Rare earth</td>
</tr>
<tr>
<td>SAED</td>
<td>Selected area electron diffraction</td>
</tr>
<tr>
<td>SPR</td>
<td>Surface plasmon resonance</td>
</tr>
<tr>
<td>tbp</td>
<td>Trigonal bipyramidal</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscope</td>
</tr>
<tr>
<td>tp</td>
<td>Trigonal pyramidal</td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultra violet visible</td>
</tr>
<tr>
<td>VSM</td>
<td>Vibrating sample magnetometer</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Batch Calculation Of Glass System</td>
<td>151</td>
</tr>
<tr>
<td>B</td>
<td>Thermal Analysis Series II</td>
<td>153</td>
</tr>
<tr>
<td>C</td>
<td>Decay Curves Series II</td>
<td>154</td>
</tr>
<tr>
<td>D</td>
<td>VSM Analysis Series II</td>
<td>155</td>
</tr>
<tr>
<td>E</td>
<td>ESR Analysis</td>
<td>158</td>
</tr>
<tr>
<td>F</td>
<td>List Of Publications</td>
<td>159</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Glasses are unique materials that have been used for thousands of years. Glass is defined as material that is produced through melting process and then being cooled to be a solid without going through a crystallization process [1]. Glass has been extensively investigated due to its high temperature resistance, high dielectric constant and good mechanical strength [2]. Furthermore, glass is not only known because of their excellent thermal and mechanical properties but they are potentially to become a good medium for luminescence due to the enhancement of the absorption efficiency of rare earth ions [3]. This excellent property has motivate researcher to further the study in optimizing luminescent and become more suitable material in the development of laser and solid state device.

Over the past few decades, tellurite glasses have gained so much interest over conventional silicate due to their high thermal expansion coefficients, excellent transmission in the visible as well as IR wavelength regions and low melting temperature [4]. These interesting properties making it feasible to be prepared at low temperature. Khafagy et al. [5] reported that the structure of tellurite glasses have two basic structural units, i.e as TeO$_3$ and TeO$_4$ units. The TeO$_3$ units dominated in the glass structural network but as the TeO$_2$ content increase, TeO$_3$ units transform into TeO$_{3+1}$ then to TeO$_4$ units [6]. An intensive study on TeO$_2$ containing glasses has been conducted because of their properties
such as exhibit high refractive indices, good chemical durability, better corrosion resistance and good mechanical strength [7].

Recently, tellurite glasses doped with boron oxide have received great scientific interest because these oxides significantly are able to change the properties of tellurite glasses [8][9]. Additionally, borate is one of the most attracting materials where their structural properties have been studied extensively [10]. Conversely, borate based glasses are prospective due to their flexible random network structure consisting of tetrahedral BO$_4$ and trigonal boron BO$_3$ units [11]. Besides, due to the excellent rare earth solubility, good infrared transmission and high thermal stability, borate glasses are attractive for the development of new optical devices [12]. However, the strong hygroscopic nature of borate glasses limits their applications [13]. This drawback can be surmounted by stabilizing the borate network with TeO$_2$ incorporation, which may offer improved chemical durability via the structural modifications of the tetrahedral boron networks [14].

Previous study by Wang et al. [15] claimed that TeO$_2$ is a conditional glass former which explain the incapability of that compound to form glass on its own. As a result, the introduction of borate into tellurite glass network simultaneously enhances the ability of glass formation. The combination of TeO$_2$ and B$_2$O$_3$ is an intrinsically interesting subject of study due to the stability of borotellurite (BT) compound [16]. Further, BT glass needs another element known as glass modifier such as alkaline earth metal oxide and transition metal oxide to improve the network connectivity then produce a stable BT glass [17] with increasing non-bridging oxygen (NBO). The addition of such modifiers would modify and increase the NBO, consequently open up the glass structure [18]. The substitution of network modifier such as MgO would produce stable BT glass [19].

To this day, rare earth ions (REIs) doped glass material becomes an interesting topic in luminescence material. The synthesis and characterizations of REIs doped binary and ternary glasses are intensively performed due to their advantages in developing efficient photonic devices [20]. Dehelean et al. [21] acknowledged that REIs doped glasses exhibit high brightness and improved
efficiency thus are very prospective for broad array of technological applications. Trivalent Eu$^{3+}$ ion is a well-known activator with simple electronic transitions. The Eu$^{3+}$ ions possess prominent laser emissions in the orange or red region [22] and narrow band emission [23] with longer lifetime. Thus, BT glass has emerged as a favorable host for accommodating large amount of REIs. Maheshvaran et al. [3] reported that Eu$^{3+}$ doped BT glass has potential for red-emitting glass due to excellent luminescent properties and can be used as optical materials. Hence, Eu$^{3+}$ doped glass has drawn much interest in technological applications especially for optoelectronic materials [24].

Despite many studies, the Judd-Ofelt (J-O) theory has not been applied uniformly to characterize the spectroscopic properties of Eu$^{3+}$ ion doped glasses. Bo and Teruto [25] used $^5D_0 \rightarrow ^7F_2$, 7F_4 and 7F_6 emission transitions of the Eu$^{3+}$ ions to obtain the J-O parameters. Van Deun et al. [26] studied the absorption spectra of Eu$^{3+}$ ion involving $^7F_0 \rightarrow ^5D_2$, 5D_4 and 5L_6 transitions, where the calculated J-O parameters of Eu$^{3+}$ ions exhibits good agreement with the measured oscillator strengths. However, the study of J-O for glass containing magnetic NPs accompanied with REIs has not much been reported or been discussed in literature. In the present study the method of Bo and Teruto [25] to calculate the J-O parameters of Eu$^{3+}$ ions doped inside BT glasses containing Mn$_3$O$_4$ NPs will be applied.

Currently, the development of multifunctional metallic NPs is in full swing [27] due to the feasibility of sundry applications. The research on the modifications in the structural, magnetic and optical properties of REIs doped glasses by embedding various metallic NPs is however still in progress. In this view, several attempts have been made to improve the optical properties of REIs doped glasses by incorporating various metallic NPs (magnetic and nonmagnetic). Lately, various magnetic NPs embedded glass systems are prepared such as Ni NPs incorporated samarium doped zinc phosphate glass [28] and Fe$_3$O$_4$ NPs in erbium doped zinc phosphate glass [29]. The impact of Ni$^{2+}$ and Fe$^{2+}$ magnetic NPs on the physical, structural and magneto-optic properties of REIs doped binary glasses have accrescent interest. Literatures hinted that these types of glasses with tailored properties are
greatly potentials for the advancement of magneto-optic devices including isolators, switches and sensors [30].

Synthesis and characterization of magnetic (Fe, Co, Ni and Mn) NPs have ever-growing interest. Amongst all, Mn ions have been frequently used to improve the structural, electrical and magnetic properties of vitreous systems [31]. Manganese ions exist in different valence states in glassy matrices [32]. For example, Mn$^{3+}$ ions in borate glasses exist with octahedral coordination whereas in silicate and germanate glasses they exist as Mn$^{2+}$ ions with both octahedral and tetrahedral coordination [33]. Moreover, these well-known paramagnetic ions (Mn$^{2+}$ and Mn$^{3+}$) are identified as strong luminescence activators [34]. The incorporation of Mn$_3$O$_4$ in glass has paramount importance due to their excellent physical and structural properties [31]. These transition metal ions contribute multi-valence states in the glass network and remarkably influence the properties. The appearance of super-paramagnetic behaviour, softness and large surface area of manganese nanoparticles make them highly potential magnetic materials [35] like manganese zinc ferrites useful for high density magnetic storage devices [36]. High saturation magnetization and magnetocrystalline anisotropy of Mn$_3$O$_4$ NPs are useful for creating excellent traps for excited electrons in the glass host. Such electron trapping are advantageous to surmount data corruption in magnetic data storage [37].

Despite much research the impact of Mn$_3$O$_4$ NPs on the structural properties of Eu$^{3+}$ doped BT glass system is not yet explored. The incorporation of controlled concentrations of magnetic NPs in BT glass provides an opportunity to develop new stable magnetic glasses useful for nonlinear optical sensor and electronics devices. Additionally, literature shows that not many efforts are dedicated towards the incorporation of Mn$_3$O$_4$ NPs in BT glass system for determining their role in improving the structural and optical properties. This motivated to investigate the REIs doped glasses containing Mn$_3$O$_4$ NPs. Therefore, a new series of Mn$_3$O$_4$ NPs embedded and Eu$^{3+}$ ions doped BT glass systems are prepared and evaluate the Mn$_3$O$_4$ NPs concentration dependent on thermal, structural and optical properties. Synthesized glasses are characterized using X-ray Diffraction (XRD), High Resolution Transmission Electron Microscopy (HRTEM), Differential Thermal
Analysis (DTA), Raman Spectroscopy, UV-Visible Spectroscopy and Photoluminescence (PL) Spectroscopy measurements. Meanwhile, Vibrating Sample Magnetometer (VSM) and Electron Spin Resonance (ESR) will be used to study the magnetic moment of the local magnetic properties due to the nature of spin-spin interaction.

1.2 Problem Statement

Plasmonic nanoglass is a new research paradigm with numerous application possibilities. Metallic NPs (such as gold, silver, copper, etc.) embedded REIs doped glass became attractive during past two decades. The inclusion of gold (Au) and silver (Ag) NPs in glass containing REIs [27][38] are exploited to enhance the quantum efficiency to achieve high performance lasing glass system. Yusoff and Sahar [39] have proposed that the enhancement of photoluminescence intensity is deduced by energy transfer from NPs to REIs and large local field in the vicinity of the REIs. Although significant effort continues in the development of the metallic NPs regrettably not many studies are dedicated towards the dispersing magnetic NPs such as manganese, nickel, ferrite and cobalt into rare earth doped glass. To overcome this limitation, the investigation of RE-doped glasses incorporated with magnetic NPs elements are suggested and become interest for magnetic studies.

Research of NPs effect on spectroscopic properties in RE doped oxides glasses have been widely studied [40][41]. It is known that, NPs have been able to enhance quantum efficiency which consequently leads to improve the optical characteristics of oxide glasses [38]. However, there are limited reports found about the influence of Mn$_3$O$_4$ NPs in BT glass doped with optimum concentration of europium. Yet, their careful synthesis, detailed characterisation and systematic Judd Ofelt analysis are not reported extensively. Therefore, this research is also devoted to discover laser efficiency of Eu$^{3+}$ ions doped BT glasses with NPs embedment via Judd Ofelt calculation.
In addition to that, the growth and nucleation of magnetic NPs favor the alteration of the local structure of the glass system. Carefully controlled size of Mn$_3$O$_4$ NPs through appropriate heat treatment is one of the promising methods to modify and improve the magnetic properties of synthesized glass. The incorporation of Mn$_3$O$_4$ NPs in the BT glass with tunable size and their effects on magnetic properties are not extensively studied. However it is a challenging task due to easy crystallization of discovered glass host [42]. In spite of that, this has motivated the researcher to investigate the RE doped glasses containing Mn$_3$O$_4$ NPs elements. The role of Mn$_3$O$_4$ NPs in the europium doped magnesium BT glass in optical and magnetic properties is far from being understood and requires further attention. There are only some reports on the influence of Eu$^{3+}$ ions doped magnesium BT glass towards optical properties [43]. Therefore, the effects of Mn$_3$O$_4$ NPs concentration changes on the thermal, structural and optical properties will be evaluated. Then, the magnetic properties are accomplished from the magnetic moment of the local magnetic properties due to the nature of spin-spin interaction.

1.3 Objectives of Study

The objectives of this study are as follows:

i. To optimize the concentration of Mn$_3$O$_4$ NPs embedded into europium doped magnesium BT glass via melt-quenching method.

ii. To determine the influence of Mn$_3$O$_4$ NPs concentration on the thermal, structural, optical and magnetic properties of Eu$^{3+}$ doped BT glass.

iii. To complement the experimental spectroscopic data using JO theoretical calculation of intensity parameter.
iv. To control the size of Mn$_3$O$_4$ NPs by varying heat treatment durations and investigate its effects on spectral and magnetic features modifications in these glass system.

1.4 Scope of Study

In this study, 3 series of glass of different composition were prepared by melt quenching technique:

a. Series I : $(59-x)$TeO$_2$-30B$_2$O$_3$-10MgO-1Eu$_2$O$_3$-xMn$_3$O$_4$ where $(0.0 \leq x \leq 2.0 \text{ in mol } \%)$

b. Series II : $(59-y)$TeO$_2$-30B$_2$O$_3$-10MgO-yEu$_2$O$_3$-1Mn$_3$O$_4$ where $(0.0 \leq y \leq 2.0 \text{ in mol } \%)$

c. Series III : 58TeO$_2$-30B$_2$O$_3$-10MgO-1Eu$_2$O$_3$-1Mn$_3$O$_4$ glasses at different heat treatment durations

These glasses are chosen due to the optimal performance of TeO$_2$-B$_2$O$_3$-MgO-Eu$_2$O$_3$ glass system [44]. As increasing the concentration of TeO$_2$, BT glass will be more transparent. Nevertheless, the BT glass phase will become opaque if the concentration of B$_2$O$_3$ is richer than TeO$_2$. Burger et al. [45] suggested that the optimum concentration of TeO$_2$ is in the range of 3.9 to 73.6 mol % able to form glass in BT system. Meanwhile, Yardımcı et al. [46] determined that the glass forming range for concentration of B$_2$O$_3$ in B$_2$O$_3$-TeO$_2$ is system about 5 to 30 mol % and as the concentration increase, the crystallization starts to occur. The addition of MgO up to 15 mol % in glass system will increase the structural compactness of glass network [18]. The incorporation of MgO as network modifiers in BT glass cause the formation of more non bridging oxygen (NBO) and 1.0 mol % of Eu$^{3+}$ as a dopant is the optimized concentration and have potential for solid state applications [47].
However, the role played by Mn$_3$O$_4$ NPs as magnetic NPs in the structural features of the magnesium BT glass and the interaction of this element in the glass network is still a subject under study. Therefore, in current study the special attention is given to the inclusion of Mn$_3$O$_4$ NPs in glass matrix to modify the thermal, structural, optical and magnetic properties of glass. The phase of the glass will be determined by X-ray Diffraction (XRD) and the existence and size of Mn$_3$O$_4$ NPs in glass matrix investigated using High Resolution Transmission Electron Microscopy (HRTEM). Then, controlling the size of Mn$_3$O$_4$ NPs through heat treatment process with different heat treatment durations above glass transition temperature, T_g which is determined from Differential Thermal Analysis (DTA). In terms of structural and optical properties influence by Mn$_3$O$_4$ NPs will be determined by Raman spectroscopy, UV-Visible spectroscopy and Photoluminescence (PL) spectroscopy. Additionally, the magnetic properties will be accomplished from Vibrating Sample Magnetometer (VSM) and Electron Spin Resonance (ESR).

1.5 Significance of Study

Study of BT glass host embedded with Mn$_3$O$_4$ NPs provides useful information on the advancement of the glass knowledge. The rapid quench process is used to achieve well transparent glasses which are physically and chemically stable and Eu$^{3+}$ doped BT glass will improve the luminescence properties. Furthermore, embedding Mn$_3$O$_4$ NPs in glass network as an alternative for understand the magnetic properties in order to determine the optimum concentration of Mn$_3$O$_4$ NPs. This study is great importance to understand and explain the magnetic behaviour of Mn$_3$O$_4$ NPs in glass. This may help in the discovery of a new magneto-device material that may contribute towards the development of NPs embedded RE doped photonics glass.
REFERENCES

42. Maheshvaran, K., Marimuthu, K. (2012). Concentration dependent Eu$^{3+}$ doped boro-tellurite glasses-Structural and optical investigations. *J. Lumin.* 132,
2259-2267.

48. Swapna, Upender, G., Prasad, M. (2016). Raman, FTIR, thermal and optical properties of TeO$_2$-Nb$_2$O$_5$-B$_2$O$_3$-V$_2$O$_5$ quaternary glass system. *J. Taibah Univ. Sci.*

54. Suresh, S., Prasad, M., Upender, G., Kamalaker, V., Mouli, V.C. (2009). ESR, IR, Raman and optical absorption studies of 60B$_2$O$_3$+10TeO$_2$+5TiO$_2$+24R$_2$O:1CuO (where R=Li, Na, K) quaternary glasses. *Indian J. Pure Appl. Phys.* 47,
163–169.

66. Arunkumar, S., Marimuthu, K. (2013). Structural and luminescence studies on Eu$^{3+}$: B$_2$O$_3$-Li$_2$O-MO-LiF (M=Ba, Bi2, Cd, Pb, Sr2 and Zn) glasses. *J. Lumin.*

123. Vemasevana Raju, K., Sailaja, S., Nageswara Raju, C., Sudhakar Reddy, B.

Mater. 133, 603-606.

