ESTIMATION OF STATURE FROM HAND AND HANDPRINT MEASUREMENTS IN THE MONOETHNIC MALDIVIAN POPULATION IN MALDIVES

IHSAN MOHAMED

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Science

Faculty of Science
Universiti Teknologi Malaysia

FEBRUARY 2019
This dissertation is dedicated to Kaisan Ihsan Mohamed, who is my true strength in everything I do and keep myself to never give up all the way. One motto I held onto for you, everything happens for a good reason, knowledge will teach you to find the good In Sha Allah. My son, if not for you I would have quit this before the start.
ACKNOWLEDGEMENT

Alhamdullillah, all praises to Allah the Most Gracious and the Most Merciful for giving me the strength, inspiration and idea and His blessing in completing this dissertation. This dissertation would not have been possible to complete without the guidance and help of several individuals who contributed in their knowledge, expertise, experience and extended their valuable assistance for this study.

I am grateful to the Universiti Teknologi Malaysia for giving me the opportunity to continue my intellectual journey and provided support through the use of facilities and through staff member’s supervision and advice. These two years have enriched my life and helped me to realize my dreams and set higher goals.

I would like to express my gratitude to Dr. Naji A. Mahat my supervisor and Chief Station Inspector of Police Mohamed Saleem (Maldives) my co-supervisor for their guidance during the whole work process, my wife, Hawlath Naseem, who assisted me in collecting samples from the female subjects. Nuranis Raihan Binti Zulkifly who was there to assist me in data analysis, method, planning etc. wherever required. I can never thank them enough for their undivided devotions in guiding and inspiring me to do my best throughout the dissertation. Thank you to all the participants who volunteered in this research project. Maldives Police Service (specially, Ihthisam sir, Adhil Sir, Musthafa Sir, Hassan Sir, Abdullah Rasheed Sir), Villa College (specially Mohamed Nihad, Areesha), Vilimale Hospital (Alim Mohamed), who gave their unconditional support for making my sampling process to be completed in time by providing access to their infrastructure and employees. Without their support this study would not have been possible.

Finally, my Family and friends. Alhamdhulillah, felt the real value of family and friends, family for their moral support. Friends, Najah shareef, Khalisa Mohamed, Fathmath Nuzla, Hawwa Abdullah, Mohamed Nihad, Alim Mohamed, Moosa Rashwan for their support as true friends. Mr. Mohd Nor Azlan Ab.Rashid for helping me to translate the Abstrak to Bahasa Melayu. Thank you all.
ABSTRACT

Estimation of stature among a selected specific population may prove useful via anthropometric measurements of hand and handprints. Since studies conducted in several monoethnic countries (e.g. Korea, Bangladesh and China) have reported about its usefulness, and because similar study in Maldives remains unreported, this present research that evaluated such aspect merits forensic significance. Using stratified random sampling, this present research examined the standing height as well as 22 anthropometric measurements from each hand and handprints collected from consented male (n = 191) and female (n = 193) Maldivians living in Maldives. The data were analysed using both the univariate and multivariate statistical analyses for interpreting the obtained anthropometric measurements and its association in estimating stature. The outcomes of simple linear regression analysis provided, significant (p < 0.05) and a moderate to highly correlated (range: 0.61 – 0.70) regression equations for hand lengths of both hands and handprints of Maldivian males and females for accurate estimation of their stature. The precision of the estimated stature (Standard Error of Estimate, SEE) using the derived equations of this research ranged between 3.82 - 5.76 cm. Furthermore, stepwise multiple regression analysis provided improved accuracy to the equation (SEE: 3.82 - 5.76 cm). The data gathered here are the first of its kind for the Maldivian population and may prove forensically relevant in crime scene investigation and disaster victim identification, a pragmatic approach for estimating stature from forensic anthropological means.
ABSTRAK

Anggaran ketinggian dalam kalangan populasi yang spesifik menggunakan ukuran antropometrik tangan dan cap tangan berkemungkinan berguna. Memandangkan kajian dalam kalangan negara monoetnik (seperti Korea, Bangladesh dan China) telah melaporkan kebergunaannya, dan kajian yang serupa di Maldives tidak pernah dilaporkan, kajian terbaharu ini adalah signifikan dalam bidang forensik. Dengan menggunakan persampelan rawak berstrata, kajian ini memeriksa ketinggian dan juga 22 ukuran antropometrik daripada setiap tangan dan cap tangan lelaki (n = 191) dan perempuan (n = 193) rakyat Maldives yang tinggal di Maldives. Data analisis dilakukan menggunakan analisis statistik univariat dan multivariat bagi memahami ukuran antropometrik yang dicerap dan kaitannya dalam menganggar ketinggian. Hasil daripada analisis regresi linear menunjukkan kaitan signifikan (p < 0.05) yang sederhana dan tinggi (Julat r: 0.61 – 0.70) bagi ukuran panjang tangan dan cap tangan dalam kalangan rakyat Maldives lelaki dan perempuan bagi menganggar ketinggian mereka secara tepat. Kepersisan dalam menganggar ketinggian (Anggaran Kesilapan Standard, AKS) menggunakan persamaan yang terhasil adalah sekitar 3.82 - 5.76 cm. Tambahan pula, analisis regresi berganda memberikan ketepatan yang lebih baik dalam persamaan yang terhasil (AKS: 3.82 - 5.76 cm). Data yang dicerap ini merupakan data yang pertama bagi populasi Maldives dan berkemungkinan relevan secara forensiknya dalam penyiasatan tempat kejadian jenayah serta pengenalpastian mangsa bencana, suatu pendekatan pragmatik bagi menganggar ketinggian menerusi kaedah antropologi forensik.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Problem Background
1.2 Problem Statement
1.3 Scope of study
1.4 Significance of the Study
1.5 Objectives and Hypothesis

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction
2.2 Forensic Anthropologist in Court
2.3 Anthropometric Analysis
2.4 Stature Estimation
2.5 Relationship Between Stature to Hand and Handprints
2.6 Bilateral Asymmetry
2.7 Maldivian Population in Maldives
2.8 Common Statistical Approach for Forensic Anthropology
CHAPTER 3 RESEARCH METHODOLOGY

3.1 Instruments, Apparatus and Chemicals

3.2 Experimental Design and Sample Size

3.3 Measurements and Acquisition of Handprint

3.4 Data Analysis

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Prevailing Knowledge on the Use of Anthropological Approach for Estimating Stature

4.2 Descriptive Statistics

4.3 Bilateral Asymmetry

4.4 Comparisons Between Hand and Handprint Measurements

4.5 Simple Linear Regression

4.6 Multiple Regression

CHAPTER 5 CONCLUSIONS AND FUTURE WORKS

5.1 Conclusions

5.2 Limitations and Future Works

REFERENCES

Appendix A-C
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Definition of the hand and handprint measurements used in this present research</td>
<td>24</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Hand (a) and handprint (b) measurements between male and female Maldivians.</td>
<td>27</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Descriptive statistics and associations between hand (a) and handprint (b) measurements (in cm) versus stature (in cm) in male and female Maldivian subjects.</td>
<td>29</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Bilateral asymmetry for left and right measurements for hand (a) and handprint (b) in male and female Maldivian subjects.</td>
<td>32</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Comparison between hand and handprints measurement for male (a) and female (b) Maldivian subjects.</td>
<td>35</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Linear regressions with standard error of the estimate (SEE) for estimating stature (in cm) from left (a) and right (b) hands measurements of Maldivian subjects.</td>
<td>38</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Linear regressions with standard error of the estimate (SEE) for estimating stature (in cm) from left (a) and right (b) handprints measurements of Maldivian subjects.</td>
<td>40</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Multiple regressions with standard error of the estimate (SEE) for estimating stature (in cm) from hands (a) and handprints (b) measurements of Maldivian subjects.</td>
<td>43</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Conceptual framework of this research. Dotted arrow indicates the present research on Maldivian population in Maldives.</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Equation for calculating sample size</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Table for sample size directly for defined population size</td>
<td>16</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Map of Maldives, showing the seven provinces and Male city where subjects were recruited</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Flowchart of the research showing sampling, data collection, analysis and regression equations derived</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Hand anthropometric measurements</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Handprint anthropometric measurements</td>
<td>23</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

DNA - Deoxy-ribo Nucleic Acid
U. S - United States
SEE - Standard Error of Estimation
SD - Standard Deviation
cm - Centimetre
HS - Highly Significant
S - Significant
NS - Not Significant
HL - Hand length
HB - Hand Breadth
HP - Half Print
A - Thumb Finger
B - Index Finger
C - Middle Finger
D - Ring Finger
E - Little Finger
A1 - Thumb Finger Distal Phalange
A3 - Thumb Finger Proximal Phalange
B1 - Index Finger Distal Phalange
B2 - Index Finger Medial Phalange
B3 - Index Finger Proximal Phalange
C1 - Middle Finger Distal Phalange
C2 - Middle Finger Medial Phalange
C3 - Middle Finger Proximal Phalange
D1 - Ring Finger Distal Phalange
D2 - Ring Finger Medial Phalange
D3 - Ring Finger Proximal Phalange
E1 - Little Finger Distal Phalange
E2 - Little Finger Medial Phalange
E3 - Little Finger Proximal Phalange
LIST OF SYMBOLS

P - Significance
R - Correlation coefficient
<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Informed Consent</td>
<td>53</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Questionaire Form</td>
<td>57</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Collected Data</td>
<td>59</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Problem Background

To solve criminal cases, forensic anthropologists primarily examined skeletonized remains for estimating several useful traits that can be used for individualization (Gordon & Styne, 2012; Ishak et al., 2012; Zulkifly et al., 2018). Beside the conventional crime scene investigations, a great deal of forensic anthropology principles and approach have been utilized for investigating cases involving living individuals, as well as terrorism activities (Zulkifly et al., 2018). In this context, previous researchers have indicated about the common discovery of hand and footprints at crime scenes and suggested that human traits like stature and weight can be estimated from several anthropometric parameters of handprints and footprints (Ahemad & Purkait, 2011; Moorthy et al., 2013).

Researchers have indicated that the process of narrowing down the pool of suspects can be substantially improved when anthropological parameters like stature are considered (Hisham et al., 2012). Upon completion, positive identification using suitable traditional markers like DNA can later be employed for ascertaining individuality (Komar & Buikstra, 2008). DNA analysis as the first step of identification of an unknown body or dismembered body parts is not affordable to many of the countries around the world, regardless of it being highly accurate. Factors such as the inadequate number of trained people, well-equipped laboratories, financial restrictions as well as lengthy analytical process have been attributed as major limitations to the use of DNA technology for screening purposes. Therefore, despite its class characteristic property, forensic anthropological approach continues to become relevant in forensic investigations (Cunha et al., 2006; Kanchan et al., 2010a).
Being an island nation without land mass borders to its closer neighbouring countries (viz. India and Sri Lanka), Maldives is one of the biggest tourist attraction countries in the South Asian region with about 344000 monoethnic inhabitants (Ghosh, 2000; Statistics, Treasury, & Male’, 2017). Since there is no land mass border, trespassing activities by potential criminals/terrorists via the oceans cannot be ignored. Instances like invasion by the Tamil Tigers in 1988 (Ferdinando, 2012) and tsunami in 2004 (Maldives Planning and National Development, MPND, 2007) can negatively affect the economy of Maldives. In view of its status as an important tourist destination, safeguarding peace and harmony has become one of the priorities of the Maldivian government. This is reflected by specific focus to equip the Forensic Service Department of the Maldives Police Service with relevant forensic instruments and expertise, especially for identifying victims and criminals (Retired Assistant Commissioner of Police Hussain Adam, personal communication). Unfortunately, application of forensic anthropological approach has never been reported, limiting its potential for crime solving and victim identification in this country.

1.2 Problem Statement

Generalization of mathematical algorithms for anthropological assessments derived for a specific population to other populations may lead to inaccurate inferences due to variations in nutrition and health care facility conditions (Cardoso & Gomes, 2009) as well as genetic factors (Nunez & Perez, 2015). Previous researchers have reported about several studies conducted on the use of hand (Sanli et al., 2005; Krishan & Sharma, 2007; Rastogi et al., 2008; Agnihotri et al., 2008; Habib & Kamal, 2010; Ahemad & Purkait, 2011; Kanchan et al., 2010; Tang et al., 2012; Zhang et al., 2017; Kim & Yun, 2018) as well as hand prints (Ilmu & Indonesia, 2016; Kornieieva & Elelemi, 2016)(Ishak et al., 2011; Jee & Yun, 2015; Ilmu & Indonesia, 2016; Kornieieva & Elelemi, 2016; Zulkifly et al., 2018). Considering the vulnerability of Maldives to international crimes and Natural disasters, and because the development of forensic technology in this country is at its nascent stage, specific research to provide empirical data for applying forensic anthropological assessments reported here, deserves forensic consideration. For instance, during 2004 tsunami, Maldives
experienced the heaviest loss to the economy and disturbance to the lives of Maldivians through the deaths and damages to their homes (MPND, 2007). Also, the 1988 terrorist attack by Tamil Tigers had killed 19 Maldives and left several injured (Ferdinando, 2012). These two examples demonstrated the vulnerability of Maldives to international crimes and natural disasters necessitating the development of forensic anthropological means for crime scene investigations as well as disaster victim identification. The conceptual framework of this present research is provided in Figure 1.1.

Figure 1.1 Conceptual framework of this research. Dotted arrow indicates the present research on Maldivian population in Maldives.
1.3 Scope of study

This present research examined 384 Maldivian subjects (191 males, 193 females) from various locations in Maldives. Upon measuring the different traits of hand and handprints on each consented subject (aged 18 - 60), estimation of stature and weight was made by regressing the data using the appropriate algorithms. For reducing biases, pregnant individuals, those having any diseases and/or injuries that may affect stature, hand morphology as well as metabolic and/or developmental disorders were excluded from participating in this present research.

1.4 Significance of the Study

Because of the frequent observation of handprints at crime scenes, as well as dismembered limbs during mass disasters and/or terrorism attacks, this present research that reported, for the first time, empirical data for estimating stature and weight from hand and handprints specifically for the often-neglected Maldivian population, merits forensic significance. The data gathered in this present research would serve as a means for excluding the innocents from the list of suspects, and hence, optimizing the available resources for identifying perpetrators during forensic search. The fact that the data would be indigenous to Maldives, they would pave the way for further exploration in this aspect in the South Asian region.

1.5 Objectives and Hypothesis

This present research was aimed at examining the feasibility of estimating human stature from hand and handprints among male and female Maldivians in Maldives for its practical value in forensic investigation. Considering the pertinence of this present research for the Maldivian population in Maldives, the following objectives were articulated:
1. To associate the measurements of hand and handprints with that of stature among males and females by providing suitable mathematical algorithms.

2. To compare the bilateral asymmetry in hand and handprint measurements between male and female subjects.

It was hypothesized that:

1. Significant association between the traits of hands and handprints with that of stature shall be observed among male and female subjects.

2. Significant differences in the bilateral asymmetry in hand and handprint measurements between male and female subjects were expected.
REFERENCES

Agrawal, J., Raichandani, L., Kataria, S. K., & Raichandani, S. (2013). Estimation of
Stature from Hand Length and Length of Phalanges. Journal of Evolution of
Medical and Dental Science, 2(50), 9651-9656.

Ahemad, N., & Purkait, R. (2011). Estimation of Stature from Hand Impression:

Indian Society and Politics. SAGE Publications. Retrieved from
https://books.google.com.my/books?id=AeuICwAAQBAJ

Indian Journal of Anaesthesia, 60(9), 662–669. https://doi.org/10.4103/0019-
5049.190623

Atolls of Maldives (http://www.atollsofmaldives.gov.mv/) accessed 20th January
2019

Bhatnagar D. P., Thapar S. P., & Batish M. K. Identification of Personal Height from
Somatometry of Hands in the Punjabi Males. Forensic Science International,
24(1984), 137-141.

Journal of Forensic and Legal Medicine. 15, 505-509.

NJ. Prentice Hall.

Inhabited the Modern Portuguese Territory from the Mesolithic to the late 20th

https://doi.org/10.1016/j.forsciint.2011.09.010

of Forensic Sciences and Forensic Medicine, 1(3), 289–298. https://doi.org/10.12816/0026461

Estimation of Stature from the Length of the Sternum in South Indian females.

