PHYSICAL, STRUCTURAL AND OPTICAL PROPERTIES OF TERBIUM DOPED ZINC PHOSPHATE GLASSES EMBEDDED WITH COPPER OXIDE NANOPARTICLES

SYARIFFAH NURATHIRAH BINTI SYED YAACOB

A thesis submitted in fulfilment of the requirements for the award of the degree of
Master of Philosophy (Physics)

Faculty of Science
Universiti Teknologi Malaysia

JANUARY 2019
DEDICATION

……………..dedicated to my lovely family members:

My beloved father ♥ (Syed Yaacob Bin Syed Ok)

My dearest caring mother ♥ (Sharifah Sabiha Binti Shah Ajam)

My dear sister ♥ (Syariffah Nuraqilah Binti Syed Yaacob)

My dear twin sister ♥ (Syariffah Nuratiqah Binti Syed Yaacob)

My dear younger sister ♥ (Syariffah Nuradilah Binti Syed Yaacob)

For their unconditional love, motivation and support
ACKNOWLEDGEMENT

Alhamdulillah, I am so grateful to Allah Almighty on His Merciful and all the compassionate and blessing for giving me strength courage and patience to complete this research. First and foremost I would like to express my sincere gratitude to my dedicated supervisors Prof. Dr Md.Rahim Sahar for encouragement, guidance critics and supports. I also would like to acknowledge the supervision of my co-supervisor Dr. Ezza Syuhada Sazali for their continuous support during all these years. Their taught experience and guidance were really appreciated. It would not have been possible to write this master thesis without the support, help and the prayers of my parents (Syed Yaacob Bin Syed Ok and Sharifah Sabiha Binti Shah Ajam). Also, I would like to thank my family for their endless love and support.

I would like to express my immense gratitude to the rest of people who contribute to my research work: all the lectures who has taught me, Mr Mohd Jaafar, Mr. Abd Rahman and Mdm Anisah. I would like to show gratitude to my seniors, Dr. Zahra Ashur and Dr. Siti Maisarah Aziz for the advice and discussion contributing to my research. Last but not least my sincere appreciation extends to Nur Amanina, Nur Amalina, Mohd Faiz, Nur Liyana Siti Aisyah, Khalijah, Khamisah, Puzi Aniagrawahati, Nur Liyana, Zainatul Izzah, Syazlin and others who have provided assistance for my research. Their view and opinion are highly appreciated.
This thesis reports the modification of zinc phosphate glass properties as the concentration of terbium ion (Tb$^{3+}$) and copper oxide nanoparticles (CuO NPs) are varied. Three series of glass with composition of (100$-x$) P$_2$O$_5$- xZnO with 30$<x<$80 mol% in Series 1, (60$-x$) P$_2$O$_5$- 40ZnO-xTb$_2$O$_3$, with 0.5$<x<$3.0 mol % in Series 2 and (57$-x$) P$_2$O$_5$- 40ZnO- 3Tb$_2$O$_3$-xCuO with 0.5$<x<$2.0 mol% in Series 3 had been prepared by melt quenching technique. It was observed that the glass samples in Series 1 and Series 2 were colourless and the glasses in Series 3 were blue in colour. The existences of the broad humps in X-ray diffraction (XRD) pattern clarify the amorphous nature of the glasses. The energy dispersive x-ray analysis (EDAX) detected the presence of the required elements in the glass composition. The presence of CuO NPs with the size of 0.11 nm in the glass matrix has been verified using high-resolution transmission electron microscope (HRTEM). The thermal properties and glass stability were determined using differential thermal analyser (DTA). The sample exhibited glass stability up to 287 °C. The glass density (ρ), molar volume (V_m) and ionic packing density (ρ_i) were found to be in the range of (2.86-3.60) g cm$^{-3}$, (25.90-43.28) cm3 mol$^{-1}$ and (0.582-0.741) respectively. The vibrational spectroscopy were analysed using Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy. Three major infrared absorption peak were found around 550 cm$^{-1}$, 794 cm$^{-1}$, 1165 cm$^{-1}$ and 1264 cm$^{-1}$ due to the vibration of (P-O) bond, stretching vibration of (P-O-P) bond, stretching vibrations (P=O) and asymmetric stretching vibration (P-O) bond. Surface plasmons resonance peak of CuO NPs was detected at 375 nm. The absorption spectra displayed five prominent bands owned to Tb$^{3+}$ ion at 374 nm, 487 nm, 1878 nm, 1980 nm and 2231 nm. All these bands corresponded to 7F_6$→$3D_3, 7F_6$→$5D_4, 7F_6$→$$^3F_{1,2}$ and 7F_6$→$3F_3 transitions respectively. The optical energy band gap and Urbach energy were in the range of (2.95-4.84 eV) and (0.19-0.63 eV) respectively. Meanwhile, the refractive index, molar refractivity and electronic polarizability had been calculated in the range of (2.00-2.40), (16.42-28.80) and (0.65-1.11) Å3. The emissions of the glass with Tb$^{3+}$ ion were determined using photoluminesence spectroscopy. The glass samples were excited at 378 nm excitation wavelength and the emission spectra were found to consist of several emission bands at 413 nm, 435 nm, 457 nm, 488 nm, 540 nm 585 nm and 620 nm due to electronic transitions from 5D_3$→$7F_5, 5D_3$→$7F_4, 4D_3$→$7F_4, 4D_3$→$7F_3, 5D_4$→$7F_6, 5D_4$→$7F_5, 5D_4$→$7F_3 and 5D_4$→$7F_3 respectively. The presence of CuO NPs gave remarkable effects on the luminescent intensity. However, it was observed that the emission bands possess significant quenching effect at the higher concentration of CuO NPs.
ABSTRAK

Tesis ini melaporkan sifat kaca zink fosfat apabila kepekatan ion terbium (Tb$^{3+}$) dan nanozarah kuprum oksida (CuO NPs) diubahsuai. Tiga siri kaca zink fosfat berkomposisi (100-x) P$_2$O$_5$ - xZnO dengan 30<x<80 mol% bagi Siri 1, (60-x) P$_2$O$_5$ - 40ZnO - xTb$_2$O$_3$ dengan 0.5<x<3.0 mol% bagi Siri 2 dan (57-x)P$_2$O$_5$ - 40ZnO - 3Tb$_2$O$_3$ - xCuO dengan 0.5<x<2.0 mol% bagi Siri 3 telah disediakan menggunakan teknik pelindapan leburan. Kaca Siri 1 dan Siri 2 tidak berwarna manakala kaca Siri 3 berwarna biru. Kewujudan puncak lebar pada corak pembelauan sinar menunjukkan kaca dalam keadaan amorfus. Analisis sinar-x serakan tenaga (EDAX) mengesan kehadiran unsur-unsur sebenar dalam komposisi kaca. Kehadiran nanozarah kuprum oksida (CuO NPs) yang bersaiz 0.11 nm telah dibuktikan dengan menggunakan mikroskop electron penghantaran beresolusi tinggi (HRTEM). Sifat dan kestabilan terma kaca telah ditentukan menggunakan penganalisis terma pembezaan (DTA). Kestabilan terma kaca sehingga 287 °C boleh dicapai. Ketumpatan kaca (ρ), isipadu molar (V_m) dan ketumpatan padatan ionik (V_t) didapati masing masing berada dalam julat (2.86-3.60) g cm$^{-3}$, (25.90-43.28) cm3 mol$^{-1}$ dan (0.582-0.741). Spektroskopi getaran kaca dianalisis menggunakan spektroskopi inframerah (FTIR) dan spektroskopi UV-Vis. Tiga puncak penyerapan infra-merah utama ditemui sekitar 550 cm$^{-1}$, 794 cm$^{-1}$, 1165 cm$^{-1}$ dan 1264 cm$^{-1}$ masing-masing disebabkan oleh getaran ikatan (P-O), getaran regangan ikatan (P-O-P), getaran regangan tak simetri ikatan (P=O) dan getaran regangan tak simetri ikatan (P-O). Puncak resonans plasmons permukaan CuO NPs dikesan pada 375 nm. Spektrum penyerapan memaparkan lima jalur penyerapan ion Tb$^{3+}$ iaitu pada 374 nm, 487 nm, 1878 nm, 1980 nm dan 2231 nm. Semua jalur penyerapan berdasarkan pada transisi $^7F_6\rightarrow^5D_3$, $^7F_6\rightarrow^5D_4$, $^7F_6\rightarrow^7F_{1,2,3}$ dan $^7F_6\rightarrow^7F_3$. Jurang tenaga optik dan tenaga Urbach ditemui sekitar 0.19-0.63 eV. Sementara itu, indeks biasan, pembiasan molar dan pengutuban elektronik telah dikira dan berada dalam julat (16.42-28.80) dan (0.65-1.11)Å3. Pancaran dari kaca dengan ion Tb$^{3+}$ ditentukan dengan menggunakan spektroskopi fotoluminesens. Sampel kaca diuji pada panjang gelombang 378 nm dan spektrum pancaran didapati terdiri daripada jalur pancaran yang berada pada 413 nm, 435 nm, 457 nm, 488 nm, 540 nm 585 nm dan 620 nm yang masing-masing mewakili peralihan $^5D_3\rightarrow^7F_5$, $^5D_3\rightarrow^7F_4$, $^5D_3\rightarrow^7F_3$, $^5D_4\rightarrow^7F_6$, $^5D_4\rightarrow^7F_5$, $^5D_4\rightarrow^7F_3$ dan $^5D_4\rightarrow^7F_5$. Kehadiran CuO NPs memberi kesan yang luar biasa kepada keamatan pancaran. Walau bagaimanapun, semua puncak mengalami kesan pelindapan pada kepekatan CuO NP yang tinggi.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>iv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION 1

1.1 General Introduction 1
1.2 Problem Statement 3
1.3 Objectives 4
1.4 Scope of Study 5
1.5 Significance of Study 5

CHAPTER 2 LITERATURE REVIEW 7

2.1 Introduction 7
2.2 Definition of the glasses 7
2.3 The glassy state 7
2.4 The Fundamental of Glass Formation 9
2.5 Phosphate Glass 11
 2.5.1 General Introduction 11
2.6 Network modifier 14
 2.6.1 Zinc oxide as a modifier 15
2.14.2 Working Principle of Photoluminescence Spectroscopy

<table>
<thead>
<tr>
<th>CHAPTER 3</th>
<th>RESEARCH METHODOLOGY</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>Glass preparation</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Glass Characterization</td>
<td>64</td>
</tr>
<tr>
<td>3.3.1</td>
<td>X-Ray Diffraction (XRD)</td>
<td>64</td>
</tr>
<tr>
<td>3.3.2</td>
<td>High Resolution Transmission Electron Microscope (HRTEM)</td>
<td>64</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Energy Dispersive Analysis of X-Ray</td>
<td>64</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Density</td>
<td>65</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Differential Thermal Analysis (DTA)</td>
<td>65</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Fourier Transform Infrared Spectroscopy</td>
<td>65</td>
</tr>
<tr>
<td>3.3.7</td>
<td>UV-Visible Spectroscopy</td>
<td>66</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Photoluminescence spectroscopy</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 4</th>
<th>RESULTS AND DISCUSSIONS</th>
<th>67</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Glass Formations</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>Glass Appearance</td>
<td>67</td>
</tr>
<tr>
<td>4.4</td>
<td>Structural Morphology</td>
<td>70</td>
</tr>
<tr>
<td>4.4.1</td>
<td>X-Ray Diffraction</td>
<td>70</td>
</tr>
<tr>
<td>4.4.2</td>
<td>High-Resolution Transmission Electron Microscopy (HRTEM)</td>
<td>72</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Energy Dispersive Analysis of X-ray (EDAX)</td>
<td>75</td>
</tr>
<tr>
<td>4.5</td>
<td>Physical properties</td>
<td>77</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Density</td>
<td>77</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Molar Volume</td>
<td>78</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Ionic packing density</td>
<td>81</td>
</tr>
<tr>
<td>4.6</td>
<td>Thermal properties</td>
<td>84</td>
</tr>
<tr>
<td>4.7</td>
<td>Structural Properties</td>
<td>90</td>
</tr>
<tr>
<td>4.8</td>
<td>Optical properties</td>
<td>96</td>
</tr>
<tr>
<td>4.8.1</td>
<td>Absorption properties</td>
<td>96</td>
</tr>
</tbody>
</table>
4.8.2 Surface Plasmons Resonance 99
4.8.3 Absorption edge 99
4.8.4 Optical energy band gap 103
4.8.5 Urbach energy 109
4.8.6 Refractive index 114
4.8.7 Electronic polarizability (α_m) 118
4.8.8 Nephelauxetic Ratio,β and Bonding Parameter δ 120
4.8.9 Luminescent Properties 124

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 135
5.1 Introduction 135
5.2 Conclusion 135
5.3 Recommendation for Further Study 137

REFERENCES 138

LIST OF PUBLICATIONS 157
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>The evaluations of selected properties of glass host. Structure of phosphate.</td>
<td>12</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>The density, molar volume and ionic packing density of phosphate glass system</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>The glass transition temperature (T_g), crystallization temperature (T_c), melting temperature (T_m) of various phosphate glass system</td>
<td>35</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>IR radiation classification region</td>
<td>38</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Indirect energy band gap of various phosphate glass systems</td>
<td>45</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Urbach energy ΔE of various phosphate glass system</td>
<td>47</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Refractive index (n), electronic polarizability (α_m) of various glasses from previous workers</td>
<td>49</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>The value β− and δ of various phosphate glass systems reported from the previous literature.</td>
<td>51</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Excitation and emission wavelength of Tb^{3+} doped in different glass system</td>
<td>56</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>A nominal composition of P_{2}O_{5}–ZnO–Tb_{2}O_{3}–CuO glass system</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>The colour and appearances of the prepared glass in Series 1 Series 2 and Series 3</td>
<td>68</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>The actual and nominal composition of the prepared glass</td>
<td>75</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Density, molar volume and ionic packing density of the prepared glasses</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Ionic packing density V_t of the prepared glasses</td>
<td>84</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>The value of thermal parameter of Series 1 Series 2 and Series 3</td>
<td>89</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>IR bands and their respective vibrational bonding for PZ glass system</td>
<td>94</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>IR bands and their respective vibrational bonding for PZTb glass system</td>
<td>94</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>IR absorption band and their respective vibrational bonding for PZTbCu glass system from previous and present work</td>
<td>95</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Cut off wavelength of first series, second series and third series</td>
<td>103</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Indirect optical energy band gap of zinc phosphate glass system</td>
<td>107</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Indirect optical band gap of Tb$_2$O$_3$ doped zinc phosphate glass system</td>
<td>107</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Indirect optical band gap of Tb$_2$O$_3$ doped zinc phosphate glass embedded with CuO NPs</td>
<td>107</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Urbach energy of zinc phosphate glasses</td>
<td>111</td>
</tr>
<tr>
<td>Table 4.14</td>
<td>Urbach energy of Tb$_2$O$_3$ doped zinc phosphate glass system</td>
<td>111</td>
</tr>
<tr>
<td>Table 4.15</td>
<td>Urbach energy of Tb$_2$O$_3$ doped zinc phosphate glass embedded with CuO NPs</td>
<td>112</td>
</tr>
<tr>
<td>Table 4.16</td>
<td>Refractive index and molar refraction of zinc phosphate glass system</td>
<td>116</td>
</tr>
<tr>
<td>Table 4.17</td>
<td>Refractive index molar refraction and electronic polarizability of Series 1 Series 2 and Series 3</td>
<td>120</td>
</tr>
<tr>
<td>Table 4.18</td>
<td>Band position (cm$^{-1}$) and bonding parameter (β and δ) of Tb$^{3+}$ doped zinc phosphate glass system</td>
<td>122</td>
</tr>
<tr>
<td>Table 4.19</td>
<td>Band position (cm$^{-1}$) and bonding parameter (β and δ) of the prepared glass system</td>
<td>123</td>
</tr>
<tr>
<td>Table 4.20</td>
<td>The integrated intensity of glass system in Series 2 and Series 3 glass system</td>
<td>126</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Molecular arrangements in (a) crystal and (b) glass. The bond length and angle of (a) and (b) are clearly different</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>The change of temperature against the enthalpy</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The structure of phosphate glass on Q^n group</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Two-dimensional representation of network former in the glass network</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Emission spectra of Tb³⁺ at 1.0 mol % doped phosphate glass (at λ_{ext} = 376 nm)</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Energy level diagram of Tb³⁺ ion</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>The schematic diagram of surface plasmons resonance where the oscillation of free conduction electron band of nanoparticles when coupling with light</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>SPR peak of CuO NPs at 380 nm</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>The schematic of Bragg's Law showing the angle of incidence θ and the interatomic distance, d</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>XRD patterns of phosphate glass system showing a broad hump</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Schematic diagram of X-ray diffractometer</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Schematic diagram of the cross-section of a sealed-off filament X-ray tube</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>CuO NPs with 10 nm HRTEM lattice fringe imaging and, inset, a FFT with the lattice spacing at 2.8 Å (110)</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.15</td>
<td>Schematic diagram of high resolution transmission electron microscope</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.16</td>
<td>The principle of bombardment of electron in the EDX</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.17</td>
<td>The schematic diagram of EDAX</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.18</td>
<td>Typical DTA curves of zinc phosphate glass system</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.19</td>
<td>The schematic diagram of DTA</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.20</td>
<td>The symmetrical and asymmetrical stretching vibration modes</td>
<td>39</td>
</tr>
</tbody>
</table>
Figure 4.5 HRTEM image shows the distribution of CuO NPs 73
Figure 4.6 FFT image of CuO NPs showing the face centred cubic FCC structure 73
Figure 4.7 The d-spacing of CuO NPs at (-402) plane is 0.11 nm according to JCPDS NO00-002-1041 file 74
Figure 4.8 The lattice fringe profile for the d spacing of CuO NPs showing the regular spacing distance of 0.11 nm 74
Figure 4.9 A typical EDX spectrum for glass (a) PZTb3.0 glass (b) PZTbCu0.5 glass 76
Figure 4.10 Density ρ and molar volume V_m versus ZnO concentration for Series 1 80
Figure 4.11 Density ρ and molar volume V_m versus concentration Tb_2O_3 concentration for Series 2 80
Figure 4.12 Density ρ and molar volume V_m versus CuO NPs concentration for Series 3 81
Figure 4.13 A plot of ionic packing density V_t versus ZnO concentration for Series 1 82
Figure 4.14 A plot of ionic packing density V_t versus Tb_2O_3 concentration for Series 2 glass 83
Figure 4.15 A plot of ionic packing density V_t versus CuO NPs concentration for Series 3 glass 83
Figure 4.16 DTA curves of prepared zinc phosphate glasses 86
Figure 4.17 Thermal parameter T_c, T_g and T_c-T_g versus ZnO concentration 87
Figure 4.18 DTA curves of prepared zinc phosphate glasses doped Tb^{3+} 87
Figure 4.19 Thermal parameter T_c, T_g and T_c-T_g versus Tb_2O_3 concentration 88
Figure 4.20 DTA curves of zinc phosphate glass doped with Tb^{3+} embedded with CuO NPs 88
Figure 4.21 Thermal parameter T_c, T_g and T_c-T_g versus CuO NPs concentration 89
Figure 4.22 IR spectra of phosphate glass with different concentration of ZnO 92
Figure 4.23 IR spectra of zinc phosphate glass doped Tb^{3+} 93
Figure 4.24 IR Spectra of zinc phosphate doped Tb^{3+} doped CuO NPs 93
Figure 4.25 The absorption spectra of PZTb showing the band transition at different wavelength

Figure 4.26 The absorption spectra of PZTb showing the band transition at different wavelength

Figure 4.27 The absorption spectra of PZTbCu showing the band transition at different wavelength

Figure 4.28 The absorption spectra of PZCu2.0 glass with respect reference to the PZ glass. The transverse SPR bands around 375 nm can be clearly seen

Figure 4.29 Cut-off wavelength of zinc phosphate glasses

Figure 4.30 Cut–off wavelength of zinc phosphate glasses doped with Tb₂O₃

Figure 4.31 Cut–off wavelength of zinc phosphate glasses doped Tb₂O₃ embedded with CuO NPs

Figure 4.32 A Tauc plot of indirect energy band gap of zinc phosphate glass in Series 1

Figure 4.33 A typical plot of indirect band gap of zinc phosphate glasses doped with Tb2O3 in Series 2 glass system

Figure 4.34 Tauc plot of indirect energy band gap of Tb2O3 doped zinc phosphate glasses embedded with CuO NP

Figure 4.35 The plot of indirect optical energy band gap E_{I, opt} versus ZnO concentration.

Figure 4.36 The plot of indirect optical energy band gap E_{I, opt} versus Tb₂O₃

Figure 4.37 The plot of indirect optical energy band gap E_{I, opt} versus CuONPs

Figure 4.38 The plot of ln α against hv of zinc phosphate glass of Series 1

Figure 4.39 A plot of ln α against hv of Tb₂O₃ doped zinc phosphate glass in Series 2

Figure 4.40 A plot of ln α against hv of Tb₂O₃ doped zinc phosphate glass embedded with CuO NPs in Series 3

Figure 4.41 Urbach energy versus ZnO concentration

Figure 4.42 Urbach energy versus concentration of Tb₂O₃

Figure 4.43 Urbach energy versus concentration of CuO NPs

Figure 4.44 Refractive index, n versus ZnO concentration for Series 1
Figure 4.45 Refractive index n versus Tb2O3 concentration for Series 2 glass

Figure 4.46 Refractive index, n versus CuO NPs concentration for Series 3 glass

Figure 4.47 The variation of δ against the Tb2O3 NPs content

Figure 4.48 The variation of δ against CuO NPs content

Figure 4.49 The emission spectra of zinc phosphate glass containing various Tb2O3 concentrations

Figure 4.50 The relative intensity of 5D_3 against the concentration of Tb2O3

Figure 4.51 The relative intensity of 5D_4 against the concentration of Tb2O3

Figure 4.52 The schematic partial energy diagram of Tb$^{3+}$ doped zinc phosphate glass.

Figure 4.53 The emission spectra of zinc phosphate glass doped Tb$^{3+}$ embedded with CuO NPs

Figure 4.54 The correlation between CuO NPs concentration and relative intensity of 5D_3

Figure 4.55 The correlation between CuO NPs concentration and relative intensity of 5D_4

Figure 4.56 Partial energy diagram of zinc phosphate glass doped terbium embedded with CuO NPs showing the energy transfer from CuO NPs to Tb$^{3+}$ ion during the excitation process
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>E^I_{opt}</td>
<td>Indirect energy band gap</td>
</tr>
<tr>
<td>$h\nu$</td>
<td>Photon energy</td>
</tr>
<tr>
<td>ΔE</td>
<td>Urbach energy</td>
</tr>
<tr>
<td>BO</td>
<td>Bridging oxygen</td>
</tr>
<tr>
<td>NBOs</td>
<td>Non-Bridging oxygen</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>Phosphate</td>
</tr>
<tr>
<td>ZnO</td>
<td>Zinc oxide</td>
</tr>
<tr>
<td>Tb$_2$O$_3$</td>
<td>Terbium Oxide</td>
</tr>
<tr>
<td>CuO NPs</td>
<td>Copper Oxide Nanoparticles</td>
</tr>
<tr>
<td>NPs</td>
<td>Nanoparticles</td>
</tr>
<tr>
<td>RE</td>
<td>Rare earth</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>SPR</td>
<td>Surface plasmons resonance</td>
</tr>
<tr>
<td>NIR</td>
<td>Near Infrared Region</td>
</tr>
<tr>
<td>HRTEM</td>
<td>High Resolution Transmission Electron Microscope</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive Analysis X-Ray</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential Thermal Analysis</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Energy</td>
</tr>
<tr>
<td>ν</td>
<td>Wavenumber</td>
</tr>
<tr>
<td>n</td>
<td>Refractive index</td>
</tr>
<tr>
<td>δ</td>
<td>Bonding parameter</td>
</tr>
<tr>
<td>β</td>
<td>Nephelauxetic ratio</td>
</tr>
<tr>
<td>N</td>
<td>Avogadro’s Numbers</td>
</tr>
<tr>
<td>V_m</td>
<td>Molar volume</td>
</tr>
<tr>
<td>V_t</td>
<td>Ionic packing density</td>
</tr>
<tr>
<td>x_i</td>
<td>Molar fraction</td>
</tr>
<tr>
<td>N</td>
<td>Ion concentration</td>
</tr>
<tr>
<td>R_m</td>
<td>Molar refraction</td>
</tr>
<tr>
<td>α_m</td>
<td>Electronic polarizability</td>
</tr>
<tr>
<td>2θ</td>
<td>Bragg’s angle</td>
</tr>
<tr>
<td>d</td>
<td>Interatomic spacing</td>
</tr>
<tr>
<td>T_c</td>
<td>Crystallization temperature</td>
</tr>
<tr>
<td>T_g</td>
<td>Glass Transition temperature</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>TITLE</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Batch Calculation of Glass System</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 General Introduction

Glass is a non-crystalline material that has been used in various applications since ancient time. Its atomic is lack of periodic arrangement and can be formed by fast cooling from a melt into low temperature without crystallization [1]. The evolutions of glass development reflect the interest in glass technology. Recently glasses possessed growing interest in engineering materials for abundant application such as solid-state lasers, fiber amplifiers, and optical fibers. It can be used to study the influence of chemical environment on the physicals, structural and optical properties of the rare earth ions (RE). This is due to the flexible properties that can be tuned by compositional modifications. They are also easily fabricated and with even distribution of rare earth as a glass host. Besides that glass also own an exquisite features such as high chemical durability to withstand extreme environment [2]. Several techniques has been employed to prepare the glass such as sol-gel, melt quenching.

A lot of efforts have been devoted to studying various materials to form glass. Phosphate (P₂O₅) based glasses are considered suitable material for lasing action due to its unique properties [3]. It is due to the excellent properties of phosphate glass such as high thermal expansion, melt at low temperature, and possessed high ultraviolet (UV) and far infrared transmissions for optical data transmission [4]. Besides that, phosphate allows the introduction of the large concentration of RE without clustering. This significant behaviour gives impact on producing glass with highly effective pumping and exhibits efficient energy transfer from the RE [5]. The previous study reported that phosphate glass exhibits low chemical durability, which is due to the hygroscopic nature of phosphate glass. However, the inclusion of dopant ion such would improve and enhance their chemical durability [6]. The introduction of metal
oxide such as zinc oxide into the phosphate network promotes more non-bridging oxygen (NBOs) and substantially leads to polymerization of the phosphate glass network by forming P-O-Zn bond. As a result, the resistance of the aqueous water attack in the phosphate network can be increased. [7,8]

Intensive research on the developments of RE ion doped glass has gained new knowledge on developing a high performance optical active devices. The photoluminescence characteristic of RE ion such as Er$^{3+}$ [9], Eu$^{3+}$ [10], Tm$^{3+}$ [11], Tb$^{3+}$ [12], Pr$^{3+}$ [13], Sm$^{3+}$ [14] and Dy$^{3+}$ [15] as luminescent materials has been established owing to their optical transition in the visible and near infrared region (NIR) [16]. In addition, RE ions have been chosen as dopant due to several factors. The shielding effect of 5s2 and 5p6 shells gives narrow band in excitation and emission spectra. Although RE ion doped into a different kind of host glass, the shielding effect remains their nature behaviour [17].

Among the trivalent RE ions, Tb$^{3+}$ ions have created new interest due to its strong luminescent. The photoluminescence emission of Tb$^{3+}$ lies in the blue and green region. Tb$^{3+}$ possess a mild blue and intense green emission. In particular, the mild blue and intense green emission is produce at 542 nm due to radiative decay from 5D_4 excited states to 7F_5 ground states [18]. Fascinatingly glass doped with Tb$^{3+}$ ion exhibits large energy band gap around 4.65eV [19,20]. However, the fluorescence quantum yield of Tb$^{3+}$ is limiting their performance. At the emission of 378 nm, the intensity of Tb$^{3+}$ increase then drops beyond a certain point of concentration due to the quenching effects. Generally, the quenching phenomenon is observed due to clustering of RE ion at a high concentration of more than 3.0 mol % of Tb$^{3+}$ [21,22]. Consequently, the performance of the host matrix finally become inactive. In sequence to surmount of the quenching effect, the introduction of metallic NPs has been proposed to encounter the effect.
Presently the nano era development induces synthesis of new nanostructure materials with simple technique along with incredible properties and feasible application. The initiative of embedment of metallic NPs in RE-doped glass is known to enhance the luminescence efficiency [23]. The introduction of NPs in RE-doped glass explicitly develops new promising functional materials. The discoveries of the NPs doped with RE began when Malta reported the effect of Ag NPs Er$^{3+}$ in fluoroborate glass. They revealed that the luminescence enhances for glass containing Eu$^{3+}$ ion. The enhancement is due to the presence of small Ag NPs [24]. NPs exhibit localized surface plasmons resonance (LSPR) that generate strong local electric field assure the excitation transfer to the RE ion [25]. In particular, light interaction between RE ion incorporate with metal NPs perceived to overcome the quenching of RE through the energy transfer [26]. The incorporation of metallic NPs inside the glass host change the local environment triggered by the RE ions.

1.2 Problem Statement

The photoluminescence characteristics of rare earths doped into various kind of hosts have been extensively studied in the past due to its wide range of its application such as optical data storage and medical treatment [27] . This glasses recognized as fascinating materials due to the f–f transition lies on the visible and near-infrared (NIR) region [18]. The unique properties of lanthanide ions assigned them as luminescent indicator group for laser development [28]. Among all lanthanide ion, progressive research has been focus on producing green laser by Er$^{3+}$ doped glass pumped with 0.8 μm laser diodes [29]. However, not many studies have been reported on the use of Tb$^{3+}$ ions. In sequence, optimum concentration of Tb$^{3+}$ doped zinc phosphate glass are important to emphasized in order to avoid from quenching and enhance stability [30]. Since there is lack of reports on these glass, it is therefore the aim of this study to give more information on the influence of Tb$^{3+}$ on zinc phosphate glass.

The influence of metallic NPs on RE doped glass has been widely studied. These NPs contribute an enormous effect on enhancing the luminescence through
energy transfer. Till now most of the study has focus on the embedment of NPs such as Ag NPs [31] Au NPs [32] Fe NPs [33] Ni NPs [34] and Mn NPs [35]. Although continuous significant efforts has been devoted to study all those metallic NPs, yet the effect of CuO NPs on RE doped glass is not yet been explored. Hence it is a great of interest to study their roles on the doping glass. In this work, the effects of CuO NPs on the phosphate glass doped with Tb$^{3+}$ ions will be studied in term of their physical, structural and optical behaviour along with the mechanism of the respective properties.

1.3 Objectives

In order to overcome the problem that has been stated in section 1.2 several objectives have been outlined in this research as follows:

1) To prepare three series of glass by melt quenching technique. The compositions are as below:

i. **Series 1**

$(100−x)$P$_2$O$_5$–xZnO where $30 \leq x \leq 80$ mol%

ii. **Series 2**

$(60−y)$P$_2$O$_5$–40ZnO –xTb$_2$O$_3$ where $0 \leq y \leq 3.0$ in mol% and

iii. **Series 3**

$(57−z)$P$_2$O$_5$–40ZnO–3.0Tb$_2$O$_3$ –zCuO where $0 \leq z \leq 2.0$ mol%

2) To determine the amorphous nature of glass by X-Ray diffraction and the presence of NPs in the glass

3) To study the physical properties and the thermal parameter of the glass.

4) To determine the structural properties of the glass.

5) To study the optical properties of the glass
1.4 Scope of Study

This study is attempted to determine the properties of the glasses of three different series with different composition prepared by using melt quenching technique. The thermal parameters such as glass transition temperature (T_g) crystallization temperature (T_c) and melting temperature (T_m) along with the thermal stability in all composition are determined by using differential thermal analysis (DTA). The amorphous natures of the prepared glasses are examined by X-Ray diffraction. The existence of CuO NPs is verified using High Resolution Transmission Electron Microscope (HRTEM). Meanwhile the density is determined by using Archimedes Principle. The optical characteristic in term of their vibration features is determined by Fourier Transform Infrared Spectroscopy (FTIR). The study of absorption features, the optical energy band gap, Urbach energy refractive index and polarizability using UV-Vis NIR spectroscopy. The enhancement of emission and spectroscopic quality are accomplished by using Photoluminescence (PL) spectroscopy. Overall, the physicals, thermal and optical analysis are important to evaluate the glass properties in order to be used in various optical applications.

1.5 Significance of Study

The finding of efficient lasing glass with superior properties is ever demanding. The search for new glassy materials is important in order to meet the demands in glass industries to be used in various applications. Thus, the glass should possess particular and superior properties in many aspects such as physical, structural and optical properties. In this research, incorporation of CuO NPs in the glass matrix creates potential glass materials useful for non-linear photonic devices. A basic understanding underlying on the mechanism of CuO NPs doped with terbium zinc phosphate glass provides new gain insight on structural and optical properties. In addition, SPR exhibited by CuO NPs provides a new view of the Plasmon excitation efficiency on RE-doped glass. This research provides significant finding into extending of information regarding the production of new materials in order to develop new non-linearity photonic devices for widely used in solid-state application.
REFERENCES

[78] J. Li, R. Wei, X. Liu, H. Guo, Enhanced luminescence via energy transfer from Ag⁺ to RE ions (Dy³⁺, Sm³⁺, Tb³⁺) in glasses, Opt. Express. 20 (2012) 10122

[133] D. Sola, D. Conejos, J. Martínez de Mendivil, L. Ortega-San-Martín, G. Lifante, J.I. Peña, Directional solidification, thermo-mechanical and optical properties of (Mg$_x$Ca$_{1-x}$)$_3$Al$_2$Si$_3$O$_2$ glasses doped with Nd$^{3+}$ ions, Opt. Express. 23 (2015) 26356.

[174] C.I. Andronache, D. Racolta, Structural investigation of MO-P₂O₅-Li₂O (MO = Fe₂O₃ or V₂O₅) glass systems by FTIR spectroscopy, 35 (2014) 115–119.

