ANTIOXIDANT, ANTIBACTERIAL ACTIVITY AND IN SILICO STUDY OF SELECTED MEDICINAL PLANTS AGAINST PATHOGENIC BACTERIA

INTAN NURSURAYA BINTI ZAKARIA

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy (Biosciences)

Department of Biosciences
Faculty of Science
Universiti Teknologi Malaysia

MARCH 2019
I dedicate this to my mother and father, who taught me the best kind of knowledge
ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful

I would first like to thank my supervisor and my thesis advisor, Prof. Madya Dr. Salehuddin bin Hamdan of the Department of Biosciences, Faculty of Science at Universiti Teknologi Malaysia. The door to Dr. Salehuddin Hamdan office was always open whenever I ran into a trouble spot or had a question related to my research or writing. Your supports also helped me a lot to complete this study.

I would also like to thank my parents, Mr. Zakaria bin Abd Wahid and Mrs. Baidah binti Bujang for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing the thesis. Special mention to Ms. Intan Nursuryana binti Zakaria and Mr. Ahmad Muaz bin Abu Khari who helps a lot to believe in hard works and for all the priceless supports along this journey. This accomplishment would not have been possible without them.

Last but not least, I would also like to acknowledge Ms. Sayang binti Baba who guided me for this research project which helps me much in completing the experimental works. I must express my very profound gratitude to all my laboratory colleagues including Ms. Zurfarahanim, Ms. Fateha, Ms. Farah and Ms. Shazwani for always being there with moral supports and advices.

Thank you.
ABSTRACT

An increase in the number of antibiotic resistant bacteria worldwide has necessitated new antibacterial agents, mainly by medicinal plants. For this, the antioxidant and antibacterial activities of four Malaysian medicinal plants; *Alpinia galanga*, *Centella asiatica*, *Clinacanthus nutans* and *Persicaria odorata* extracts were evaluated against gram-positive (*Bacillus subtilis*, *Staphylococcus epidermidis*, *Staphylococcus aureus*, Methicillin-resistant *Staphylococcus aureus* (MRSA)) and gram-negative (*Escherichia coli*, *Pseudomonas putida*) in this study. The medicinal plants were extracted using solvents with different polarities and screened for the total phenolic contents via Folin-Ciocalteu method and antioxidant capacity by diphenyl-1-picrylhydrazyl (DPPH) activity. The antibacterial activities were conducted using disc diffusion, minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests. The most effective plant extract was further fractionated by column chromatography and thin layer chromatography. The fractions were then characterized using antibacterial assays, Zeta potential measurements, followed by scanning electron microscopic (SEM) observations and Gas Chromatography Mass Spectrometry (GCMS) analysis. Compounds identified were docked with Penicillin binding protein (PBP) using Autodock 4.0 and simulate (MD) by Gromacs 5.0.4. The findings from this study showed that acetone plant extracts exhibited the highest antioxidant and antibacterial activities; significantly by *P. odorata* acetone extract. This extract was also chosen due to its comparable MIC and MBC values with both the positive controls respectively. A total of 12 fractions were separated from the extract, however only H05 fraction showed bactericidal action against all gram-positive bacteria. This fraction could also alter the magnitude of bacterial negativity, significantly against MRSA. This data was supported by morphological alterations induced in treated MRSA, through SEM images. The GCMS analysis of H05 fraction showed that the presence of seven major phenolic compounds derivatives that met the Lipinski’s Rule of Five were present in the H05 extract. Among the seven compounds, the MD trajectory analysis showed that 6-hydroxy-8-methoxyoctanoic acid (tannins derivatives) shows strongest and most stable binding with PBP protein. The present study indicates that phenolics mainly tannins present in the *P. odorata* acetone extract were highly responsible for its antibacterial potential, especially for MRSA infection treatment.
ABSTRAK

Pertambahan bakteria rintangan terhadap antibiotik di seluruh dunia telah menyebabkan perlunya ejen antibakteria yang baharu, terutamanya daripada tumbuhan ubatan. Oleh itu, dalam kajian ini, aktiviti antioksidan dan antibakteria daripada empat tumbuhan ubatan Malaysia; ekstrak *Alpinia galanga*, *Centella asiatica*, *Clinacanthus nutans* dan *Persicaria odorata* telah diuji terhadap bakteria gram positif (*Bacillus subtilis*, *Staphylococcus epidermidis*, *Staphylococcus aureus*, Methicillin-resistant *Staphylococcus aureus* (MRSA)) dan bakteria gram negatif (*Escherichia coli*, *Pseudomonas putida*). Tumbuh-tumbuhan ubatan diestrak dengan kekutuban larutan yang berbeza dan diuji untuk mengetahui jumlah kandungan fenol menggunakan kaedah Folin-Ciocalteu dan kemudiannya kapasi antioksidan oleh aktiviti difenil-1-pikrilhidrazil (DPPH). Aktiviti antibakteria dijalankan dengan menggunakan serapan cakera, ujian kepekatan minima (MIC) dan ujian perencatan kepekatan minima bagi bakteria (MBC). Ekstrak paling berkesan telah difrakan seterusnya dengan kromatografi turus dan kromatografi lapisan nipis. Fraksi tersebut kemudiannya dicirikan melalui ujian antibakteria, pengukuran potensi Zeta dan diikut dengan pengimbasan mikroskop elektron (SEM) dan analisis Spektrometri Jisim Gas (GCMS). Sebatian yang dikenal pasti telah dipaut-tindih dengan protein pengikat Penicillin (PBP) menggunakan Autodock 4.0 dan simulasi (MD) dengan Gromacs 5.0.4. Keputusan menunjukkan bahawa tumbuhan yang diekstrak aseton mempamerkan aktiviti antioksidan dan antibakteria yang sangat bagus iaitu ekstrak aseton *P. odorata*. Ekstrak tumbuhan ini juga dipilih kerana nilai aktiviti MIC dan MBC yang masing-masing setanding dengan dua kawalan positif. Sejumlah12 fraksi telah dipisahkan dari ekstrak tumbuhan ini, tetapi hanya fraksi H05 menunjukkan tindakan mematikan ke atas semua bakteria gram-positif. Fraksi ini juga boleh mengubah keadaan negatif bakteria, ketara terhadap MRSA. Data ini telah disokong dengan perubahan morfologi MRSA yang dilihat melalui imej SEM. Analisis GCMS fraksi H05 menunjukkan kehadiran tujuh sebatian fenolik utama, yang memenuhi Peraturan Lima Lipinski yang hadir dalam ekstrak H05. Antara tujuh sebatian, 6-hydroxy-8-methoxyoctanoic acid (derivatif tanin) menunjukkan pengikatan sebatian yang terkuat dan paling stabil dengan protein PBP, berdasarkan analisis unjuran MD. Kajian ini menunjukkan bahawa fenolik iaitu tanin hadir dalam ekstrak aseton *P. odorata* yang bertanggungjawab terhadap potensi antibakterianya, terutamanya untuk rawatan jangkitan MRSA.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of Study 1
1.2 Problem Statement 3
1.3 Objectives of Study 4
1.4 Scope of Study 5
1.5 Significance of Study 5

CHAPTER 2 LITERATURE REVIEW

2.1 History of Antibiotics 6
2.2 Main Classes of Antibiotics 6
2.3 Mechanisms of Antibiotics Action 7
2.3.1 Inhibition of Cell Wall Synthesis 8
2.3.2 Inhibition of Protein Synthesis 9
2.3.3 Inhibition of Nucleic Acid Synthesis 10
2.3.4 Disruption of Cytoplasmic Membrane
2.3.4 Inhibition of Metabolic Pathway
2.4 Bacteriostatic and Bactericidal Mode of Antibiotics
2.5 Origin of Antibiotic-Resistance
2.6 Causes of Antibiotic-Resistance Crisis
 2.6.1 Overuse of Antibiotics
 2.6.2 Inappropriate Prescriptions of Antibiotics
 2.6.3 Antibiotics in Agricultural Industry
 2.6.4 Availability of Few New Antibiotics
2.7 Mechanisms of Antibiotic-Resistance
2.8 Penicillin-Binding Protein as Key Player of Antibiotic-Resistance
2.9 Antibiotic-Resistant Bacteria
 2.9.1 Gram-Positive Bacteria
 2.9.1.1 Bacillus subtilis
 2.9.1.2 Staphylococcus epidermidis
 2.9.1.3 Staphylococcus aureus
 2.9.1.4 Methicillin-resistant Staphylococcus aureus
 2.9.2 Gram-negative Bacteria
 2.9.2.1 Escherichia coli
 2.9.2.2 Pseudomonas putida
2.10 The Need for Alternative Antibacterial Agents
2.11 Medicinal Plants as Antibacterial Agents
 2.11.1 Alpinia galanga (Langkuas)
 2.11.2 Centella asiatica (Pegaga)
2.11.3 *Clinacanthus nutans* (Belalai Gajah)

2.11.4 *Persicaria odorata* (Kesum)

2.12 Medicinal Plants as Antioxidant Agents

2.13 The Main Classes of Plants

 Phytochemicals

 2.13.1 Phenolics and Polyphenols

 2.13.2 Terpenoids and Essential Oils

 2.13.3 Alkaloids

 2.13.4 Lectins and Polypeptides

 2.13.5 Other Compounds

2.14 Extraction of Phytochemicals Compounds

 2.14.1 Extraction Solvents

 2.14.2 Bioassay-guided Fractionation

2.15 Drug Discovery by *in silico* Analyses

CHAPTER 3 METHODOLOGY

3.1 Flow Methodology

3.2 Plant Materials and Extract Preparations

3.3 Bacterial Cultures

3.4 Bacteria Enumeration

3.5 Total Phenolic and Tannins Determination

 3.5.1 Total Phenolic Content (TPC)

 3.5.2 Residual Phenolic Quantifications

 3.5.3 Tannin Levels Determination

3.6 Antioxidant Assay by DPPH-free Radical Scavenging Activity

3.7 Antibacterial Assay

 3.7.1 Disc Diffusion Assay

 3.7.2 Minimal Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Tests

3.8 Bioassay-guided Fractionation
3.8.1 Column Chromatography 53
3.8.2 Thin-layer Chromatography 53
(TLC)
3.9 Biological Characterization 54
3.9.1 Zeta Potential Measurement 54
3.9.2 Scanning Electron Microscopy 54
(SEM) Observation
3.9.3 In silico Docking by 55
Bioinformatic Tools
3.9.4 Molecular Dynamic (MD) 56
Simulations
3.10 GC/MS Analysis of Bioactive Compounds 56
3.11 Statistical Analysis 57

CHAPTER 4 RESULTS AND DISCUSSION
4.1 Total Phenolic and Tannins Determination 58
4.2 Antioxidant Assay 60
4.2.1 DPPH Free Radical Scavenging 60
Assay
4.2.2 Correlation Study of Phenolic 62
Content and Antioxidant Assay
4.3 Antibacterial Activities 64
4.3.1 Disc Diffusion Assay of Plant 64
Extracts
4.3.2 MIC and MBC Determination of 66
All Acetone Plant Extracts
4.3.3 Correlation Study of Phenolic 68
Content and Antibacterial
Activities
4.4 Fractionation of P. odorata Acetone 69
Extract
4.5 Biological Characterization of Fractions of *P. odorata* Acetone Extract

4.5.1 Antibacterial Activities of the Fractions

4.5.2 Zeta Potential Measurements of the Effective Fractions

4.5.3 Scanning Electron Microscopy (SEM) Observations of the Most Effective Fraction-Treated Bacteria

4.6 Structure Elucidation by GCMS Analysis

4.7 *In Silico* Docking and Simulation Studies of the Bioactive Compounds in the Most Effective Fraction

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

5.2 Recommendations

REFERENCES

APPENDICES A - F

LIST OF PUBLICATIONS AND PAPERS PRESENTED
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Antibiotics classifications</td>
<td>7</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>The mechanisms of resistance of common antibiotics</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>The human diseases associated with antibiotic resistant bacteria</td>
<td>19</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Classifications of B. subtilis</td>
<td>20</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Classifications of S. epidermidis</td>
<td>21</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Classifications of S. aureus</td>
<td>22</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Classifications of E. coli</td>
<td>25</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Classifications of P. putida</td>
<td>26</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Ethnomedical data of medicinal plants used</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>List of Malaysian medicinal plants, extracted with different solvents and their antibacterial actions against antibiotic-resistant bacteria</td>
<td>30</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>The classifications of A. galanga</td>
<td>31</td>
</tr>
<tr>
<td>Table 2.11</td>
<td>Ethnomedical data of A. galanga</td>
<td>32</td>
</tr>
<tr>
<td>Table 2.12</td>
<td>The classifications of C. asiatica</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.13</td>
<td>Ethnomedical data of C. asiatica</td>
<td>34</td>
</tr>
<tr>
<td>Table 2.14</td>
<td>The classifications of C. nutans</td>
<td>35</td>
</tr>
<tr>
<td>Table 2.15</td>
<td>Ethnomedical data of C. nutans</td>
<td>36</td>
</tr>
<tr>
<td>Table 2.16</td>
<td>The classifications of P. odorata</td>
<td>37</td>
</tr>
<tr>
<td>Table 2.17</td>
<td>Ethnomedical data of P. odorata</td>
<td>38</td>
</tr>
<tr>
<td>Table 2.18</td>
<td>Main classifications of phenolic and polyphenols</td>
<td>40</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>The values of total phenolic and tannins content of plant extracts</td>
<td>59</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>The IC$_{50}$ and AEAC values of plant extracts by DPPH free radical scavenging assay</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Inhibitory activity of plant extracts against antibiotic resistant bacteria by disc diffusion assay (mg/ml)</td>
<td>65</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>NIC, MIC and MBC values of acetone plant extracts</td>
<td>67</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>The correlation coefficient of total phenolic content and antibacterial activities of acetone plant extracts</td>
<td>69</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Inhibitory activity of the fractions by disc diffusion assay (mg/ml)</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>MIC and MBC values for H05 and H06 fractions against tested bacteria</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Zeta potential measurements of untreated and treated bacteria</td>
<td>76</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Phytocomponents identified in H05 fraction of P. odorata acetone extract</td>
<td>81</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>The probable activity and probable inactivity of compounds</td>
<td>83</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Lipinski’s Rule of Five screening data for H05 fraction derivatives</td>
<td>85</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Length of hydrogen bonds of H05 derivatives to the active site of PBP</td>
<td>87</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Hydrogen bonds of complexes</td>
<td>94</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>The Beta-Lactams mechanisms of action</td>
<td>8</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>General mechanisms of protein synthesis inhibitors</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Inhibition of DNA replication by Quinolones</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>The comparison of bacterial cell membrane in gram-positive and gram-negative bacteria</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>The disruption of cytoplasmic membrane by Polymyxins</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>The timeline of antibiotic resistance</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>The transmission of antibiotic resistance</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>The structure of gram-positive cell wall</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>The morphology of B. subtilis</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>The morphology of S. epidermidis</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>The morphology of S. aureus</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>The structure of gram-negative bacteria</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>The morphology of E. coli</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>The morphology of P. putida</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.15</td>
<td>The rhizome of A. galanga</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.16</td>
<td>The leaves of C. asiatica</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.17</td>
<td>The leaves of C. nutans</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.18</td>
<td>The leaves of P. odorata</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.19</td>
<td>Main classifications of essential oils in medicinal plants</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Methodologies of antibacterial and antioxidant activities of the medicinal plants</td>
<td>47</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>The calibration curve for standard gallic acid</td>
<td>59</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>The correlation curve between total phenolic content and antioxidant assay expressed in AEAC</td>
<td>63</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Flow chart of the fractionation scheme of P. odorata acetone extract</td>
<td></td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Scanning electron microscopic images of MRSA</td>
<td></td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Gas chromatography-mass spectrometry chromatogram of H05 fraction</td>
<td></td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Docking model of Penicillin-binding protein</td>
<td></td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>RMSD analyses of all H05 compounds and Cefotaxime complexes</td>
<td></td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>RMS fluctuation analyses of all H05 compounds and Cefotaxime complexes</td>
<td></td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Radius of gyration (Rg) analyses of all H05 compounds and Cefotaxime complexes</td>
<td></td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>SASA analyses of all H05 compounds and Cefotaxime complexes</td>
<td></td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>H05 derivatives bind with PBP (superimposed before and after simulation)</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. galanga</td>
<td>Alpinia galanga</td>
</tr>
<tr>
<td>C. asiatica</td>
<td>Centella asiatica</td>
</tr>
<tr>
<td>C. nutans</td>
<td>Clinacanthus nutans</td>
</tr>
<tr>
<td>P. odorata</td>
<td>Persicaria odorata</td>
</tr>
<tr>
<td>B. subtilis</td>
<td>Bacillus subtilis</td>
</tr>
<tr>
<td>S. epidermidis</td>
<td>Staphylococcus epidermidis</td>
</tr>
<tr>
<td>S. aureus</td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>MRSA</td>
<td>Methicillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>P. putida</td>
<td>Pseudomonas putida</td>
</tr>
<tr>
<td>TPC</td>
<td>Total Phenolic Content</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2-diphenyl-1-picrylhydrazyl</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimal Inhibitory Concentration</td>
</tr>
<tr>
<td>MBC</td>
<td>Minimum Bactericidal Concentration</td>
</tr>
<tr>
<td>GCMS</td>
<td>Gas Chromatography Mass Spectrometry</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>Inhibitory Concentration at 50%</td>
</tr>
<tr>
<td>AEAC</td>
<td>Ascorbic Acid Equivalent Antioxidant Capacity</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Preparation of gallic acid solution and ANOVA result on total phenolic and tannins content</td>
<td>133</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Preparation of ascorbic acid standard solution and ANOVA result for IC<sub>50</sub> and Ascorbic Acid equivalent antioxidant capacity (AEAC) values</td>
<td>135</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Correlation study of TPC and antioxidant assay by Pearson’s Correlation coefficient</td>
<td>137</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Antibacterial activities analyses for crude extracts and fractions</td>
<td>138</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Zeta potential measurements analysis for untreated and treated bacteria</td>
<td>188</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Identifications of bioactive compounds of H05 fraction by GCMS analysis</td>
<td>192</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Antibiotic-resistance is the ability of bacteria to withstand the effects of conventional antibiotics (Frieri et al., 2017). It is one of the biggest crises to global human health, as reported by World Health Organization (2018). Causing around 700,000 deaths each year, and estimated to increase to more than 10 million in 2050 (Dockrill, 2017). Besides, an estimation of $300 billion to more than $1 trillion per year will be lost globally for the healthcare costs, attributed by antibiotic resistance crisis (Founou et al., 2017). The overuse, inappropriate prescriptions and a lack of new drugs development are the main causes of this crisis (Crouch et al., 2015). Consequently, it has reduced the efficacy of antibiotics used to save millions of lives in the past decades. Therefore, new therapeutics is urgently needed.

For this reason, researchers have focused on medicinal plants to combat against resistant bacteria. They were initially used in traditional health care globally for centuries (Joshi et al., 2011). As example, diseases such as fever, diarrhoea, malaria, common cold, intestinal parasites and gastroenteritis were treated by the medicinal plants (Kumar et al., 2013; Li et al., 2015). Currently, many Malaysian medicinal plants are being extensively used in research for their wide pharmacological properties, including antioxidant and antibacterial activities.

Thus, in the present study, some of Malaysian medicinal plants were selected. The rhizome of Alpinia galanga (Langkuas) and the leaves of Centella asiatica (Pegaga), Clinacanthus nutans (Belalai Gajah) and Persicaria odorata (Kesum) were
used extensively in antioxidant, antimicrobial, anti-cancer and anti-inflammatory activities (Rao et al., 2010; Orhan, 2012; Yong et al., 2013; Yanpirat and Vajrodaya, 2015). These beneficial medicinal effects were detected due to the presence of phytochemicals (Godstime et al., 2014). According to a review by Compean and Ynalves (2014), phytochemicals are the chemicals produced by plants, which involved in their defence mechanisms. However, large percentages of these phytochemicals are still yet to be known. Their medicinal effects could be important strategies to understand the biological activities of medicinal plants to the well-being of humanity (Munita and Arias, 2016).

Therefore, the present study attempted to evaluate the antioxidant and antibacterial activities of Alpinia galanga (Langkuas), Centella asiatica (Pegaga), Clinacanthus nutans (Belalai Gajah) and Persicaria odorata (Kesum) extracts against antibiotic-resistant bacteria include gram-positive (Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus) and gram-negative (Escherichia coli, Pseudomonas putida). Further possible mechanisms of antibacterial actions were also attempted based on in vitro and in silico studies.

1.2 Problem Statement

The year 1950s to 1970s were considered as the golden era of antibiotics. The antibiotics were known as a magic bullet that selectively targeted the bacteria, without affecting the host (Govindappa et al., 2011). However, due to their irresponsible usage, resistant strains have rapidly increased (Barbieri et al., 2017). Recently, the development of resistant bacteria was directly proportional to the production of new antibiotics (Zaman et al., 2017). Every year, around 25,000 patients die in Europe, while others resulted in extra healthcare and losses of productivity (Crouch et al., 2015). The major antibiotic-resistance bacteria, S. aureus were the main cause of bacteraemia and infective endocarditis (Tong et al., 2015). The diseases could cause heart damage, infections in various organs, especially in the kidneys, and also leads to death (Rosa et al., 2014). A more serious
infection was associated with the resistant strain of *S. aureus*, known as MRSA (Salvador *et al.*, 2017). In 2011, 80,000 serious MRSA diseases, with 11,285 deaths were reported (Centers for Disease Control and Prevention, 2015).

Medicinal plants possess strong pharmacological activities, economic viability and low toxicity (Arya and Mehta, 2017). Previous literatures by Chomnawang *et al.* (2009), Jarrar *et al.* (2010) and Oskay *et al.* (2009) found that plant sources has significant antioxidant and antibacterial activities. Responding to the need for evidence regarding medicinal plants, the antioxidant and antibacterial properties of selected Malaysian medicinal plants were evaluated in this study. Therefore, medicinal plants could be used as new sources in designing potential antibacterial drugs.

1.3 Objectives of Study

1. To isolate and determine the antioxidant capacities of *A. galanga, C. asiatica, C. nutans* and *P. odorata* extracts by total phenolic, total tannins and DPPH-free radical scavenging activity.
2. To evaluate the antibacterial activities of plant extracts by disc diffusion, minimal inhibitory concentration (MIC) followed by minimum bactericidal concentration (MBC) assays.
3. To isolate and identify the bioactive compounds of the most effective plant extract by bioassay-guided fractionation and Gas Chromatography Mass Spectrometry (GCMS).
4. To determine the antibacterial effect of fractions on bacterial cell membrane by Zeta potential measurement and scanning electron microscopic (SEM) observations.
5. To visualize the interactions between the modelled bioactive compounds of plant extracts with receptor protein of human pathogenic bacteria by using bioinformatic tools.
1.4 Scope of Study

As referred to the objectives, the study was started with the plant extraction in 80% of hexane, 80% of acetone, 80% of ethanol and 100% of aqueous solvents. The crude extracts were screened for their total phenolic and tannins content of plant extracts using Folin-Ciocalteu method and antioxidant capacity by DPPH-free radical scavenging activity. The correlation of TPC with the antioxidant activity of plant extracts were demonstrated by Pearson’s Correlation Coefficient. Then, the antibacterial activities were conducted by disc diffusion assay, minimal inhibitory concentration (MIC) assay which followed by minimum bactericidal concentration (MBC) test against gram-positive (*B. subtilis*, *S. epidermidis*, *S. aureus*, MRSA) and gram-negative (*E. coli*, *P. putida*). Further studies on the bioactive compounds of the most effective plant extract were determined by bioassay-guided fractionation involving the column chromatography and thin-layer chromatography (TLC) techniques. Fractionates selected based on the weight of yield were evaluated by conducting a series of antibacterial assay. The bacterial surface charge of untreated and treated bacteria were measured by Zeta potential, followed by the visualization of membrane permeability by Scanning Electron Microscopy (SEM). SHIMADZU QP2010 Gas Chromatography Mass Spectrometry (GCMS) was used to identify the bioactive compounds of the most effective plant extract based on NIST Standard Reference Database. The sequence of identified bioactive compounds were then obtained from ChemSpider webpage in PDB format, or modelled by using ChemSketch free software. The same format of bacterial receptor protein, Penicillin binding protein (PBP) was obtained by RCSB webpage (PDB code: 1CEF). Further molecular docking and molecular dynamics (MD) simulations of the protein-ligand interactions were conducted by using a series of bioinformatic tools.
1.5 Significance of Study

The emergence of bacterial resistance to commonly available antibiotics has necessitated the search for new antibacterial agents. In Malaysia, there were many medicinal plants were reported to pose potential antibacterial activities. Hence, in this study, their phytochemicals were explored further. It was done to highlight the mechanisms and mode of antibacterial actions based on *in vitro* and *in silico* analyses. The study could provide a significant finding of the antibacterial potential, and explore their additional values as highly beneficial herbs.
REFERENCES

Ernawita. (2008). Bioassay-guided fractionation and identification of antioxidant and antimicrobial compounds from *Callistemon viminalis* (Gaertn.) G. Don. *School of Biological Sciences*.

Lee, Y., Lee, J., Kim, S., Lee, S., Han, J., Heu, W., Park, K., Kim, H. J., Cheong, H.,
Thermodynamic Stability of Modular Proteins Using Molecular Modelling
Fresh garlic extract enhances the antimicrobial activities on antibiotics on
natural antioxidants in foods for the treatment of diseases. *Food Science and
Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic
Loeschcke, A. & Thies, S. (2015). *Pseudomonas putida* – A versatile host for the
production of natural products. *Applied Microbiology and Biotechnology* 99:
6197-6241.
Luo, Y. & Helmann, J. D. (2012). Analysis of the role of *Bacillus subtilis* in β-lactam
resistance reveals an essential role for c-di-AMP in peptidoglycan
Maciel, M. V., Morais, S. M., Bevilaqua, C. M. L., Silva, R. A., Barros, R. S., Sousa,
composition of *Eucalyptus* spp. essential oils and their insecticidal effects on
Investigations of Methanol Leaf Extracts of *Randia spinosa* Using Column
Chromatography, HPTLC and GC-MS. *Natural Products Chemistry and
Research* 4:2.
Antimicrobial activity of *Albizia gummifera* (J.F.Gmel.) C.A.Sm leaf extracts
136.

Panawala, L. (2017). Difference between gram positive and gram negative bacteria. *Pediea*

