STABILITY ANALYSIS FOR SLOPE REHABILITATION WORKS AT KM424.80 SOUTH BOUND, NORTH SOUTH EXPRESSWAY

MAZLAN HARUN

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Geotechnics)

School of Civil Engineering
Faculty of Engineering
Universiti Teknologi Malaysia

JANUARY 2019
DEDICATION

This thesis is dedicated to my late father, who taught me of how important an education to one’s life. It is also dedicated to my mother, who taught me to be strong in facing difficult times in life.
ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my main thesis supervisor, Associate Professor Dr. Ahmad Safuan A. Rashid, for encouragement, guidance, critics and friendship.

I am also indebted to my family members especially my wife, Naslin Jusoh who have been tremendously supportive during my time in doing my project report and in the whole tenure of my studies in general. She is my strength and without her support this task would be much difficult than it is.

My fellow postgraduate student should also be recognised for their support. My sincere appreciation also extends to all lectures that have providing assistance at various occasions. Their views and tips are useful indeed which forever I will indebt to.
ABSTRACT

Slope failures are major natural hazards that constantly occurred along the North South Expressway. Every year, hundreds of slope failed especially during raining seasons and causing major disruption to the network. One of them is located at slope KM424.80 South Bound. This paper is mainly to study the relationship between rainfall and slope failure at KM424.80 South Bound and the effect of rainfall toward the stability of the slope, at initial and after rehabilitation works. Site investigation works and software application developed by Geostudio, SEEP/W and SLOPE/W is used to carry out the research. The analysis method used is based on Bishop and Morgenstern-Price theory of equilibrium and entry and exit as point mode of failure. There are four types of simulations being experimented ie, FOS without any rainfall, rainfall intensity of 119mm/hour, rainfall of various intensity and FOS of using transient technique. Based on the results of the simulation, it is concluded that rain can contribute to slope failure events. However, it is not the intensity of rain that plays a role but a period of rain that contributes to slope instability. The longer the slope is exposed to the rain, the higher the risk of the slope to fail.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION 1

1.1 Background of the Study 1
1.2 Problem Statement 2
1.3 Objectives 2
1.4 Scope of Study 3

CHAPTER 2 LITERATURE REVIEW 5

2.1 Slope Failure 5
2.2 Type of Slope Failures 7
 2.2.1 Fall and Topples 7
 2.2.2 Slides 7
 2.2.3 Lateral Spread 7
 2.2.4 Flows 7
2.3 Causes of Slope Failure 11
 2.3.1 Decreased in Shear Strength 12
 2.2.4 Increase in Shear Stress 13
2.4 General Principles of Slope Instability 13
2.5 Equilibrium Conditions 15
2.6 Method of Slices 16
2.7 Extended Mohr-Coulomb (M-C) Criterion 17
2.8 Soil Water Characteristic Curve (SWCC) Model 17
2.9 SEEP/W and SLOPE/W 18

CHAPTER 3 RESEARCH METHODOLOGY 21
3.1 Introduction 21
3.2 Data Collection 23
 3.2.1 Surface Investigation 23
 3.2.1 Subsurface Investigation 25
 3.2.1.1 Borehole 25
 3.2.1.2 Standard Penetration Test (SPT) 27
 3.2.1.3 Mackintosh Probe Tests 27
 3.2.2 Sampling Works 29
 3.3.1 Disturbed Samples 29
 3.3.2 Undisturbed Samples 29
 3.3.2.1 Thin Wall Sampling 29
 3.3.2.2 Pistol Sampling 30
 3.3.2.3 Open Tube Sampling 31
 3.3.2.4 Mazier Sampling 31
 3.3.3 Ground Water Samples 32
 3.3.4 Management and Transportation of Undisturbed Samples 32
 3.4 Consolidated Undrained Triaxial Test 32
 3.5 In-situ Laboratory Testing 34
 3.6 Numerical Modelling 36

CHAPTER 4 RESULT AND DISCUSSION 37
4.1 Introduction 37
4.2 Soil Investigation 37
 4.2.1 Result of Boreholes 37
4.2.2 Standard Penetration Test
4.2.3 Mackintosh Probes Result
4.3 Laboratory Testing
4.4 Subsoil Conditions
 4.4.1 Subsoil Layer 1: Sandy SILT (15<N<50)
 4.4.2 Subsoil Layer 2: Clayey SILT (N>50)
4.5 Proposed Slope Rehabilitation Works
4.6 Modelling and Analysis
 4.6.1 Slope Stability Analysis without Rainfall Effect (Baseline FOS)
 4.6.2 FOS considering Unsaturated Conditions and Rainfall Intensity at 119mm/hour using Steady State Analysis
 4.6.3 Effect of Different Rainfall Intensity to FOS Using Steady State Analysis
 4.6.4 Effect of Duration of Rainfall Intensity of 119 mm/hour towards FOS using Transient Analysis

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 63
 5.1 Conclusion 63
 5.2 Recommendation 63

REFERENCES 65
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Classification of mass movement types</td>
<td>6</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Mohr-Coulomb shear strength of different materials at peak strength</td>
<td>14</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Force equilibrium method</td>
<td>16</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Summary the data collected from site assessment exercise.</td>
<td>24</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Summary of Soil Investigation Results at KM424.40 South Bound</td>
<td>38</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Summary of laboratory test result</td>
<td>44</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Summary of chemical test result</td>
<td>44</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Basic soil properties</td>
<td>49</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>FOS using Bishop and Morgenstern-Price method.</td>
<td>49</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Soil properties for unsaturated soil condition</td>
<td>53</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>FOS using Bishop and Morgenstern-Price method in unsaturated conditions</td>
<td>53</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>FOS of different rainfall intensity</td>
<td>57</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>FOS using 119mm/hour in 15 days using transient analysis</td>
<td>59</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Figure 1.1</td>
<td>Overall view of failed slope at KM424.80 South Bound</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Mass movement terminologies (Summerfield, 1991)</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Types of (a) Falls (b) Topples (U.S Geological Survey, 2004)</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Types of slide (a) Rotational (b) Translational (c) Block (U.S Geological Survey, 2004)</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Lateral spread (U.S Geological Survey, 2004)</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Types of slide (a) Debris flow (b) Debris avalanche (c) Earth or mud flow (d) Creep (U.S Geological Survey, 2004)</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Mohr-Coulomb failure envelopes</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Slices with force considered in the Ordinary Method of Slices</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>The position of residual water content Θ_r, saturated water content Θ_s, and air entry pressure Ψ_b in typical SWCC</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Illustration of Φ_b in three dimensional</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Flow chart of research methodology</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Topographical survey works</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Borehole drilling in progress for BH-1</td>
<td>25</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Borehole drilling in progress for BH-3</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Disturbed samples from split spoon sampler</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Mackintosh Probes work at study area</td>
<td>28</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Thin wall samples</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>CIU equipment in laboratory</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>CIU testing is in progress</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3.10</td>
<td>Preparation of CIU samples</td>
<td>35</td>
</tr>
<tr>
<td>Figure 3.11</td>
<td>Samples for Index Properties Tests</td>
<td>35</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Layout of study area</td>
<td>39</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Cross section of SPT-N value from borehole results</td>
<td>41</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Adopted strata classifications</td>
<td>45</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Example of rock filling works</td>
<td>46</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>FOS at Initial condition using Bishop method</td>
<td>50</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>FOS after rehabilitation works using Bishop method</td>
<td>50</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>FOS at Initial condition using Morgenstern-Price method</td>
<td>51</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>FOS after rehabilitation works using Morgenstern-Price method</td>
<td>51</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Unsaturated parameters, rainfall and seepage flux value using SEEP/W at initial condition.</td>
<td>54</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>FOS at initial condition under unsaturated conditions using Bishop method</td>
<td>54</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Unsaturated parameters, rainfall and seepage flux value using SEEP/W after rehabilitation works</td>
<td>55</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>FOS after rehabilitation works under unsaturated conditions using Bishop method</td>
<td>55</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Unsaturated parameters, rainfall and seepage flux value using SEEP/W in Day 10 at initial condition. OS after rehabilitation works using Bishop method</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.14</td>
<td>FOS at initial condition under unsaturated conditions at Day 10 using Bishop method</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.15</td>
<td>Unsaturated parameters, rainfall and seepage flux value using SEEP/W in Day 10 after rehabilitation works.</td>
<td>61</td>
</tr>
<tr>
<td>Figure 4.16</td>
<td>FOS after rehabilitation works under unsaturated conditions at Day 10 using Bishop method</td>
<td>61</td>
</tr>
<tr>
<td>Figure 4.17</td>
<td>Effect of rainfall at intensity of 119 mm/hour towards FOS at initial condition</td>
<td>62</td>
</tr>
<tr>
<td>Figure 4.18</td>
<td>Effect of rainfall at intensity of 119 mm/hour towards FOS after rehabilitation works</td>
<td>62</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>BH</td>
<td>Boreholes</td>
<td></td>
</tr>
<tr>
<td>CIU</td>
<td>Consolidated Undrained</td>
<td></td>
</tr>
<tr>
<td>FOS</td>
<td>Factor of Safety</td>
<td></td>
</tr>
<tr>
<td>SPT</td>
<td>Standard Penetration Test</td>
<td></td>
</tr>
<tr>
<td>bgl</td>
<td>Below Ground Level</td>
<td></td>
</tr>
<tr>
<td>GWL</td>
<td>Ground Water Level</td>
<td></td>
</tr>
<tr>
<td>UTM</td>
<td>Universiti Teknologi Malaysia</td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td>Liquid Limit</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>Plastic Limit</td>
<td></td>
</tr>
<tr>
<td>MP</td>
<td>Mackintosh Probes</td>
<td></td>
</tr>
<tr>
<td>WC</td>
<td>Water Content</td>
<td></td>
</tr>
<tr>
<td>SWCC</td>
<td>Soil Water Characteristic Curve</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

- Θ_r: Residual Water Content
- Θ_s: Saturated Water Content
- Ψ_b: Air Entry Pressure
- τ_f: Shear Strength
- σ: Stress
- u_a: Air Pore Pressure
- u_w: Water Pore Pressure
- Θ': Effective Friction Angle
- C: Cohesion
- γ: Unit Weight
- γ_d: Dry Unit Weight
- ϕ_b: Phi B
- γ_d: Dry Unit Weight
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Laboratory Test Results</td>
<td>66</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Mackintosh Probes Result</td>
<td>84</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Charts</td>
<td>95</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Rainfall Data</td>
<td>98</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

PLUS Expressways Berhad (PEB) is the largest highway concessionaire in Malaysia. It has 987 kilometer long expressway with slope and embankment built along the way to provide platform for the expressway. Over time, failures occur and therefore action has to be taken to remedy the failures.

PEB have spent millions of ringgit to rectify failed slopes every year to ensure it is properly being maintained so it would be safe to the expressway user. Each year there are more than 100 numbers of failed slopes shall be rectified and one of them is located at KM424.80 South Bound, Section C3 of the North South Expressway.

The existing cut slope was constructed more than twenty five years ago during the construction of the expressway. It is about 150 m long which comprises seven berms with a maximum height of approximately 30 m from the expressway level. The cut slope has gradients varies from 35° to 40°. Behind the cut slope is a forest reserved area and the ground is sloping upward.

Generally, the cut slope surface is densely vegetated and covered with fern and grass. The slope drainage system consists of interceptor trapezoidal drain on the top slope, V-shaped berm drains, cascade U-shaped block drains and trapezoidal toe drain. Most of the drains are still in good condition except at failed locations, cracks and broken drain were observed on the drain section due to soil movement.
The lithology of the slope is mainly argillaceous rock comprising quartz-mica schist, graphitic schist and phyllite of the Terolak Formation. The age of this formation is Middle Ordovician to perhaps Silurian.

1.2 Problem Statement

A report was lodged that some part of cut slope located at KM424.80 South Bound had failed during heavy downpour. On the following day, a foot inspection was carried out to assess the slope condition and the following were observed during the site assessment:

i. A localised slope failure in between slope surface no. 1 and 3 which is approximately 40m length and 30m height
ii. Displacement of berm drain at berm no. 1 and 2
iii. Damaged to the existing stone pitching wall and cascaded drain of the slope due to soil movement
iv. Barren area due to erosion at a few locations

1.3 Objectives

i. To develop soil strata, carry out back analysis using SLOPE/W and propose the design of rehabilitation work.
ii. To carry out parametric study of effect of rainfall intensity and soil suction using SEEP/W and SLOPE/W at initial condition and after rehabilitation works done.
iii. To determine the duration of rainfall required using transient analysis technique before the slope reached its failed state.
1.4 Scope of Study

The scope of work of this paper is to investigate the relationship between rainfall intensity and slope failure event at KM424.80 South Bound and therefore proposing the appropriate design rehabilitation for this problem. Data collection is based on soil investigation program which consist of 3 boreholes, 1 number of hand auger, a few numbers of soil sampling and relevant soil testing. The findings of this study are only relevant only to the ground at the place where the soil investigations were carried out.

The analysis then was carried out by software application, SEEP/W and SLOPE/W. Based on topographical and cross sectional plan, only the most critical section at the failed slope will be selected for stability analysis. This is to ensure the design is safe for the entire condition of the slope failure. Figure 1.1 shows the overall view of slope KM424.80 South Bound.

Figure 1.1 Overall view of failed slope at KM424.80 South Bound
REFERENCES

DG Fredlund (2001). *The Relationship Between Limit Equilibrium Slope Stability Methods*, Department of Civil Engineering, University of Saskatchewan, Saskatoon, Canada pp. 1-8

Lulu Zhang, Jinhui Li, Xu Li, Et Al (2016). *Rainfall Induced Soil Slope Failure*, CRC Press, pp. 50-80

Robin Chowdhury, Phil Flentje, Gautam Bhattacharya (2010), *Geotechnical Slope Analysis*, CRC Press Taylor & Francis Group, pp. 21-70

Shu-Wei Suna, Ben-Zhen Zhub and Jia-ChenWanga (2013). *Design Method for Stabilization of Earth Slopes with Micropiles*

Slávka Harabinováa, Procedia Engineering Journal (2017). *Assessment of Slope Stability on the Road*

Laporan Tahunan 2016, *Kementerian Sains Teknologi dan Inovasi*, MET Malaysia, pp. 32