NEW METHODS OF COMPUTING THE PROJECTIVE POLYNOMIAL RESULTANT BASED ON DIXON, JOUANOLOU AND JACOBIAN MATRICES

SURAJO SULAIMAN

UNIVERSITI TEKNOLOGI MALAYSIA
NEW METHODS OF COMPUTING THE PROJECTIVE POLYNOMIAL RESULTANT BASED ON DIXON, JOUANOLOU AND JACOBIAN MATRICES

SURAJO SULAIMAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Science
Universiti Teknologi Malaysia

NOVEMBER 2018
To my beloved mother late Fatima Abdulkarim, my respected father Mallam Sulaiman Abdullahi and my lovely children Abdullahi Surajo, Fatima Surajo and Zainab Surajo.
ACKNOWLEDGEMENT

In the Name of Allah the Most Beneficent, the Most Merciful. All the praises and thanks be to Allah, the Owner of the day of recompense. May God guide us to the straight path Ameen.

I would like to thank and express my sincere gratitude to Assoc. Prof. Dr Nor’aini Aris, my main supervisor for her professional guidance, understanding and encouragement throughout my studies. I would also like to thank my co-supervisor Dr Shamsatun Nahar Ahmad for her fruitful contributions. May Allah reward my supervisors for guiding me to this milestone in my life.

I am particularly grateful to the management of Yusuf Maitama Sule University Kano for nominating me to receive the TEDFUND intervention; without the intervention, this success will almost be impossible considering the economic difficulties faced during my PhD journey. I will also like to thank and acknowledge the effort of Kano state government under the leadership of the Senator (Dr.) Rabiu Musa Kwankwasi for sponsoring my MSc program with served as a basis for the success we are celebrating today, may Allah reward him, Ameen.

Sincere appreciation from the bottom of my heart goes to my friends especially Mansur Hassan, Barrister Yusuf Mustapha Yakubu, Sulaiman Sa’idu Fari, Nasir Muhammad Jibril, Ibrahim Isyaku Ibrahim, Ibrahim Gambo, Dr. Ibrahim Abdullahi, Yusuf Yau Gambo, Farouk Sa’ad, Jamilu Sabi’u, Mohammed Sanusi Shiru, Yakubu Rufa’i, Yahaya Musa, Yamusa Abdullahi Yamusa, Sani Abdullahi Sarki, Salihu Idi Dishing, Sahabi Yusuf Ali, Aminu Barde, Mustapha Abba, Adamu Ya’u, Muttaka Uba Zango, Aliyu Abdu,
Mamunu Mustapha, Dalhatu Sani Aliyu, Mal. Umar Abubakar Aliyu, Darma Kabiru Rabiu, Dr. Dahiru Sale Muhd, Surajo Ibrahim Isah, Sadiq Ibrahim Ogu, Umar zangina, Shehu Maitma and Dr. Amina Salihi Bayero just to mention but few, I feel lucky to leave and work with you all.

Although it is impossible to mention everybody who had in one way or the other contributed to this work. However, there are those whose moral and spiritual support is even more important. I feel a deep sense of gratitude for my parents, who formed part of my vision and taught me good things that matter in life. Their patience and sacrifice will remain my inspiration throughout my life. I am also very much grateful to all my friends for their inspiration and encouragement.

Finally, I am very grateful to my family members, Aminu Sulaiman, Lantana Sulaiman, Ahmad Sulaiman, Abdulmumini Sulaiman Kabiru Sulaiman, Idris Sulaiman, Nura Sulaiman, Mubarak Sulaiman, Musbahu Sulaiman, Aisha Sulaiman, Bashir Sulaiman, Mustapha Sulaiman, Rabi’atu Sulaiman, Hafsat Sulaiman and the last born Abdullahi Sulaiman for their support and encouragement in my life. Lastly special thanks to Fatima Umar, Asiya, Safiya Abdullah Surajo, Fatima Surajo (Ummu Abiha) and Zainab Surajo for their understanding during my absence.
In elimination theory, particularly when using the matrix method to compute multivariate resultant, the ultimate goal is to derive or construct techniques that give a resultant matrix that is of considerable size with simple entries. At the same time, the method should be able to produce no or less superfluous factors. In this thesis, three different techniques for computing the resultant matrix are presented, namely the Jouanolou-Jacobian method, the Dixon-Jouanolou methods for bivariate polynomials, and their generalizations to the multivariate case. The Dixon-Jouanolou method is proposed based on the existing Jouanolou matrix method which is subjected to bivariate systems. To further extend this method to multivariate systems, the entry formula for computing the Dixon resultant matrix is first generalized. This extended application of the loose entry formula leads to the possibility of generalizing the Dixon-Jouanolou method for the bivariate systems of three polynomials to systems of \(n + 1 \) polynomials with \(n \) variables. In order to implement the Dixon-Jouanolou method on systems of polynomials over the affine and projective space, respectively, the concept of pseudo-homogenization is introduced. Each space is subjected to its respective conditions; thus, pseudo-homogenization serves as a bridge between them by introducing an artificial variable. From the computing time analysis of the generalized loose entry formula used in the computation of the Dixon matrix entries, it is shown that the method of computing the Dixon matrix using this approach is efficient even without the application of parallel computations. These results show that the cost of computing the Dixon matrix can be reduced based on the number of additions and multiplications involved when applying the loose entry formula. These improvements can be more pronounced when parallel computations are applied. Further analyzing the results of the hybrid Dixon-Jouanolou construction and implementation, it is found that the Dixon-Jouanolou method had performed with less computational cost with cubic running time in comparison with the running time of the standard Dixon method which is quartic. Another independent construction produced in this thesis is the Jouanolou-Jacobian method which is an improvement of the existing Jacobian method since it avoids multi-polynomial divisions. The Jouanolou-Jacobian method is also able to produce a considerably smaller resultant matrix compared to the existing Jacobian method and is therefore less computationally expensive. Lastly all the proposed methods have considered a systematic way of detecting and removing extraneous factors during the computation of the resultant matrix whose determinant gives the polynomial resultant.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDIX</td>
<td></td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Preface 1

1.2 Research Background 2

1.3 Statement of the Problem 7

1.4 Objectives of the Study 8

1.5 Scope of the Study 9

1.6 Significance of the Study 9

1.7 Thesis Organization 10

2 LITERATURE REVIEW 13

2.1 Introduction 13
2.2 Preliminary Definitions and Theorems 16
 2.2.1 Affine and Projective Space 18
2.3 Matrix Method for Computing Resultant 26
 2.3.1 Sylvester Resultant 27
 2.3.2 Bezout’s Resultant 29
 2.3.3 Multivariate Resultant 32
 2.3.4 Determinantal Formula 35
2.4 Dixon Resultant 37
 2.4.1 Recursive Algorithm 45
 2.4.2 Transformation from Sylvester to Dixon matrix 46
 2.4.3 Entry Formula 52
2.5 Macaulay Resultant 57
 2.5.1 Reduced and Non-reduced monomials 60
2.6 Jouanolou Resultant 65
2.7 Hybrid Resultant 72
2.8 Conclusion 75

3 METHODOLOGY 76
3.1 Introduction 76
3.2 Assumptions 76
3.3 Research Framework 77
 3.3.1 Stage One: Background of the Research 77
 3.3.2 Stage Two: Generalized Entry Formula 79
 3.3.3 Stage Three: New Hybrid Formulations 79
 3.3.4 Stage Four: Implementation and Complexity Analysis 83
 3.3.5 Stage Five: Summary and General Conclusions 83
3.4 Computational Tools 83
3.5 Conclusion 84

4 JOUANOLOU-JACOBIAN FORMULATION 85
4.1 Introduction 85
4.2 Jacobian Block 86
4.3 Construction of Jouanolou-Jacobian method 88
4.4 Complexity Analysis of Jouanolou-Jacobian Method 102
4.5 Conclusion 108

5 TWO DIXON-JOUANOLOU RESULTANT FORMULATION 110
5.1 Introduction 110
5.2 Pseudo-Homogenization 111
5.3 Dixon-Jouanolou Method 113
 5.3.1 Dixon-Jouanolou Method Type 1 113
 5.3.2 Elements of the Entry Formula 115
 5.3.3 Dixon-Jouanolou Method Type 2 120
 5.3.4 Extraneous Factors Reduction 123
 5.3.5 Complexity Analysis of Dixon-Jouanolou Method 124
5.4 Conclusion 128

6 GENERALIZED DIXON-JOUANOLOU FORMULATION 129
6.1 Introduction 129
6.2 Generalized Dixon Resultant Matrix 130
6.3 Generalize Entry Formula 135
6.4 Generalized Dixon-Jouanolou Method 148
 6.4.1 Computational Cost of the Dixon-Jouanolou 149
6.5 Conclusion 156

7 CONCLUSION 157
7.1 Introduction 157
7.2 Summary of the Thesis 158
7.3 Conclusion 162
7.4 Future directions 165

REFERENCES 167
Appendices A – B 175–176
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Cost of computing Dixon matrix for bivariate system</td>
<td>51</td>
</tr>
<tr>
<td>2.2</td>
<td>Cost of computing the Dixon resultant matrix for system of $n + 1$ polynomials in n variables</td>
<td>51</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of multivariate resultant formulations</td>
<td>73</td>
</tr>
<tr>
<td>4.1</td>
<td>Estimation of number of monomials in a homogeneous polynomial of degree m with n variables</td>
<td>103</td>
</tr>
<tr>
<td>4.2</td>
<td>Cost of computing Bezoutian and Jacobian matrix</td>
<td>107</td>
</tr>
<tr>
<td>4.3</td>
<td>Size comparison of some selected resultant formulations</td>
<td>108</td>
</tr>
<tr>
<td>5.1</td>
<td>Operational computing time for the standard Dixon method versus the new hybrid Dixon-Jouanolou method</td>
<td>127</td>
</tr>
<tr>
<td>6.1</td>
<td>The computational complexity of the generalized standard Dixon method verses the generalized Dixon-Jouanolou method</td>
<td>155</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Usual routines when computing resultant</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>Thesis organization</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Proposed and existing method of computing resultant</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Support of the polynomials system</td>
<td>19</td>
</tr>
<tr>
<td>2.3</td>
<td>Minkowski Sum of A_0 and A_1</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Different points at infinity</td>
<td>24</td>
</tr>
<tr>
<td>2.5</td>
<td>Horizon; the vanishing points of different sets of parallel lines at infinity</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Projective Plane in 3-Dimensional Plane</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Strophoid</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>Process of computing resultant polynomial</td>
<td>36</td>
</tr>
<tr>
<td>2.9</td>
<td>A figure showing the intersection of surfaces</td>
<td>58</td>
</tr>
<tr>
<td>2.10</td>
<td>Summary of the Existing Matrix Methods of Computing Resultant</td>
<td>74</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Framework</td>
<td>78</td>
</tr>
<tr>
<td>3.2</td>
<td>Methodology of Computing Jouanolou-Jacobian Method</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>Methodology of Computing Dixon-Jouanolou Method type 1 and 2</td>
<td>82</td>
</tr>
<tr>
<td>4.1</td>
<td>Procedure for recursive polynomial division of multivariate polynomials using monomial ordering</td>
<td>106</td>
</tr>
<tr>
<td>5.1</td>
<td>Method of Computing the Hybrid Resultant Matrix</td>
<td>112</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKK</td>
<td>Bernstein Kouchnirenko Khovanskii</td>
</tr>
<tr>
<td>CAS</td>
<td>Computer Algebra System</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>GCD</td>
<td>Greatest Common Divisor</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>LCM</td>
<td>Lowest Common Multiple</td>
</tr>
<tr>
<td>RSC</td>
<td>Rank Submatrix Computation</td>
</tr>
<tr>
<td>UFD</td>
<td>Unique Factorization Domain</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\[V(F) \] - Affine varieties of the system \(F \)

\[\text{Det}(M) \] - Determinant of the square matrix \(M \)

\[\Delta_{i,j} \] - Differentials

\[\oplus \] - Direct sum

\[\theta(f_1, f_2, \ldots, f_{n+1}) \] - Dixon polynomial of the system \(f_1, f_2, \ldots, f_{n+1} \)

\[\Theta \] - Dixon resultant matrix

\[R_r(F) \] - Dixon-Jouanolou resultant matrix

\[D(f_1, f_2, \ldots, f_{n+1}) \] - Dixon resultant matrix of the system \(f_1, f_2, \ldots, f_{n+1} \)

\[\xi_{a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n} \] - Element of the loose entry formula

\[D_{a,b,c,d} \] - Entries of the Dixon matrix for bivariate system

\[D_{m_1-1, \ldots, m_n-1; n_{m_1-1}, \ldots, m_n-1} \] - Entries of the generalize Dixon matrix of the system \(F \)

\[\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \] - Exponent vectors of the monomial \(x^\alpha \)

\[J_r(F) \] - Jouanolou resultant matrix

\[\mu (\mathbb{Q}_1, \mathbb{Q}_2, \ldots, \mathbb{Q}_n) \] - Mixed volume of the polytopes \(\mathbb{Q}_1, \mathbb{Q}_2, \ldots, \mathbb{Q}_n \)

\[x^\alpha \] - Monomial \(x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n} \) where \(\alpha \in \mathbb{N}^n \)

\[N(F) \] - Newton polytopes of the system \(F \)

\[\mathbb{P}^n \] - Projective space

\[P(F) \] - Projective varieties of the system \(F \)

\[H_r(f_1, f_2, \ldots, f_n) \] - Resultant matrix of the Dixon-Jouanolou method

\[\mathbb{C}[x_1 x_1^{-1}, \ldots, x_n x_n^{-1}] \] - Ring of Laurent polynomial over a field \(\mathbb{C} \)

\[K[x_1, x_2, \ldots, x_n] \] - Ring of polynomial over a field \(K \)

\[\mathbb{C} \] - Set of complex numbers
\(\mathbb{Z} \) - Set of integers
\(\mathbb{N} \) - Set of natural numbers
\(\mathbb{R} \) - Set of real numbers
\(S(H_r(f_1, f_2, \ldots, f_n)) \) - Size of the Generalized Dixon-Jouanolou matrix
\(S(R_r) \) - Size of the Dixon-Jouanolou matrix
\(A = (A_1, A_2, \ldots, A_{n+1}) \) - Support of the system \(F \)
\(Syl(f_1, f_2, \ldots, f_n) \) - Sylvester resultant matrix of the system \(f_1, f_2, \ldots, f_n \)
\(F = \{f_1, f_2, \ldots, f_{n+1}\} \) - System of polynomials
<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Publications and submitted manuscripts</td>
<td>175</td>
</tr>
<tr>
<td>B</td>
<td>Polynomial and its coefficients</td>
<td>176</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Preface

The role played by a system of polynomial equations in scientific research has a variety of applications in real life situations. For example, in modelling the components in computer-aided design represented by the Bezier Bernstein splines [1], detecting whether a moving robot will collide with an obstacle or not [2], designing curves and surfaces [3], differential elimination [4] and application of Global Positioning System (GPS) in geodesy and geoinformatics [5]. Another important application is the modelling of geometric and kinematics constraints where a well-constrained system of polynomials equations are used to represent the motion of a camera.

Dealing with the above-mentioned applications requires a technique of variables elimination. There are three powerful elimination techniques; Grobner basis [6, 7], set characteristics or Ritt-Wu method [8] and the resultant matrix method [9, 10]. Some of the disadvantages of both Grobner basis and Ritt-Wu as reported in [11, 12] are:

1. These methods require large storage capacity during the computations.
2. High computational complexity.
The matrix method for computing the resultant is a popular tool used in eliminating variables which reduces the system of polynomial equations into simpler forms. The resultant of a system of polynomial equations can be obtained from the determinant of the resultant matrix. The determinant of the resultant matrix is also referred to as the projection operator. Exact resultant can be achieved if the projection operator exactly equals the resultant. Otherwise, the projection operator consists of a product of polynomials which are multiples of the resultant. These other factors of the projection operator besides the resultant polynomial are called extraneous factors. The presence of extraneous factors in the resultant formulation gives rise to the problem of extracting the resultant polynomial from the determinant.

Much of the concern in researches related to multivariate polynomials resultant is to determine a method that can give exact resultant. In most cases, exact resultant only exist on certain classes of the generic system of polynomial equations and these conditions are determined and proven to give exact resultant. Besides finding methods that can produce a determinantal formula which can give exact resultant, a method that can reduce the presence of extraneous factors in the resultant matrix formulation reduces the complexity of the problem. It becomes the aim of this thesis to find new methods that can reduce the complexity of computing the resultant matrix and resultant polynomial.

The rest of this chapter is as follows. Section 1.2 gives the research background leading to the problem statement in Section 1.3. The objectives of the study are given in Section 1.4 followed by the scope of the study, the significance of the study and thesis organization.

1.2 Research Background

When dealing with systems of polynomials in more than one variable, there are basically two matrix base constructions which depend on the nature of the resultant matrix [13]. If each entry of the matrix is either the coefficient of one of the polynomials or
zero, the matrix is regarded as Sylvester type [14]. Sometimes the entries of the resultant matrix are polynomials in terms of the coefficients of the given system of polynomial equations, such type is referred to as Cayley/Dixon type. Methods such as Macaulay, Jouanolou (Generalized Macaulay), Newton sparse, incremental and Salmon Jacobian which is also referred as Sturmfel resultant [5] are considered to be Sylvester type while Dixon is regarded as Cayley/Dixon type [15–17]. All Cayley/Dixon resultant matrix have complicated entries, but with relatively small matrix [18–23]. On the other hand, Sylvester type resultant matrix have simple entries with large size matrix [24, 25].

In a situation where the resultant matrix is constructed based on the two types of the constructions, such formulation is referred to as the hybrid resultant matrix [26]. The foundation work for hybrid resultant was first introduced in [27], derived for certain class of the multivariate polynomials of multi-graded type. Independently, in 1999 Chionh et al. in [28] had proposed another hybrid construction which possibly is the first construction that can be applied to a more general class of system of polynomials.

Apart from the classical hybrid resultant matrix, the sparse hybrid formulation was constructed, due to the frequent appearance of such systems in many engineering applications [29]. However, it is not clear whether or not the constructions can generate exact resultant. Another construction was given by [30] and unlike the work of [29], Khetan presents his formulation and computes the hybrid resultant matrix based on certain examples. His construction also only considers systems of polynomials with unmixed support and the size of the matrix can still be very large [30]. A complete implementation of the Sylvester-Bezout construction is given by Ahmad in [13] giving conditions that can give optimal resultant matrix and describes some limitations in the implementations.

Apart from the matrix method for computing resultant, the second most commonly used algorithmic method is the Ritt-Wu’s approach introduced by Ritt in [31] and further improved by the Chinese mathematician Wu Wen-Tsün. The method has two important steps namely reduction to triangular form and successive pseudo-division [32, 33].
A triangular set of polynomials with almost the same set of common solutions as the original system of equations is defined as the characteristic set of a set of polynomials [8, 34]. Ritt presents the first algorithm to compute the characteristic set that was resurrected by Wu and Ritt respectively in [8, 31]. Characteristic sets are typically computed by eliminating variables sequentially in some predetermined order using successive pseudo-division of polynomials.

Ritt-Wu’s method requires a large storage capacity during the computation. For example, Heymann’s question can be resolved using the matrix method within 300 seconds, compared to almost 19 hours using characteristics set method [11, 18]. The implementation by Gao and Wang in [11] is carried out using SUN 4/470.

The Grobner basis of a polynomial ideal is a basis with many useful properties and provides answers to most of the theoretic questions about the ideals, such as ideal description and membership problem. The notion generalizes three well-known algorithms namely: Gaussian elimination algorithm, particularly reduced row echelon form for linear systems, the Euclidean algorithm for computing the greatest common divisor of both univariate and multivariate polynomials and lastly, the simplex algorithm for minimizing or maximizing linear and non-linear functions.

Buchberger’s algorithms resolved the issue of the ideal membership using S−polynomial of \(f_1, f_2, \ldots, f_n \in k[x_1, \ldots, x_n] \) which is defined to be \(S(f_1, f_2) = \frac{x^\alpha}{\text{LT}(f_1)} f_1 - \frac{x^\alpha}{\text{LT}(f_2)} f_2 \), where LT is the leading term of \(f_i \) and \(x^\alpha \) is the least common multiple (LCM) of the leading monomials \(\text{LM} \) of \(f_1 \) and \(f_2 \) \((x^\alpha = \text{lcm}(\text{LM}(f_1), \text{LM}(f_2))) \) [32, 35].

The first algorithm to compute the Grobner basis of an ideal is given by [7, 36] and since then, many efficient variations have been proposed. Along with other resultant methods, Grobner basis can be considered as an effective tool for solving a polynomial equation which also include finding the solutions of the system of polynomial equations, variables elimination and ideal membership problem. The approach of Grobner basis provides a criterion for which a polynomial must satisfy in order to be a member of a certain ideal.
The Grobner basis method can also be used in a variety of applications such as solving polynomials systems and implicitization of curves and surfaces. This method computes the exact resultant [18, 37]. However, the Grobner basis approach is not as simple as the matrix method and run out of time when the total degree is very large since it requires large storage capacity during the computations.

The Grobner basis method also is less effective, when computing the resultant of a polynomial system, for example, deriving the implicit equation of a bi cubic surface takes only 50 seconds using the matrix method, compared to almost 10,000 seconds using Grobner basis. In an implementation using SUN 4/470, sometimes the system runs out of memory before the computation ends [11, 18].

Another setback of the Grobner basis method reported by Zheng et al. [12] is that the approach fails to generate the implicit equation of some parametric equations with base points as given in Equation (1.1). On the other hand, the matrix method of computing the resultant is able to compute the implicit equation despite having these base points. For rational parametric equations defined as

\[
x = \frac{x(s, t)}{w(s, t)}, \quad y = \frac{y(s, t)}{w(s, t)} \quad \text{and} \quad z = \frac{z(s, t)}{w(s, t)},
\]

a base point is a value \((s, t)\) for which \(x(s, t) = y(s, t) = z(s, t) = w(s, t) = 0\). At this point the values \(x, y\) and \(z\) are not defined. Another implication of the base point is that, no matter what values the coefficients of the rational curves or surfaces will be, there is always a common solution at infinity.

\[
F = \begin{cases}
 x(s, t) = 2t^3 + 4t^2 + 2t + 4st + s^2t + 2 + 3s + s^2 \\
 y(s, t) = -2st^2 - 2t - st + 2 + s - 2s^2 - s^3 \\
 z(s, t) = 2t^2 - 3st^2 - 2t - 3st - 2s^2t - 2s - 3s^2 - s^3 \\
 w(s, t) = t^3 + t^2 - t + s^4 - 1 - s + s^2 + s^3
\end{cases} \quad (1.1)
\]
In the implementation of the Grobner basis method, some of the reasons for large storage requirement and the CPU time is the swell of intermediate system of equations encountered during the computation of the basis. These intermediate polynomials do not satisfy the requirement of the basis, thus, are not included in the resulting Grobner basis [38, 39].

![Diagram](image)

Figure 1.1 Usual routines when computing resultant

In an attempt to improve the effectiveness of the Grobner basis, several algorithms were introduced by different scholars such as signature base algorithm [40, 41], F4, F5, F5C
algorithms among others [42–44]. Until today reducing the cost of computing Grobner bases remain an open area of research. Figure 1.1 shows the different techniques of computing resultant and how they are related.

Since both Ritt-Wu and Grobner basis techniques require large storage capacity and huge CPU time while computing the resultant polynomial, this work focuses on the matrix approach of computing the resultant. Existing methods are revisited giving emphasis on the method of construction, complexity, size of the matrix, nature of the entries, size of the unwanted factors and space requirement in the implementation of these methods.

1.3 Statement of the Problem

The resultant techniques for solving multivariate polynomial equations have received lots of attention with emphasis on eliminating or at least reducing the terms of the extraneous factors in the projection operator. This is because the presence of extraneous factors constitute to one of the biggest problem common to all matrix methods. These factors do not provide any information on the solutions of the polynomials; thus can be misleading and the process of identifying them is time-consuming.

Recent research on the resultant matrix methods focus on the hybrid resultant formulations. However, the existing hybrid resultant matrix methods either produce a large resultant matrix size or extraneous factors embedded in the projection operator [13, 29]. On the other hand, there exist hybrid resultant matrix that gives exact resultant [30], but the method is confined to certain class of polynomials. The Sylvester Bezout type resultant matrix is implemented by [13] and proven to produce an exact result, but under certain conditions, the method had failed to generate the desired Bezout block of the matrix.

Generally, for any given system of multivariate polynomials, none of the existing resultant
matrix methods can give exact resultant. However, in some special cases, almost all existing method can produce exact resultant [45] which is due to the special structure of the Newton polytopes corresponding to the system. Among the factors that contribute to the effectiveness and the efficiency of the resultant matrix method is the nature of the matrix elements and the large matrix size. If the entries of the matrix are polynomials, the symbolic computation of the determinant will be more complex then if the entries are numerical values [46]. Therefore the nature of the matrix entries as well as the size of the matrix determine the efficiency of computing the resultant polynomial.

Several formulations have been given with notable improvements. Yet the problem of reducing the size of the resultant matrix and reducing or eliminating extraneous factors is still an open problem in the study of resultant. Thus, deriving or constructing a new hybrid resultant matrix with considerable size, that can eliminate, or at least reduce, the number of extraneous factors remains an important problem of research, which when solved adequately will produce positive dividends.

1.4 Objectives of the Study

Based on the formulated problem, the following research objectives are outlined:

2. To generalize the loose entry formula for computing the entries of the Dixon matrix and generalize the construction of Dixon-Jouanolou method to multivariate systems of \(n + 1 \) polynomials with \(n \) variables, applying the generalize loose entry formula to compute the entries of the Dixon-Jouanolou matrix.

3. To determine the computational complexity of computing the Dixon-Jouanolou and Jouanolou-Jacobian matrices and compare with the complexity of computing the
Dixon and Jouanolou matrices respectively.

4. To determine the possible causes for the existence of extraneous factors and provide a suitable approach of eliminating them.

1.5 Scope of the Study

The research focuses on the construction of the hybrid resultant matrix methods for computing the resultant of a system of multivariate polynomial equation. The methods involved elimination theory, an area under algebraic geometry. The polynomials under consideration are assumed to be unmixed, generic and symbolic. Although, the new hybrid methods can handle n system of polynomials with n or $n - 1$ variables, depending on the requirements of the method, the examples given in this thesis only include system of polynomials with at most four variables. Basic tools of algebraic geometry are applied in solving some problems encountered throughout this research. The computer algebra system Maple version 2015 is used to evaluate the resultant matrices.

1.6 Significance of the Study

So far most of the matrix-based elimination techniques fail to produce an exact resultant. Instead, these methods generate a polynomial called a projection operator which is a multiple of the resultant containing some unwanted factors which looks like an integral part of the resultant. For lower dimensional cases the approach of computing and extracting the resultant is well understood [47], but for higher dimensional cases the problem is still subjected to further research. The contribution of this work is to be able to produce new resultant matrix method that can eliminate or minimize the difficulties faced when extracting the resultant from the projection operator. This study will be beneficial to many industrial applications, in areas like computer-aided design, robot design and control, modeling of geometric object and many other applications within the scope of
algebraic geometry.

1.7 Thesis Organization

Chapter 1 introduces the concept of polynomial resultant which begins with preface, research background, statement of the problem, objectives of the study, scope of the study and finally the significance of the study. This chapter provides the introduction to the research area and highlights some of the existing problems. This chapter served as introductory part of this research work.

Chapter 2 serves as the review of the existing literatures. Referring to Figure 1.2, this chapter contains eight sections which include introduction, preliminary definitions and theorems and the matrix methods for computing resultant. Others are Dixon resultant, Macaulay resultant, Jouanolou resultant and the hybrid resultants. This chapter highlights major setbacks of the existing classical and hybrid techniques of computing resultant. Based on these limitations, the research problem have been identified. Hence the new constructions presented in Chapter 4, 5 and 6 are designed to reduce the size of extraneous factors, space requirements and cost of computations. The eighth section concludes the chapter.

Chapter 3 presents the methodology of this research work. As described in Figure 1.2, this chapter contains five sections which include introduction, research assumptions, research framework and computational tools. Details of the three constructions are provided with explanation. The chapter describes how these methods are designed to produce relatively smaller resultant matrix. Finally, the fifth section concludes the methodology.

Chapter 4 presents the Jouanolou-Jacobian constructions, To provide a clear presentation, this chapter contains four sections. The first three sections are introduction, Jacobian block and construction of Jouanolou-Jacobian method. The fourth section presents
the complexity analysis of the Jouanolou-Jacobian method. This complexity analysis provides a yardstick for comparison with the existing Jouanolou method to determine whether the Jouanolou-Jacobian technique is computationally expensive or not. Referring to Figure 1.2, the fifth section concludes the chapter.

Chapter 5 presents the Dixon-Jouanolou constructions of type 1 and 2. This chapter contains four sections which include introduction, pseudo-homogenization and Dixon-Jouanolou formulations for bivariate systems. The fourth section concludes the chapter. The concept of pseudo-homogenization allows the constructions to switch from a projective space to affine space using an artificial variable.

Chapter 6 presents the generalization of the Dixon-Jouanolou method, from the bivariate system to the system of \(n + 1 \) equations with \(n \) variables. The loose entry formula for computing the Dixon resultant matrix is generalized to the system of \(n + 1 \) equations with \(n \) variables. This allows the generalization of the Dixon-Jouanolou method. Figure 1.2 shows that this chapter contained five sections which include introduction, generalized Dixon resultant matrix, generalized entry formula and the generalized Dixon-Jouanolou method is presented followed by conclusion.

Chapter 7 presents the summary of the thesis and highlights how each of the objectives are achieved. This chapter also provide the direction for further research. These suggestions are derived from the conclusions of this chapter.
NEW METHODS OF COMPUTING THE PROJECTIVE POLYNOMIAL RESULTANT BASED ON DIXON, JOUANOLOU AND JACOBIAN MATRICES

CHAPTER ONE: Introduction

Preface Research Background Statement of the Problem Objective of the Study Scope of the Study Significance of the Study

CHAPTER TWO: Literature review

Introduction Preliminary Definition and Theorems Matrix Method For Computing Resultant Dixon Resultant Macaulay Resultant Jouanolou Resultant Hybrid Resultant Conclusion

CHAPTER THREE: Methodology

Introduction Research Assumptions Research Framework Computational Tools Conclusion

CHAPTER FOUR: Jouanolou-Jacobian Formulation

Introduction Jacobian Block Construction of Jouanolou-Jacobian Method Complexity Analysis of the Jouanolou-Jacobian Method Conclusion

CHAPTER FIVE: Two Dixon-Jouanolou Resultant Formulation

Introduction Pseudo Homogenization Dixon-Jouanolou Method Conclusion

CHAPTER SIX: Generalized Dixon-Jouanolou Formulation

Introduction Generalized Dixon Resultant Matrix Generalized Entry Formula Generalized Dixon-Jouanolou Method Conclusion

CHAPTER SEVEN: Conclusion

Introduction Summary of the Thesis Conclusion Future Directions

Figure 1.2 Thesis organization
REFERENCES

9. Sylvester, J. J. On a theory of the syzygetic relations of two rational integral functions, comprising an application to the theory of sturm’s functions, and that of the greatest

86. Salmon, G. *Lessons introductory to the modern higher algebra*. Hodges, Figgis, and Company. 1885.