ELECTROMEMBRANE EXTRACTION AND ELECTROCHEMICAL MEASUREMENT SYSTEM FOR HEAVY METAL IONS DETECTION IN AQUATIC ENVIRONMENTAL SAMPLES

HAMSAWAHINI KUNASHEGARAN

UNIVERSITI TEKNOLOGI MALAYSIA
ELECTROMEMBRANE EXTRACTION AND ELECTROCHEMICAL MEASUREMENT SYSTEM FOR HEAVY METAL IONS DETECTION IN AQUATIC ENVIRONMENTAL SAMPLES

HAMSAWAHINI A/P KUNASHEGARAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

AUGUST 2018
In the name of God, The greatest and The kindest of all,
I dedicate this thesis

Specially to my Husband, Dinesh
For not giving up on me and tolerating my madness

My beloved daughter, Varnikaa
For reminding me of the goodness in this world and inspiring me to be the better version of myself

Prof. Dr. Rahmalan Ahamad, Prof. Dr. Abdull Rahim Bin Mohd Yusuff and Dr. Sathishkumar Palanivel
For guidance, knowledge, patience and trust on me

My beloved Amma and Appa
For always believed in me

My siblings

The whole family

For their endless love, support, encouragement, prayer for my success in completing the journey of my research
ACKNOWLEDGEMENT

First and foremost, I would like to thank God for His blessing and for the strength that lead me this whole journey of this research. I would like to express my deepest gratitude to my current and former supervisors, Prof. Dr. Rahmalan Ahamad and Prof Dr. Abdull Rahim Bin Mohd Yusuf, respectively for their guidance, knowledge, motivation, patience and trust on me throughout this whole work.

My gratitude is also extended to Dr. Sathishkumar Palanivel for his guidance and advice while writing my research papers. My special thanks to Prof. Datuk Dr. Ahmad Fauzi Bin Ismail and his research team members for their technical assistance during my working in Advanced Membrane Technology Research Centre (AMTEC).

Appreciation is also addressed to many other laboratory officers in the Department of Chemistry, Faculty Science their help and assistance. I also appreciated the financial assistance provided by Ministry of Higher Education (MyPhD) during my Ph.D. candidature.

Finally, I am greatly indebted to my parents, siblings and husband for their endless love, concern and encouragement all these years. I was blessed to have their supports and spiritual strength to complete my research and thesis writing. There is no better phrase than “Thank You for Everything and May God Bless all of you.”
ABSTRACT

Water contamination is a worldwide problem which deserves attention due to its negative impact on ecosystem, human health as well as economic growth. Heavy metals are a group of the pollutants that have received particular attention due to their high toxicity even at concentration as low as parts per billion (ppb). Technology advancement in the field of separation and detection of heavy metals has introduced sensitive and selective analytical instruments for real aquatic environmental samples. However, real sample matrices can reduce the quality of results. In modern analytical chemistry, there is a high demand for accurate quantification of trace and ultra-trace of heavy metals from real aqueous samples. In the present study, electromembrane extraction (EME) and electrochemical techniques were combined to develop effective electrodes which can separate, pre-concentrate and determine heavy metals such as Pb(II), Cr(VI) and Cd(II) in real aqueous samples. Electrochemically reduced graphene oxide-graphite reinforced carbon (ErGO-GRC) was utilised in conjunction with square wave anodic stripping voltammetry (SWASV) for the determination of Pb(II). Meanwhile, selective and sensitive determinations of Cr(VI) was carried out using ex-situ prepared nafion-coated antimony film on graphite reinforced carbon (NSbFE-GRC) by square wave adsorptive stripping voltammetry (SWAdSV) in the presence of diethyltriamine pentacetic acid (DTPA). Ex-situ prepared NSbFE-GRC was also used for simultaneous determination of Pb(II) and Cd(II) by SWASV. Simple polyvinylidene fluoride (PVDF) flat sheet membranes were synthesised and characterised in order to combine these developed electrochemical techniques with EME. Heavy metals were extracted from an aqueous sample solution into an acidic acceptor phase in the lumen of a PVDF membrane bag by the application of voltage across the supported liquid membrane (SLM), consisting of organic solvent and complexing carriers. Parameters affecting the EME were optimised for heavy metals. The PVDF–ErGO–GRC electrode system attained enrichment factors of 40 times and 80% extraction with relative standard deviation ($n = 5$) of 8.3% for Pb(II). Good linearity in the range of 0.25-2 nM was obtained with correlation coefficient of 0.999. The Pb(II) ions detection limit of PVDF–ErGO–GRC electrode was 0.09 nM. Meanwhile, the PVDF–NSbFE–GRC system attained enrichment factors of 86.6 times, 95.6% extraction, and good linearity in the range of 10-60 pM with correlation coefficient of 0.9933. Furthermore, the limit of Cr(VI) detection was found to be around 0.83 pM for the developed PVDF–NSbFE–GRC electrode. On the other hand, the PVDF–NSbFE–GRC was able to attain enrichment factors of 49.3 and 68.4 times, 82.6% and 114.0% extractions, and good linearity ranging from 2 to 10 pM with correlation coefficients of 0.9953 and 0.9883 for Pb(II) and Cd(II), respectively. Furthermore, the limits of detection for Pb(II) and Cd(II) were found to be around 0.65 pM and 0.60 pM, respectively. A chargeable battery operated portable EME system was developed for quantitative determination of heavy metals. The newly developed single setup electrochemical system was applied to the analysis of real aqueous samples such as tap water, industrial waste water, river water and sea water, and it was able to extract with percentage of extraction in the range of 78.7 -103.0% compared to commercially available direct current power supply.
Pencemaran air adalah masalah di seluruh dunia yang patut diberi perhatian disebabkan oleh impak negatif terhadap ekosistem, kesehatan manusia serta pertumbuhan ekonomi. Logam berat merupakan satu kumpulan pencemar yang telah menerima perhatian khusus kerana ketoksikannya yang tinggi walaupun pada kepekatan serendah bahagian per bilion (ppb). Kemajuan teknologi dalam bidang pemisahan dan pengesanan logam berat telah memperkenalkan instrumen analisis yang peka dan selektif bagi sampel persekitaran akuatik. Walau bagaimanapun, matriks sampel sebenar boleh mengurangkan kualiti hasil. Dalam kimia analisis moden, terdapat permintaan yang tinggi bagi kuantifikasi tepat logam berat surih dan ultra surih daripada sampel akuueus sebenar. Dalam kajian ini, teknik pengekstrakan elektromembran (EME) dan elektrokimia digabungkan untuk menghasilkan elektrod yang boleh memisahkan, pra-memekatkan dan menentukan logam berat misalnya Pb(II), Cr(VI) dan Cd(II) daripada sampel akuueus sebenar. Karbon diperkuatkan grafin oksida-grafit secara penurunan elektrokimia (ErGO-GRC) telah digunakan sempena dengan voltametri pelucutan anod gelombang segiempat (SWASV) bagi penentuan Pb(II). Sementara itu, penentuan selektif dan sensitif Cr(VI) dijalankan menggunakan filem antimon yang dilapisi dengan nafion pada karbon diperkuatkan grafit (NSbFE-GRC) yang disediakan dengan voltametri pelucutan penjerapan gelombang segiempat (SWAdSV) dengan kehadiran asid dietiltriamina pentasetik (DTPA). NSbFE-GRC yang disediakan secara ex-situ juga digunakan untuk penentuan Pb(II) dan Cd(II) dengan SWASV. Membran lembaran rata polivinilidena fluorida (PVDF) yang mudah telah disintesis dan dicirikan untuk menggabungkan teknik elektrokimia yang dibangunkan itu dengan EME. Logam berat telah diekstrak daripada larutan sampel akuueus ke dalam fasa penerima berasid di dalam lumen beg membran PVDF dengan menggunakan voltan merentasi membran ceair disokong (SLM), yang terdiri daripada pelarut organik dan pembawa pengkompleks. Parameter yang mempengaruhi EME telah dioptimumkan bagi logam berat. Sistem elektrod PVDF-ErGO-GRC mencapai faktor pengayaan 40 kali dan pengekstrakan 80% dengan sisihan piawai relatif (n = 5) 8.3% bagi Pb(II). Lineariti yang baik dalam julat 0.25-2 nM telah diperolehi dengan pekali korelasi 0.999. Had pengesanan ion Pb(II) elektrod PVDF-ErGO-GRC adalah 0.09 nM. Sementara itu, sistem PVDF-NSbFE-GRC mencapai faktor pengayaan 86.6 kali, pengekstrakan 95.6%, dan lineariti yang baik dalam julat 10-60 pM dengan pekali korelasi 0.9933. Tambahan pula, had pengesanan Cr(VI) didapati sekitar 0.83 pM bagi elektrod PVDF-NSbFE-GRC yang dibangunkan. Sebaliknya, PVDF-NSbFE-GRC telah dapat mencapai faktor pengayaan 49.3 kali, pengekstrakan 82.6% dan 114.0%, dan lineariti yang baik dari 2 hingga 10 pM dengan pekali korelasi masing-masing 0.9953 dan 0.9883 bagi Pb(II) dan Cd(II). Tambahan pula, didapati had pengesanan bagi Pb(II) dan Cd(II) masing-masing adalah sekitar 0.65 pM dan 0.60 pM. Sistem EME mudah alih yang menggunakan bateri boleh dicas semula telah dibangunkan bagi penentuan kuantitatif logam berat. Sistem elektrokimia persediaan tunggal baharu yang dibangunkan itu telah digunakan untuk analisis sampel akuueus sebenar misalnya air paip, air sisa industri, air sungai dan air laut, dan ia dapat mengekstrak dengan peratus pengekstrakan dalam julat 78.1-103.0% berbanding pembekal arus terus komersial.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxx</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxxv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APENDICES</td>
<td>xxxvi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Background of Research 1
1.2 Problem Statement 2
1.3 Objectives of the Study 4
1.4 Scope of the Study 4
1.5 Significance of Study 6
1.6 Novelty of Study 6
1.7 Thesis Outline 7

2 LITERATURE REVIEW 8
2.1 Green Separation and Pre-concentration 8
Techniques
2.1.1 Microextraction 8
METHODOLOGY

3.1 Chemical and Reagents

<table>
<thead>
<tr>
<th>Details</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britton Robinson Buffer (BRB), 0.04M</td>
<td>75</td>
</tr>
<tr>
<td>Sodium Hydroxide (NaOH), 0.1M</td>
<td>75</td>
</tr>
<tr>
<td>Diethyltriamine Pentacetic (DTPA), 0.1M</td>
<td>75</td>
</tr>
<tr>
<td>potassium Hydroxide (KOH), 2.0M</td>
<td>75</td>
</tr>
</tbody>
</table>

3.2 General Instrumentation

3.3 Preparation of Stock Solution

3.3.1 Britton Robinson Buffer (BRB), 0.04M

3.3.2 Sodium Hydroxide (NaOH), 0.1M

3.4 Liquid-Liquid Extraction
3.4.1 Solubility of Complexing Carrier in Organic Solvent 76
3.4.2 Liquid-liquid Extraction Experiments 76
3.4.3 Optimization of Experimental Parameters
 3.4.3.1 Effect of pH and Type of Complexing Carrier 77
 3.4.3.2 Effect of Organic Solvents 78
 3.4.3.3 Effect of Stripping Phase 79
3.5 Preparation of Electrochemically Reduce Graphene Oxide Modified Graphite Reinforcement Carbon 80
 3.5.1 Instrumentation 81
 3.5.2 Preparation of Exfoliated Graphene Oxide 81
 3.5.3 Electrode Preparation 82
 3.5.4 Electrochemical Analysis 82
3.6 Preparation of Nafion Coated Antimony Film Modified Graphite Reinforcement Carbon 83
 3.6.1 Instrumentation 83
 3.6.2 Electrode Preparation 83
 3.6.3 Electrode Electrochemical Analysis 84
3.7 Effects of Coexisting Ions on Detecting Pb(II), Cd(II) and Cr(VI) 85
3.8 Calibration Curve 85
3.9 Application of ERGO-GRC and NSbFE-GRC electrode to Real Water Samples 85
3.10 Fabrication and Characterization of PVDF Membrane 86
3.11 Preparation of agarose gel 86
3.12 Electromembrane Extraction 87
3.13 Application of PVDF-ERGO-GRC and PVDF NSbFE-GRC Electrode to Real Water Samples 89
3.14 Development of Portable and Chargeable EME Sampling Device

4 PRELIMINARY STUDIES AND VOLTAMMETRY TECHNIQUES

4.1 Liquid – Liquid Extraction
 4.1.1 Selection of Organic Solvent
 4.1.2 Liquid-Liquid Extraction of Pb(II)
 4.1.3 Liquid-Liquid Extraction of Cr(VI)
 4.1.4 Liquid-Liquid Extraction of Cd(II)

4.2 Electrochemical Analysis
 4.2.1 Electrochemically Reduced Graphene Oxide
 4.2.1.1 FE-SEM Analysis
 4.2.1.2 Fourier Transform Infrared Spectrometer (FTIR) of Graphene Oxide
 4.2.1.3 Characterisation of Electrode
 4.2.1.4 Electrochemical Behaviour of Pb(II) at ErGO-GRC
 4.2.1.5 Effect of Different GRC Grade on ErGO Modification
 4.2.1.6 Effect of constant applied cathodic potential and reduction time
 4.2.1.7 Effect of pH Time
 4.2.1.8 Effect of Drop-Cast Drying
 4.2.1.9 Reproducibility, Stability and Selectivity
 4.2.1.10 Application of ErGO-GRC Electrode in Real Sample Analysis
 4.2.2 Nafion-Coated Ex-situ Antimony Film
modified Graphite Reinforced Carbon (NSbFE-GRC) for Simultaneous Detection of Pb(II) and Cd(II)

4.2.2.1 FE-SEM Analysis 135
4.2.2.2 Characterisation of NSbFE-GRC 136
4.2.2.3 Effect of Sb(III) Concentration, Electrolysis Time Plating Potential and Concentration of HCl 138
4.2.2.4 Effect of Accumulation Potential 141
4.2.2.5 Effect of Accumulation Time 142
4.2.2.6 Effect of Frequency, Step Potential and Pulse Amplitude 142
4.2.2.7 Reproducibility, Stability and Selectivity 143
4.2.2.8 Application of NSbFE-GRC Electrodes to Real Sample Analysis 145

4.2.3 Nafion-Coated Ex-situ Antimony Film modified Graphite Reinforced Carbon (NSbFE-GRC) for Selective Detection of Cr(VI)

4.2.3.1 Characterisation of NSbFE-GRC 147
4.2.3.2 Effect of Sb(III) Concentration, Plating Time and Plating Potential 149
4.2.3.3 Effect of pH 152
4.2.3.4 Effect of 153
Diethyltriaminepentacetic Acid (DTPA) Concentration

4.2.3.5 Effect of KNO₃ 154
4.2.3.6 Effect of Adsorptive Potential (E_{ads}) 155
4.2.3.7 Effect of Adsorptive Time (t_{ads}) 156
4.2.3.8 Effect of Frequency, Step Potential and Pulse Amplitude 157
4.2.3.9 Reproducibility, Stability and Selectivity 157
4.2.3.10 Application of NSbFE-GRC Electrodes to Real-Life Sample Analysis 160
4.3 Summary 161

5 ELECTROMEMBRANE AND PORTABLE POWER SUPPLY DEVICE 162

5.1 Electromembrane Extraction 162
 5.1.1 Influence of Membrane Composition on Extraction Voltage 163
 5.1.1.1 The influence of membrane composition on extraction voltage 167
 5.1.2 Effect of Organic Solvents 169
 5.1.3 Effect of pH on donor phase 172
 5.1.4 Effect of carrier concentration in 1-octanol 175
 5.1.5 Effect of Stirring Rate 178
 5.1.6 Effect of Extraction Time 180
 5.1.7 Effect of Volume Ratio of Acceptor Phase to Donor Phase 183
5.1.8 Effect of Agarose gel 185
5.1.9 Analytical performance 188
 5.1.9.1 Calibration Graph for Selective Determination of Cr(VI) 189
 5.1.9.2 Calibration Graph for Selective Determination of Pb(II) 192
 5.1.9.3 Calibration Graph for Simultaneous Detection of Pb(II) and Cd(II) 194
5.2 Portable Power Supply Device (PPSD) 198
 5.2.1 Application PPSD on Selective EME 200
 5.2.2 Application PPSD on Simultaneous EME 201
5.3 Summary 204

6 CONCLUSION AND RECOMMENDATIONS 205
6.1 Conclusion 205
6.2 Recommendations 206

REFERENCES 208
Appendices A-G 242-248
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Application of EME for heavy metal separation and pre-</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>concentration</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Maximum permissible levels of some heavy metals in</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>drinking water regulated or recommended by WHO and EPA</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>Previous reports on analytical spectroscopic technique</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>for heavy metals determination</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>Voltammetric techniques applied for environmental</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>applications</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>Previous reports on Bare electrode (Unmodified) for heavy</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>metal ion detection</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>The property and advantage of modifier on the surface</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>of working electrodes</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Previous reports on Mercury film electrode for heavy</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>metal ion detection</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Previous reports on Bismuth film electrode for heavy</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>metal ion detection</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Recent reports on antimony film electrode for heavy</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>metal ion detection</td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Recent reports on Copper, lead, tin, gallium film</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>electrodes for heavy metal ion detection</td>
<td></td>
</tr>
<tr>
<td>2.11</td>
<td>The property and advantages of graphene and graphene</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>oxide on the surface of working electrodes</td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>Recent reports on reduced graphene oxide modified</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>electrode for heavy metal ion detection</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Extraction conditions for each metal ions of interest</td>
<td>78</td>
</tr>
</tbody>
</table>
3.2 Operating condition for each metal to analyse the effect of organic solvents 79
3.3 Operating condition for each metal to analyse the effect of stripping phase 80
3.4 The operating conditions in EME optimisation and electrochemical determination 91
3.5 The parameters involved for simultaneous separation and pre-concentration of Pb(II), Cr(VI) and Cd(II) 94
4.1 Miscibility of organic solvent with selected complexing carriers 96
4.2 Viscosity, surface tension and solvent density of toluene, NPOE, 1-Octanol (Dzygiel and Wieczorek, 2010) 97
4.3 Operating conditions for Pb(II) extraction studies 98
4.4 The operating condition of Cr(VI) for ICPMS 103
4.5 Operating Conditions for cadmium (II) extraction studies 110
4.6 Effect of HCl concentration on GO film reduction and C/O ratio 127
4.7 Comparison of different electrodes for the determination of Pb(II) 132
4.8 Interference for determining 1µM Pb(II) in 1.0 M HCl 132
4.9 The determination of Pb(II) ions in real and spiked samples 133
4.10 Comparison of different electrode for Pb(II) ions determination in real samples 134
4.11 Comparison of SbFE electrodes for the determination of Pb(II) and Cd(II). 145
4.12 The determination of Pb(II) and Cd(II) ions in real and spiked samples 146
4.13 Comparison of different electrodes for the determination of Cr(VI). 159
4.14 The determination of Cr(VI) in real and spiked samples 160
5.1 Parameters involved in EME and electrochemical determination of Cr(VI), Pb(II) and Cd(II) on investigating the influence of membrane composition (PVDF12, PVDF17 and PVDF22) on extraction voltage.

5.2 Characterisation of PVDF membrane

5.3 Parameters involved in EME and electrochemical determination of Cr(VI), Pb(II) and Cd(II) on investigating the effect of organic solvents (Toluene, NPOE and 1-octanol).

5.4 Parameters involved in EME and electrochemical determination of Cr(VI), Pb(II) and Cd(II) on investigating the effect pH on donor phase (pH 1 to 9).

5.5 Parameters involved in EME and electrochemical determination of Cr(VI), Pb(II) and Cd(II) on investigating the effect of carrier concentration in 1-octanol

5.6 Parameters involved in EME and electrochemical determination of Cr(VI), Pb(II) and Cd(II) on investigating the effect of stirring rate

5.7 Parameters involved in EME and electrochemical determination of Cr(VI), Pb(II) and Cd(II) on investigating the effect of extraction

5.8 Parameters involved in EME and electrochemical determination of Cr(VI), Pb(II) and Cd(II) on investigating the effect of volume ratio of acceptor phase to donor phase

5.9 Parameters involved in EME and electrochemical determination of Cr(VI), Pb(II) and Cd(II) on investigating the effect agarose gel

5.10 Parameters involved in EME and electrochemical determination for calibration curve of Pb(II), Cd(II) and Cr(VI)
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.11</td>
<td>The determination of Cr(VI) in water samples using EME-SWAdSV system</td>
</tr>
<tr>
<td>5.12</td>
<td>The determination of Pb(II) ions in water samples using EME-SWV system</td>
</tr>
<tr>
<td>5.13</td>
<td>The determination of Pb(II) and Cd(II) in water samples using EME-SWASV system</td>
</tr>
<tr>
<td>5.14</td>
<td>Cd(II) extraction efficiency using commercial DC power supply and PSSD</td>
</tr>
<tr>
<td>5.15</td>
<td>Simultaneous EME of Cr(VI), Pb(II) and Cd(II) using PPSD-PVDF-NSbFE-GRC in Sea water</td>
</tr>
<tr>
<td>5.16</td>
<td>Simultaneous EME of Cr(VI), Pb(II) and Cd(II) using PPSD-PVDF-NSbFE-GRC in Industrial waste water</td>
</tr>
<tr>
<td>5.17</td>
<td>Parameters involved in EME and electrochemical determination for calibration curve of Pb(II), Cd(II) and Cr(VI)</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The general concept of supported liquid membrane (SLM). M^{n+}: metal ions, A: carrier, H^+: counter ion and MA_n: metal-carrier complex</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Microextraction modes used in HF-LPME. (A) three-phase system; and (B) two-phase system</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Schematic illustration of an electromembrane extraction (EME) setup</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Drop-to-drop EME setup</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Online EME</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Picture of the Pa-EME system (a) and a principle drawing of a single well (b)</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic diagram of electrochemical cell (a) Cross-section side view; and (b) Top view of cap.</td>
<td>32</td>
</tr>
<tr>
<td>2.8</td>
<td>Metals and semi-metals that can be determined by stripping voltammetry.</td>
<td>33</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic for the oxidation procedures of graphite to GO by using the Staudenmaier (GO-ST), Hofmann (GO-HO), Hummers (GO- HU), and Tour (GO-TO) methods (Chua et al. 2012).</td>
<td>58</td>
</tr>
<tr>
<td>2.10</td>
<td>Schematic chemical structures of graphene, graphene oxide, and reduced graphene oxide</td>
<td>58</td>
</tr>
<tr>
<td>2.11</td>
<td>Route of graphite to reduce graphene oxide (Graphene- Based Materials Functionalization with Natural Polymeric Biomolecules).</td>
<td>59</td>
</tr>
</tbody>
</table>
2.12 Cyclic voltammograms of a GO-modified GCE in PBS (pH 5.0) pre-aerated with nitrogen gas at a scan rate of 50 mV/s and with initial potential at 0.0 V (Guo et al. 2009).

2.13 CVs of the ErGO/GCE (electrochemically reduced at -1.3 V for different time) in 5mM HCl at a scan rate of 100 mV s^-1 (Guo et al. 2009).

2.14 Cyclic voltammetric profiles of electrochemical reduction of oxygen-containing groups. Conditions: PBS (50mm), background electrolyte (pH 7.2). Scan rate: 100 mV s^{-1} (Chua et al. 2012)

2.15 Schematic presentation of (A) EME set up and (B) voltammetric determination of selected heavy metals in a single drop (Kamyabi & Aghaei 2016a; Kamyabi & Aghaei 2016b)

2.16 Schematic illustrations of the equipment used for extraction (A) and for in-situ determination of CLZ by EME-DPV (B) (Rouhollahi et al. 2016)

2.17 The schematic illustration of the electromembrane extraction (EME) and electrochemical detection setup for diclofenac (Rouhollahi et al. 2016).

3.1 The design for simultaneous separation, pre-concentration of EME with electrochemical detection system: EME extraction (step I) and detection (step II) of Pb(II) (WE: working electrode, RE: reference electrode and AE: auxiliary electrode).

3.2 The design for simultaneous separation, pre-concentration of EME with electrochemical detection system: EME extraction (step I) and detection (step II) of Cr(VI) (WE: working electrode, RE: reference electrode and AE: auxiliary electrode).
3.3 The design for simultaneous separation, pre-concentration of EME with electrochemical detection system: EME extraction (step I) and detection (step II) of Pb(II) and Cd(II) (WE: working electrode, RE: reference electrode and AE: auxiliary electrode).

3.4 Circuit for portable and chargeable EME device (portable power supply device (PPSD))

3.5 The parallel EME setup for simultaneous separation and pre-concentration of Pb(II), Cr(VI) and Cd(II)

4.1 The effect of pH and the type of complexing carriers on the percentage of Pb(II) extraction.

4.2 The effect of the lead species on the percentage of Pb(II) extraction using 20 % of D2EHPA in toluene.

4.3 The effect of organic solvent (Toluene, NPOE, n-heptane and 1-octanol) on PbCl$_2$ and PbNO$_3$.

4.4 Effect of acceptor phase on the stripping studies of Cr(VI), and Other conditions as stipulated in Table 4.4.

4.5 The effect of pH and the type of complexing carriers on the percentage of Cr(VI) extraction.

4.6 The effect of types of acid on the percentage of Cr(VI) extraction using Aliquat 336 as complexing carrier.

4.7 The effect of types of mineral acid on the percentage of Cr(VI) extraction using TBP as complexing carrier.

4.8 Effect of organic solvent on the extraction of chromium (VI) using TBP and Aliquat 336 in acidic medium. Other conditions as stipulated in Table 4.4.

4.9 Effect of acceptor phase on the stripping studies of Cr(VI), and Other conditions as stipulated in Table 4.4

4.10 The effect of pH and the type of complexing carriers on the percentage of Cd(II) extraction.

4.11 The effect of NaCl concentration (0.1 – 1.0 M) on the percentage of Cd(II) extraction.
4.12 Effect of organic solvent on the extraction of Cd(II) using D2EHPA and Aliquat 336. Other conditions as stipulated in Table 4.4.

4.13 Effect of acceptor phase on the stripping studies of Cr(VI), and other conditions as stipulated in Table 4.4

4.14 FE-SEM images of (a) GRC, (b) GO-GRC and (c) ErGO-GRC

4.15 FTIR Spectrum for Graphene Oxide

4.16 Cyclic voltammogram of (a) first scan, (b) second scan, and (c) third scan of GO/(HB)GRC in 0.1M HCl with experimental parameters as follows: $E_i = 0$ mV, $E_f = -1700$ mV and scan rate = 100 mVs$^{-1}$.

4.17 Cyclic voltammogram obtained for 1.2 mM of Pb(II) ions in 0.1M HCl (pH 2) with experimental parameters as follows: $E_i = -1200$ mV, and scan rate = 100mVs$^{-1}$.

4.18 Effect of different grades of GRC on the cyclic voltammetry peak current of ErGO modified electrode and unmodified electrode in 0.1M HCl with 2 mM of Pb(II) ions

4.19 The resistivity value for GRC grades electrode

4.20 Cyclic voltammogram of GO-GRC fabricated at different cathodic potentials of -0.5 V to -1.5 V in 0.1 M HCl solution containing 1.2 mM of Pb(II) ions with experimental parameters as follows: $E_i = -1200$ mV and scan rate = 100 mVs$^{-1}$. The GO modified HB-GRC was immersed into 0.1 M HCl solution, and the cathodic potentials were applied using a potentiostat for 10 min.

4.21 Current vs time (i vs t) for the electrolysis of 10 μL GO modified GRC at potential (a) -0.5 V, (b) -0.7 V (c) -0.8 V, and (d) -1.0 V in 0.1M HCl.
4.22 SWVs shows the effect of HCl concentration on Pb(II) ions (6 x 10^{-8} M) with experimental parameters as follows: $E_i = -1200$ mV, $E_f = 0$ mV, S.W. amplitude = 35 mV, step frequency = 50Hz, step height = 1 mV, volume of GO = 10 μl of 0.1% of aqueous colloidal, reduction potential of GO = -0.8 V for 10 min for ErGO modified GRC.

4.23 SWVs shows the effect of HCl concentration on Pb(II) ions (6 x 10^{-8} M) with experimental parameters as follows: $E_i = -1200$ mV, $E_f = 0$ mV, S.W. amplitude = 35 mV, step frequency = 50Hz, step height = 1 mV, volume of GO = 10 μl of 0.1% of aqueous colloidal, reduction potential of GO = -0.8 V for 10 min for ErGO modified GRC.

4.24 Peak potential versus pH with experimental parameters as follows: $E_i = -1200$ mV, $E_f = 0$ mV, S.W. amplitude = 35 mV, step frequency = 50Hz , step height = 1 mV, volume of GO = 10 μl of 0.1% of aqueous colloidal, reduction potential of GO = -0.8 V for 10 min for ErGO modified GRC

4.25 The effect of modification time of electrode in 0.1 M HCl on Pb(II) ions (1 x 10^{-6} M) with experimental parameters as follows: $E_i = -1200$ mV, $E_f = 0$ mV, S.W. amplitude = 35 mV, step frequency = 50Hz , step height = 1 mV, volume of GO = 10 μl of 0.1% of aqueous colloidal, reduction potential of GO = -0.8 V for 10 min for ErGO modified GRC.
4.26 SWVs shows the oxidation peak current of Pb(II) ions for Pb(II) ions concentration (a) 3, (b) 4.5, (c) 6.0, (d) 7.5, (e) 9.0, (f) 10.5, (g) 12.0, (h) 13.5, (i) 15.0 nM; with experimental parameters as follows: \(E_i = -1200 \) mV, \(E_f = 0 \) mV, S.W. amplitude = 35 mV, step frequency = 50 Hz, step height = 1 mV, volume of GO= 10 µL of 0.1% of aqueous colloidal, reduction potential of GO = -0.8 V for 10 min for ErGO modified GRC. The calibration plot is shown in the inset.

4.27 FE-SEM images of (a) GRC, (b) N-GRC, (c) SbFE-GRC and (d) NSbFE-GRC

4.28 SWASV of 0.5 nM of Pb(II) and Cd(II) using bare GRC, N-GRC, SbFE-GRC and NSbFE-GRC. Plating conditions: 0.01M HCl, 10 mgL\(^{-1}\) of Sb(II), -1200 V plating potential and 240 s of plating time. Detection conditions: \(E_{acc} = -1.0 \) V; \(t_{acc} = 60 \) s; step amplitude: 4 mV, pulse amplitude: 50 mV, and frequency: 25 Hz.

4.29 Effect of HCl concentration on plating and detection of 10 nM of Pb(II) and Cd(II) in 0.1 M HCl. Conditions: \(E_{acc} = -1.0 \) V; \(t_{acc} = 35 \) s; step amplitude: 4 mV, pulse amplitude: 50 mV, and frequency: 25 Hz.

4.30 Effect of concentration of Sb(III) on plating and detection of Pb(II) and Cd(II) in 0.1 M HCl. Conditions: \(E_{acc} = -1.0 \) V; \(t_{acc} = 35 \) s; step amplitude: 4 mV, pulse amplitude: 50 mV, and frequency: 25 Hz.

4.31 The effect of plating time on the oxidation peak current of Pb(II) and Cd(II) in 0.1 M HCl. Conditions: \(E_{acc} = -1.0 \) V; \(t_{acc} = 35 \) s; step amplitude: 4 mV, pulse amplitude: 50 mV, and frequency: 25 Hz.
4.32 The effect of plating potential on the oxidation peak
current of Pb(II) and Cd(II) in 0.1 M HCl. Conditions:
E_{acc}: -1.0 V; t_{acc}: 35 s; step amplitude: 4 mV, pulse
amplitude: 50 mV, and frequency: 25 Hz.

4.33 The effect of the accumulation potential (E_{acc}) on the
oxidation peak current of the Pb(II) and Cd(II).
Conditions: E_{acc}: −0.6 to −1.6 V; t_{acc}: 35 s; step
amplitude: 4 mV, pulse amplitude: 50 mV, and
frequency: 25 Hz.

4.34 The effect of accumulation time (t_{acc}) on the oxidation
peak current of the Pb(II) and Cd(II). Conditions: E_{acc}:
−1.2 V; t_{acc}: 0-100 s; step amplitude: 4 mV, pulse
amplitude: 50 mV, and frequency: 25 Hz.

4.35 SWASVs shows the oxidation peak current of Pb(II)
and Cd(II) for Pb(II) ions concentration (a) 0, (b) 0.1,
(c) 0.2, (d) 0.3, (e) 0.4, (f) 0.5 and (g) 0.6 nM with
experimental parameters as follows: E_i = −1200 mV,
E_f = −0.2 mV, S.W. amplitude = 50 mV, step frequency
= 50Hz, step height = 1 mV.

4.36 The calibration plot for (a) Pb(II) and (b) Cd(II).
Experimental parameters as in caption Figure 4.33.

4.37 SWAdSV of Cr(III)-DTPA (25 nM) using N-GRC,
SbFE-GRC and NSbFE-GRC in acetate buffer (pH 6).
Conditions: Concentration of Sb(III): 0.2 – 2.5 mgL$^{-1}$,
concentration of DTPA: 5 mM, concentration of
KNO$_3$: 0.5 M, E_{ads}: −0.80 V; t_{ads}: 120 s; step
amplitude: 5 mV, pulse amplitude: 25 mV, and
frequency: 25 Hz.
4.38 Effect of concentration of Sb(III) on reduction peak current of Cr(III)-DTPA (50 nM) using SWAdSV in acetate buffer (pH 6). Conditions: Concentration of Sb(III): 0.2 – 2.5 mgL⁻¹, Sb(III) plating time: 150 s, Sb(III) plating potential -1.0 V, concentration of DTPA: 5 mM, concentration of KNO₃: 0.5 M, Eₐₖₖₕₗ: -0.80 V; tₐₖₖₖₕₗ: 120 s; step amplitude: 5 mV, pulse amplitude: 25 mV, and frequency: 25 Hz.

4.39 Effect of Sb(III) plating time on reduction peak current of Cr(III)-DTPA (50 nM) using SWAdSV in acetate buffer (pH 6). Conditions: Concentration of Sb(III): 1.0 mgL⁻¹, Sb(III) plating time: 0 - 300 s, Sb(III) plating potential: -1.0 V, concentration of DTPA: 5 mM, concentration of KNO₃: 0.5 M, Eₐₖₖₖₕₗ: -0.80 V; tₐₖₖₖₕₗ: 120 s; step amplitude: 5 mV, pulse amplitude: 25 mV, and frequency: 25 Hz.

4.40 Effect of Sb(III) plating potential on reduction peak current of Cr(III)-DTPA (50 nM) using SWAdSV in acetate buffer (pH 6). Conditions: Concentration of Sb(III): 1.0 mgL⁻¹, Sb(III) plating time: 240 s, Sb(III) plating potential -0.9 to -1.5 V, concentration of DTPA: 5 mM, concentration of KNO₃: 0.5 M, Eₐₖₖₖₕₗ: -0.80 V; tₐₖₖₖₕₗ: 120 s; step amplitude: 5 mV, pulse amplitude: 25 mV, and frequency: 25 Hz.

4.41 Effect of pH of buffer (2 to 9) on reduction peak current of Cr(III)-DTPA (20 nM). Conditions: Concentration of Sb(III): 1.0 mgL⁻¹, Sb(III) plating time: 240 s, Sb(III) plating potential -1.2 V, concentration of DTPA: 10 mM, concentration of KNO₃: 0.5 M, Eₐₖₖₖₕₗ: -0.80 V; tₐₖₖₖₕₗ: 120 s; step amplitude: 5 mV, pulse amplitude: 25 mV, and frequency: 25 Hz.
4.42 Effect of concentration of DTPA on reduction peak current of Cr(III)-DTPA (20 nM) using SWAdSV in acetate buffer (pH 6). Conditions: Concentration of Sb(III): 1.0 mgL$^{-1}$, Sb(III) plating time: 240 s, Sb(III) plating potential -1.2 V, concentration of DTPA: 0 - 30 mM, concentration of KNO$_3$: 0.5 M, E_{ads}: -0.80 V; t_{ads}: 120 s; step amplitude: 5 mV, pulse amplitude: 25 mV, and frequency: 25 Hz.

4.43 Effect of KNO$_3$ concentration on reduction peak current of Cr(III)-DTPA (20 nM) using SWAdSV in acetate buffer (pH 6). Conditions: Concentration of Sb(III): 1.0 mgL$^{-1}$, Sb(III) plating time: 240 s, Sb(III) plating potential -1.2 V, concentration of DTPA: 15 mM, concentration of KNO$_3$: 0 – 1.0 M, E_{ads}: -0.80 V; t_{ads}: 120 s; step amplitude: 5 mV, pulse amplitude: 25 mV, and frequency: 25 Hz.

4.44 Effect of adsorptive potential on reduction peak current of Cr(III)-DTPA (25 nM) using SWAdSV in acetate buffer (pH 6). Conditions: Concentration of Sb(III): 1.0 mgL$^{-1}$, Sb(III) plating time: 240 s, Sb(III) plating potential -1.2 V, concentration of DTPA: 15 mM, concentration of KNO$_3$: 0.6 M, E_{ads}: -0.5 to -1.1 V; t_{ads}: 120 s; step amplitude: 5 mV, pulse amplitude: 25 mV, and frequency: 25 Hz.

4.45 Effect of adsorptive time on reduction peak current of Cr(III)-DTPA (20 nM) using SWAdSV in acetate buffer (pH 6). Conditions: Concentration of Sb(III): 1.0 mgL$^{-1}$, Sb(III) plating time: 240 s, Sb(III) plating potential: -1.2 V, concentration of DTPA: 15 mM, concentration of KNO$_3$: 0.6 M, E_{ads}: -0.80 V; t_{ads}: 0 - 500 s; step amplitude: 5 mV, pulse amplitude: 25 mV, and frequency: 25 Hz.
SWAdSVs shows the reduction peak current of Cr(VI) for concentration: (a) 0, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.5, (f) 0.6, and (g) 0.7 nM with experimental parameters as follows: Concentration of Sb(III): 1.0 mgL-1, Sb(III) plating time: 240 s, Sb(III) plating potential: -1.2 V, concentration of DTPA: 15 mM, concentration of KNO3: 0.6 M, Eads: -0.80 V; tads: 200 s; step amplitude: 5 mV, pulse amplitude: 25 mV, and frequency: 25 Hz. The calibration plot is shown in the inset.

The influence of membrane composition (PVDF12, PVDF17 and PVDF22) on extraction voltage of selective EME for (a) Cr(VI)-NSbFE-GRC and (b) Pb(II)-ErGO-GRC and simultaneous EME for (c) Pb(II)-NSbFE-GRC and (d) Cd(II)-NSbFE-GRC. The parameters involved in EME and electrochemical determination stipulated in Table 5.1.

FE-SEM image of (a) PVDF22, (b) PVDF17 and (c) PVDF12 membranes.

The effect of organic solvents (1-octanol, NPOE, toluene) on selective EME for (a) Cr(VI)-NSbFE-GRC and (b) Pb(II)-ErGO-GRC and simultaneous EME for (c) Pb(II)-NSbFE-GRC and (d) Cd(II)-NSbFE-GRC. The parameters involved in EME and electrochemical determination stipulated in Table 5.3.

The effect of pH of donor phase on (pH 1 to 9) on selective EME for (a) Cr(VI)-NSbFE-GRC and (b) Pb(II)-ErGO-GRC and simultaneous EME for (c) Pb(II)-NSbFE-GRC and (d) Cd(II)-NSbFE-GRC. The parameters involved in EME and electrochemical determination stipulated in Table 5.4.
5.5 The effect of carrier concentration in 1-octanol on selective EME for (a) Cr(VI)-NSbFE-GRC and (b) Pb(II)-ErGO-GRC and simultaneous EME for (c) Pb(II)-NSbFE-GRC and (d) Cd(II)-NSbFE-GRC. The parameters involved in EME and electrochemical determination stipulated in Table 5.5.

5.6 The effect of stirring rate on selective EME for (a) Cr(VI)-NSbFE-GRC and (b) Pb(II)-ErGO-GRC and simultaneous EME for (c) Pb(II)-NSbFE-GRC and (d) Cd(II)-NSbFE-GRC. The parameters involved in EME and electrochemical determination stipulated in Table 5.6.

5.7 The effect of extraction time on selective EME for (a) Cr(VI)-NSbFE-GRC and (b) Pb(II)-ErGO-GRC and simultaneous EME for (c) Pb(II)-NSbFE-GRC and (d) Cd(II)-NSbFE-GRC. The parameters involved in EME and electrochemical determination stipulated in Table 5.7.

5.8 The effect of donor phase volume on selective EME for (a) Cr(VI)-NSbFE-GRC and (b) Pb(II)-ErGO-GRC and simultaneous EME for (c) Pb(II)-NSbFE-GRC and (d) Cd(II)-NSbFE-GRC. The parameters involved in EME and electrochemical determination stipulated in Table 5.8.

5.9 Effect of agarose gel as salt bridge (a) without and (b) with on detection of 0.25 nM Cr(VI). The parameters involved in EME and electrochemical determination stipulated in Table 5.9.

5.10 Effect of agarose gel as salt bridge (a) without and (b) with on detection of 1.0 nM Pb(II). The parameters involved in EME and electrochemical determination stipulated in Table 5.9.
5.11 Effect of agarose gel as salt bridge (a) without and (b) with on detection of 0.1 nM Cd(II) and Pb(II). The parameters involved in EME and electrochemical determination stipulated in Table 5.9.

5.12 SWAdSV shows the oxidation peak current of Cr(VI) at different concentrations: (a) 10, (b) 20, (c) 30, (d) 40, (e) 50 and (f) 60 pM; with extraction condition as shown in Table 5.10. The calibration plot is shown in the inset.

5.13 SWASV shows the oxidation peak current of Pb(II) at different concentrations: (a) 0.25, (b) 0.5, (c) 0.75, (d) 1.0, (e) 1.25, (f) 1.5, (g) 1.75 and (h) 2.0 nM; with extraction condition as shown in Table 5.10. The calibration plot is shown in the inset.

5.14 SWV shows the oxidation peak current of Pb(II) and Cd(II) at different concentrations: (a) 0, (b) 2, (c) 4, (d) 6, (e) 8, and (f) 10 pM; with extraction condition as shown in Table 5.10.

5.15 The calibration plot for (a) Pb(II) and (b) Cd(II) ranging from 0 to 10 pM

5.16 Comparative in term of size of commercial DC power supply and PSSD

5.17 (a) Front and (b) side view of portable power supply device (PSSD)
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-MBT</td>
<td>2-mercaptobenzothiazole</td>
</tr>
<tr>
<td>2-MBT</td>
<td>2-mercaptobenzothizole</td>
</tr>
<tr>
<td>4-CNPy</td>
<td>4-cyanopyridine</td>
</tr>
<tr>
<td>4-Cpy</td>
<td>4-cyanopyridine</td>
</tr>
<tr>
<td>AAS</td>
<td>Atomic absorption spectrophotometry</td>
</tr>
<tr>
<td>ADDPA</td>
<td>ammonium diethyl dithiophosphate</td>
</tr>
<tr>
<td>AdSV</td>
<td>Adsorptive Stripping voltammetry</td>
</tr>
<tr>
<td>Aliquat 336</td>
<td>Tricaprylylmethyl ammonium chloride</td>
</tr>
<tr>
<td>AIOOH</td>
<td>Aluminium oxide hydroxide</td>
</tr>
<tr>
<td>AP</td>
<td>acceptor phase</td>
</tr>
<tr>
<td>ASV</td>
<td>Anodic stripping voltammetry</td>
</tr>
<tr>
<td>AuNP</td>
<td>Gold nano particles</td>
</tr>
<tr>
<td></td>
<td>modification of GC electrode with gold - reduced</td>
</tr>
<tr>
<td>Au-RGO</td>
<td>graphene oxide</td>
</tr>
<tr>
<td>BDDE</td>
<td>boron-doped diamond</td>
</tr>
<tr>
<td>BiFe</td>
<td>Bismuth film electrode</td>
</tr>
<tr>
<td>BRB</td>
<td>Britton-Robinson buffer</td>
</tr>
<tr>
<td>Cd(II)</td>
<td>Cadmium ions</td>
</tr>
<tr>
<td>CDC</td>
<td>Centre for Disease Control</td>
</tr>
<tr>
<td>CE</td>
<td>capillary electrophoresis</td>
</tr>
<tr>
<td>AE</td>
<td>auxiliary electrode</td>
</tr>
<tr>
<td></td>
<td>capillary electrophoresis with capacitively coupled</td>
</tr>
<tr>
<td>CE-C4D</td>
<td>contactless conductivity detection</td>
</tr>
<tr>
<td>CeO₂</td>
<td>Cerium(IV) oxide</td>
</tr>
<tr>
<td>CF</td>
<td>carbon fiber</td>
</tr>
<tr>
<td>CH₃COOH</td>
<td>acetic acid</td>
</tr>
<tr>
<td>CLZ</td>
<td>clozapine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>CNTs</td>
<td>Carbon nanotubes</td>
</tr>
<tr>
<td>CPE</td>
<td>Carbon paste electrode</td>
</tr>
<tr>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>Cr–DPC</td>
<td>Cr-diphenyl carbazide</td>
</tr>
<tr>
<td>CSV</td>
<td>Cathodic Stripping Voltammetry</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic voltammetry</td>
</tr>
<tr>
<td>CW</td>
<td>Carbowax</td>
</tr>
<tr>
<td>Cyphos 101</td>
<td>Phosphonium chloride</td>
</tr>
<tr>
<td>D2EHPA</td>
<td>Di-2-ethylhexylphosphoric acid</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>DLLME</td>
<td>Dispersive liquid–liquid microextraction</td>
</tr>
<tr>
<td>DME</td>
<td>Dropping mercury electrode</td>
</tr>
<tr>
<td>DP</td>
<td>Donor phase</td>
</tr>
<tr>
<td>DPAdSV</td>
<td>Differential Pulse Adsorptive Stripping Voltammetry</td>
</tr>
<tr>
<td>DPASV</td>
<td>Differential pulse anodic stripping voltammetry</td>
</tr>
<tr>
<td>DPV)</td>
<td>Differential pulse voltammetry</td>
</tr>
<tr>
<td>DSPE</td>
<td>Dispersive solid phase extraction</td>
</tr>
<tr>
<td>DTPA</td>
<td>Diethyltriamine Pentacetic Acid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EF<sub>i</sub></td>
<td>Enrichment factor of analyte i</td>
</tr>
<tr>
<td>EF<sub>max</sub></td>
<td>Maximum attainable EF</td>
</tr>
<tr>
<td>EG</td>
<td>Exfoliated graphite</td>
</tr>
<tr>
<td>EME</td>
<td>Electromembrane extraction</td>
</tr>
<tr>
<td>EPA</td>
<td>US Environmental Protection Agency</td>
</tr>
<tr>
<td>ER</td>
<td>Extraction recovery</td>
</tr>
<tr>
<td>ErGO</td>
<td>Electrochemically reduced graphene oxide</td>
</tr>
<tr>
<td>ErGO-GRC</td>
<td>Electrochemically reduced graphene oxide</td>
</tr>
<tr>
<td>ER<sub>i</sub></td>
<td>Extraction recovery of analytes i</td>
</tr>
<tr>
<td>FAO</td>
<td>Joint Food and Agricultural Organization</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron microscopy</td>
</tr>
<tr>
<td>GC</td>
<td>Glassy carbon</td>
</tr>
<tr>
<td>GCE</td>
<td>Glassy carbon electrode</td>
</tr>
</tbody>
</table>
GF-AAS - graphite furnace atomic absorption spectroscopy
GRC - graphite reinforcement carbon
H₂SO₄ - sulphuric acid
HCl - hydrochloric acid
HF-LPME - hollow fiber-liquid phase microextraction
HMDE - hanging mercury drop electrode
HNO₃ - nitric acid
HPLC - High performance liquid chromatography
HP-β-CD - Hydroxypropyl-β-cyclodextrin
ICPMS - Inductively coupled plasma-mass spectrometry
ICP-OES - inductively coupled plasma-optical emission spectrometry
IL - Ionic liquids
KOH - Potassium Hydroxide
LLE - liquid –liquid extraction
LOD - Limit of detection
LPME - liquid phase microextraction
LSV - Linear sweep voltammetry
MFE - Mercury film electrode
MWCNT - Multi-walled carbon nanotubes
NAA - Neutron activation analysis
NaCl - sodium chloride
NaMM - An antimony film modified sodium montmorillonite
NaOH - Sodium hydroxide
NPOE - nitrophenyl octyl ether
NPOE - 2-Nitrophenyl octyl ether
NSbFe-GRC - nafion coated-antimony film
OPFP - Ionic liquid n-octylpyridinium hexafluorophosphate
PA - polyacrylate
Pa-EME - parallel electromembrane extraction
PALME - parallel artificial liquid membrane microextraction
PANI - Polyaniline
Pb(II) - Lead
PbNPs-SH - a lead nanoparticles-modified thiol-functionalized
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF/GCE</td>
<td>polysiloxane film GC electrode</td>
</tr>
<tr>
<td>PDMS</td>
<td>polydimethylsiloxane</td>
</tr>
<tr>
<td>PhACs</td>
<td>pharmaceutical active compounds</td>
</tr>
<tr>
<td>PMMA</td>
<td>poly(methyl methacrylate)</td>
</tr>
<tr>
<td>PP</td>
<td>Polypropylene</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>PPHF</td>
<td>Polypropylene hollow fiber</td>
</tr>
<tr>
<td>PPSD</td>
<td>Portable power supply device</td>
</tr>
<tr>
<td>Pt</td>
<td>platinum</td>
</tr>
<tr>
<td>PTFE</td>
<td>Polytetra fluoroethylene</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinlidine fluoride</td>
</tr>
<tr>
<td>RE</td>
<td>reference electrode</td>
</tr>
<tr>
<td>rGO</td>
<td>reduced graphene oxide</td>
</tr>
<tr>
<td>Ru(bpy)$_3^{2+}$</td>
<td>Tris(bipyridine)ruthenium(II)</td>
</tr>
<tr>
<td>SAMs</td>
<td>self-assembled monolayers</td>
</tr>
<tr>
<td>SbNP</td>
<td>Antimony nanoparticles</td>
</tr>
<tr>
<td>SCP</td>
<td>Stripping chrono potentiometry</td>
</tr>
<tr>
<td>SDME</td>
<td>single-drop microextraction</td>
</tr>
<tr>
<td>SFFTCCV</td>
<td>stripping fast Fourier transform continuous cyclic voltammetry</td>
</tr>
<tr>
<td>SFOD-ME</td>
<td>Solidified floating organic drop - microextraction</td>
</tr>
<tr>
<td>SLM</td>
<td>supported liquid membrane</td>
</tr>
<tr>
<td>SMDE</td>
<td>static mercury drop electrode</td>
</tr>
<tr>
<td>SnNP</td>
<td>Tin nanoparticles</td>
</tr>
<tr>
<td>SPCE</td>
<td>screen printed carbon electrode</td>
</tr>
<tr>
<td>SPE</td>
<td>Screen printed electrode</td>
</tr>
<tr>
<td>SPME</td>
<td>solid-phase microextraction</td>
</tr>
<tr>
<td>SWAdSV</td>
<td>Square Wave Adsorptive Stripping Voltammetry</td>
</tr>
<tr>
<td>SWASV</td>
<td>Square Wave Anodic Stripping Voltammetry</td>
</tr>
<tr>
<td>SWCNT</td>
<td>single-wall carbon nanotubes</td>
</tr>
<tr>
<td>TBP</td>
<td>tributhylphosphate</td>
</tr>
</tbody>
</table>
UV - ultraviolet
WE - working electrode
WHO - World Health Organization
XRF - X-ray Fluorescence Spectrometry
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>c</td>
<td>Concentration</td>
</tr>
<tr>
<td>E_{acc}</td>
<td>Deposition potential</td>
</tr>
<tr>
<td>E_f</td>
<td>Final potential</td>
</tr>
<tr>
<td>E_i</td>
<td>Initial potential</td>
</tr>
<tr>
<td>E_p</td>
<td>Peak potential</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>I_p</td>
<td>Peak current</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mM</td>
<td>Milimolar</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>ppb</td>
<td>Part per billion</td>
</tr>
<tr>
<td>r^2</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>mgL^{-1}</td>
<td>Milligram per liter</td>
</tr>
<tr>
<td>s</td>
<td>Seconds</td>
</tr>
<tr>
<td>t_{acc}</td>
<td>Deposition time</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>$^\circ$C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>mA</td>
<td>Micro ampere</td>
</tr>
<tr>
<td>μL</td>
<td>Micro Liter</td>
</tr>
<tr>
<td>μgL^{-1}</td>
<td>Microgram per liter</td>
</tr>
<tr>
<td>μM</td>
<td>Micro molar</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cr(VI) extraction efficiency using commercial DC power supply and PSSD. The parameter involved stipulated in Table 5.14.</td>
<td>242</td>
</tr>
<tr>
<td>B</td>
<td>Pb(II) extraction efficiency using commercial DC power supply and PSSD. The parameter involved stipulated in Table 5.14.</td>
<td>243</td>
</tr>
<tr>
<td>C</td>
<td>Simultaneous EME of Cr(VI), Pb(II) and Cd(II) using PPSD-PVDF-NSbFE-GRC in Tap Water. The parameter involved stipulated in Table 5.17.</td>
<td>244</td>
</tr>
<tr>
<td>D</td>
<td>Simultaneous EME of Cr(VI), Pb(II) and Cd(II) using PPSD-PVDF-NSbFE-GRC in River Water. The parameter involved stipulated in Table 5.17.</td>
<td>245</td>
</tr>
<tr>
<td>E</td>
<td>Simultaneous EME of (a) Cr(VI), (b) Pb(II) and (c) Cd(II) using PPSD-PVDF-NSbFE-GRC in Industrial waste water. The parameter involved stipulated in Table 5.17.</td>
<td>246</td>
</tr>
<tr>
<td>F</td>
<td>List of publication</td>
<td>247</td>
</tr>
<tr>
<td>G</td>
<td>List of presentation</td>
<td>248</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Research

Water contamination is a worldwide problem which deserves attention due to its negative impact on eco-system, human health as well as economic growth (Ben Salem et al. 2014; Kim & Kang 2016). Heavy metals, as one of the pollutant categories receive concern due to their high toxicity even at concentration as low as parts per billion (ppb). Furthermore, the toxicity of heavy metals can be increased by transformation to more toxic compounds due to their average long-life. Depending on the type and speciation of heavy metal, it accumulates mainly in bones, brain, kidney and muscles, which may cause serious illnesses such as anaemia, kidney diseases, nervous disorders and sickness or even death among (Chen et al. 2012; Ben Salem et al. 2014; D. Wang et al. 2016). In infant and children, exposure to heavy metals above the standard level can result in delays in physical and mental development (Y. Wang et al. 2016a; Liu et al. 2014; Xia et al. 2016). Therefore, the determination of heavy metals has contributed to the awareness among human to provide beneficial guidance on the physiological effect on body and environment.

There are numerous analytical techniques such as graphite furnace atomic absorption spectroscopy (GF-AAS) (Dokpikul et al. 2018; Behbahani et al. 2015; Cervantes et al. 2017; Schneider et al. 2017; Zhong et al. 2016), inductively coupled plasma mass spectroscopy (ICP-MS) (Cervantes et al. 2017), neutron activation analysis (NAA) (Namiśnik & Rabajczyk 2012) have been proposed for the determination of heavy metal ions. These analytical techniques are advantages in terms of sensitivity and multiple elemental analysis. However, these instruments
incur high cost. Nowadays, voltammetry techniques are much interested for the determination of heavy metal ions, due to their highly sensitive, low cost, simple operation and minimum use of reagents as well as suitable for speciation measurements (Y. Wang et al. 2016b; Liu et al. 2014). However, heavy metal in aquatic environmental samples are usually obtained in extremely low level of concentration such as sub-ppb or ppt. Moreover, aquatic environmental samples are too complex for a direct measurement due to matrix interferences. These difficulties can be overcome by separating and preconcentrating the heavy metal ions prior to the determination by any analytical techniques. Thus, there is a need to develop an effective analytical method which allows separating, detecting and quantifying low levels of heavy metal ions in aqueous environmental samples.

1.2 Problem Statement

Sampling, sample preparation, separation, detection and data analysis are the most important steps in analytical process. When dealing with real sample matrix samples each step equally important for collecting reproducible and reliable data. Technology advancement in the field of separation and detection have introduced sensitive and selective analytical instrument. However, real sample matrices can reduce the quality of results. In modern analytical chemistry, there is a high demand for accurate quantification of trace and ultra-trace of heavy metals from real aqueous sample matrices. Hence, the determination of trace heavy metals depends on instruments that capable of reaching detection limits as low as good selectivity. However, to achieve this practice the number of interfering compounds must be kept to a minimum to avoid severe matrix interference. In addition, there is also a demand for pre-concentration of trace heavy metals to reach lower concentration limits for sufficient detection. Recently, integrated and automated systems have been increasing popular to reduce analysis time and labour. However, the demand for highly time-efficient systems becomes challenging for separation of heavy metals from real sample matrices.
The problems associated with heavy metals in the environment clearly demand for an effective sustainable green analytical method which can simultaneously pre-concentrate, separate, and detect with lower detection limits. Several approaches such as ion-exchange separation (Aydin et al. 2011; Cechinel et al. 2017), single-drop micro-extraction (SDME) (Manzoori et al. 2009), dispersive liquid–liquid microextraction (DLLME) (Zhou et al. 2011; Dokpikul et al. 2018; López-García et al. 2013), solid phase extraction (SPE) (Cervantes et al. 2017; Pourreza & Naghd 2014) and dispersive solid phase extraction (DSPE) (Fasih Ramandi & Shemirani 2015; Behbahani et al. 2015) are available for the separation and pre-concentration of heavy metal ions from aqueous environmental samples. However, such procedures are time-consuming and prone to contamination.

Electromembrane extraction (EME) is a new concept of hollow fiber-liquid phase microextraction (HF-LPME) in which an electrical field serves as a driving force for the analytes to transfer between the donor phase (DP) and the supported liquid membrane (SLM) and also between the SLM and the acceptor phase (AP) (Fotouhi et al. 2011; Gjelstad et al. 2006). Interestingly, the combination of EME and electrochemical studies has been popular in detecting pharmaceutical active compounds (PhACs) such as sufentanil (Ahmar et al. 2013), morphine (Ahmar et al. 2014), dextromethorphan (Fakhari et al. 2014), diclofenic (Mofidi et al. 2017) and clozapine (Rouhollahi et al. 2016) due to the unique opportunities of addressing the challenges of green analytical chemistry by providing effective process of separating, pre-concentrating and detecting while minimizing its environmental impact.

Studies published utilize modified solid electrodes such screen printed (Fakhari et al. 2014; Ahmar et al. 2013), carbon paste (Mofidi et al. 2017), and glassy carbon (Kamyabi & Aghaei 2016a; Kamyabi & Aghaei 2016b) electrodes where the solution from AP is collected using microsyringe and the pH of the solution adjusted before the analyte can be detected using electrochemical techniques. This is due to the low volume and inappropriate condition of aqueous AP in EME such as pH and type of buffer solution, which is not suitable for conventional electrochemical measurements. Therefore, the purpose of this research is to develop an electrochemical electrode system with EME as a part of the
elecrode that can directly separate, pre-concentrate and detect heavy metal ions in real aqueous environmental samples.

1.3 Objectives of the Study

The objectives of this study are as follows:

a) To determine the potential complexing carriers using liquid-liquid extraction technique for selected heavy metal ions;

b) To examine electrochemical response of the selected heavy metal ions under conditions suitable for the acceptor phase;

c) To investigate the transport of the selected heavy metal ions across the EME using PVDF flat sheet membrane; and

d) To develop and apply portable power supply device for EME system of heavy metals in real samples such as tap, river, sea and industrial waste water.

1.4 Scope of the Study

This study was conducted to investigate a simultaneous separation, pre-concentration, and detection system for heavy metal ions such as Cr(VI), Pb(II), and Cd(II) based on combination of voltammetry technique with EME. In achieving the objectives of the research there are few important tasks need to be carried out and five research scopes have been identified for accomplishing the objectives. The scopes are:

1) Preliminary study was conducted by optimizing parameters for liquid–liquid extraction (LLE) such as six (6) type of complexing carriers (4-cyanopyridine (4-Cpy), 2-mercaptobenzothiazole (2-MBT), Tricaprylylmethyl ammonium chloride (Aliquat 336), tributhylphosphate (TBP), di-2-ethylhexylphosphoric
acid (D2EHPA), trihexyl(tetradecyl)phosphonium chloride (Cyphos 101) four (4) types of organic solvents (toluene, n-octanol, n-heptane and NPOE), pH and type of stripping phase. This was investigated to understand the complexing and stripping ability between carrier and heavy metal ions. The selection of appropriate acceptor phase of heavy metal ion from carrier is very crucial, as this aqueous phase condition was used to develop the electrochemical detection for earlier mentioned heavy metal ions.

2) Heavy metal ions were detected using voltammetry technique based on the AP of LLE by using solid electrode. The solid electrodes used in this study were nafion coated-antimony film (NSbFE-GRC) and electrochemically reduced graphene oxide (ErGO-GRC) modified on graphite reinforcement carbon as substrate material. The ex-situ prepared NSbFE-GRC was used to selectively detect Cr(VI) with the presence of DTPA using square wave adsorptive stripping voltammetry (SWAdSV). NSbFE-GRC was also utilized for simultaneous detection of Cd(II) and Pb(II) by using square wave anodic stripping voltammetry (SWASV). Whereas, ErGO-GRC was used to selectively detect Pb(II) using SWASV.

3) EME study was carried out by applying voltage using DC supply system with the appropriate carrier in organic solvent supported by a fabricated PVDF membrane which interposed between the aqueous sample matrix containing the targeted heavy metal ions and acceptor phase. Polyvinylidene (PVDF) membrane with different polymer percentage concentration (12%, 17% and 22%) fabricated and characterized to determine the functional groups, water contact angles, thickness and porosity of membrane. In order to optimize the EME, parameters such as the influence of membrane composition on extraction voltage, extraction time, pH of the donor phase, stirring rate, carrier concentration, organic solvent and agarose gel were assessed.

4) Portable power supply device (PPSD) was developed and used as portable sampling system for selective and simultaneous EME to separate and pre-
concentrate Pb(II), Cd(II) and Cr(VI) in real samples such as tap, river, sea and industrial waste water prior to detect using voltammetry techniques.

1.5 Significance of Study

The quick separation, pre-concentration and determination of trace and ultratrace quantities of heavy metal in sample matrices with complex or variable composition by simple method has become the major interest in analytical chemistry. The construction of sensitive EME with GRC modified electrode have fast response, linear dynamic range, low cost, environmentally friendly and ease for preparation had been adding an advantage. Furthermore, this developed analytical technique was able to comply with the principle of sustainable development and green chemistry.

Rapid growths of electromembrane studies demand the development of portable power supply device (PPSD) with battery. A portable power supply device (PPSD) with chargeable Li-ion battery have made on-site sampling or extraction. This developed portable device might be a powerful tool with combination of EME and voltammetry for simultaneous separation, pre-concentration and detection of trace level Pb(II), Cd(II) and Cr(VI) present in real aqueous samples. This may be open up possibilities of development of other technical configurations in the future such as a portable EME or chronoamperometry system with software.

1.6 Novelty of Study

Till 2015, no research was carried out on the application of EME as a part of the electrochemical electrode system that can directly separate, pre-concentrate and detect heavy metal ions in real environmental samples. However, the combination of these methods started to get attention for heavy metal ions such as Hg(II) (Kamyabi & Aghaei 2016a) and As (III) (Kamyabi & Aghaei 2016b) after the publication by Hamsawahini et al. (2015). Moreover, this is the first study that reported on the
development of a portable power supply device (PPSD) using chargable lithium ion battery for on-site EME sampling.

1.7 Thesis Outline

This thesis consists of six chapters. Chapter 1 describes in detail the research background, problem statement, objectives, scope as well as significance of the study. Chapter 2 compiles the literature review of separation and pre-concentration methods and voltammetry techniques for heavy metals. Chapter 3 describes methodologies and applications that involve LLE, voltammetry, electromembrane and portable power supply device development.

Chapter 4 describes the preliminary studies conducted to investigate potential complexing carriers using liquid-liquid extraction technique for heavy metal ions including Cr(VI), Pb(II), and Cd(II). ICPMS and AAS used to determine the efficiency of metal extraction using complexing carriers. The results obtained used in developing EME technique for respective metals. This chapter also discusses on modified graphite reinforcement carbon electrodes in determination of Cr(VI), Pb(II), and Cd(II) using voltammetry techniques. NSbFE-GRC and ErGO-GRC used to determine the presence of Cr(VI), Pb(II), and Cd(II) in water samples such as industrial waste water, river water, sea water and tap water.

Chapter 5 reports the development of EME using fabricated flat sheet PVDF membrane for Cr(VI), Pb(II), and Cd(II). EME techniques combined voltammetry techniques discussed in Chapter 4 which simultaneously separate, pre-concentrate and determine Cr(VI), Pb(II), and Cd(II) in water samples such as industrial waste water, river water, sea water and tap water. Furthermore, this chapter describes the developed portable power supply device for EME and its efficiency for Cr(VI), Pb(II) and Cd(II) selective and simultaneous extraction in real samples such as tap, river, sea and industrial waste water. Finally, Chapter 6 summarizes the overall results obtained with suggestions for future work.
REFERENCES

