SYNTHESIS AND CHARACTERIZATION OF LASER ANNEALED NANOPOROUS SILICON-ZINC OXIDE NANOCLUSTERS FOR ULTRAVIOLET PHOTODETECTOR APPLICATION

ASAD A. THAHE

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Science
Universiti Teknologi Malaysia

FEBRUARY 2019
DEDICATION

To my Family, gave me endless love, trust, constant encouragement over the years, and for, their prayers, enduring patience, support, and love up to the completion of this study. To my Friends, for their support, and encouragement
ACKNOWLEDGEMENT

Firstly, my gratitude goes to Almighty Allah for granting me good health and patience to complete this research. I would also like to express my sincere gratitude to my supervisor, Assoc. Prof. Dr. Hazri Bin Bakatiar, for his scholarly guidance and support throughout my study. I am also immensely indebted to my co-supervisor, Prof. Dr. Zainuriah Hassan, for his keen supervision, informative advice, and motivation. My gratitude also goes to my earlier supervisor, Prof. Dr. Noriah Bidin, for her scholarly guidance, support and indelible mark she left in my academic pursuit. Without their continued support and interest, the complete status of this thesis would not have been achieved. My sincere gratitude also goes to Universiti Teknologi Malaysia (UTM), especially the Faculty of Science (FS). I would like to express my appreciation to the Dr. Uday M. Basheer AL-Naib from Faculty of Engineering for their valuable guidance and comments during my study. Much of this work would have been virtually impossible without the technical support offered by our helpful laboratory assistants at the School of Physics, Universiti Teknologi Malaysia (UTM) and Universiti Sains Malaysia (USM). My unreserved appreciation also goes to the staff of the Nano-Optoelectronics Research and Technology Laboratory (N.O.R Lab) and Solid-state laboratory (USM) as well as I-CRIM Universiti Kebangsaan Malaysia (UKM) for their technical assistance and support during my laboratory work. I would like to thank the Universiti Putra Malaysia, their lecturers and staff of the Faculty of Science and the Department of Physics, especially Prof. Dr. Zainal Bin Talab for giving me all the necessary support and authorizing the use of their laboratory for my research. The success of this work will not be actualized without the continued support, love and patience of my family, brothers and sisters, my deepest gratitude also goes to them all for their endearing support. Finally, I would like to register my deepest appreciation to my friends and colleagues at the departments of Physics, University Teknologi Malaysia, University Sains Malaysia and University Putra Malaysia for their overwhelming support.
ABSTRACT

The main purpose of this study was to synthesize a series of nanoporous silicon (n-PSi) samples on n-type Si (111) wafer using the photo-electrochemical etching (PECE) method, which was effective for the fabrication of a metal-semiconductor-metal (MSM) ultraviolet photodetector. Samples were prepared at fixed etching time (30 min) under varying PECE operating parameters, which included differential current densities (15, 30 and 45 mA/cm²) and variable chemical ratios to achieve optimum growth. The structural, morphological and optical properties of the as-prepared PSi samples were characterized by different analytical techniques. The optimum etching parameters for the growth of n-PSi samples comprise of etching time of 30 min, current density of 45 mA/cm² and chemical ratio of 2:1:1. The objectives of this study were achieved in three phases. First, a layer of zinc oxide (ZnO) nanoclusters was deposited on the optimally grown n-PSi sample by means of radio frequency (RF) sputtering. The thicknesses of the deposited ZnO nanoclusters layers on n-PSi were varied between 300 nm and 500 nm for annealing temperatures ranging from 600 °C to 900 °C. The optimum thickness and temperature were determined to be 300 nm and 700 °C, respectively. Secondly, platinum (Pt) electrodes were deposited on the n-PSi/ZnO NCs structure via radio frequency sputtering to obtain the MSM (Pt/n-PSi/ZnO NCs/Pt) ultraviolet photodetectors. Finally, the performances of fabricated ultraviolet MSM photodetectors were evaluated using current-voltage (I-V) measurement. The optimum n-PSi and n-PSi/ZnO NCs samples were annealed using a Nd-YAG laser under several shots (pulses) to determine their influence on the structural, morphological, optical and electrical features of the n-PSi/ZnO NCs samples. The photoluminescence spectra of the optimally synthesized n-PSi/ZnO NCs exhibited an intense near band edge emission (violet band centred at 380 nm for bandgap energy of 3.26 eV). The I-V characteristics of the fabricated MSM ultraviolet photodetectors were examined in the dark and under ultraviolet light (380 nm) illumination. The results revealed that laser annealing can significantly improved of the performance of the fabricated Pt/n-PSi/ZnO NCs/Pt ultraviolet photodetector in terms of high responsivity (6.35 A/W), photosensitivity (3772.92) as well as faster response time (0.30 s) and recovery time (0.26 s). It was concluded that the proposed MSM ultraviolet photodetectors could be advantageous for various optoelectronic applications.
ABSTRAK

Tujuan utama kajian ini adalah untuk mensintesis satu siri sampel silikon nano berliang (n-PSi) pada wafer Si (111) jenis-n dengan menggunakan kaedah punaran foto-elektrokimia (PECE), yang berkesan untuk mengfabrikasikan pengesan foto logam-semikonduktor-logam (MSM) ultraungu. Sampel disediakan pada masa punaran tetap (30 minit) di bawah parameter operasi PECE yang berbeza-beza, yang termasuk ketumpatan arus berlainan (15, 30 dan 45 mA/cm²) dan nisbah kimia yang berubah untuk mencapai pertumbuhan yang optimum. Ciri-ciri struktur, morfologi dan optik dari sampel n-PSi yang disediakan telah dicirikan oleh teknik analitikal yang berbeza. Parameter punaran optimum untuk pertumbuhan sampel n-PSi terdiri daripada masa punaran selama 30 minit, ketumpatan arus sebanyak 45 mA/cm² dan nisbah kimia 2: 1: 1. Objektif kajian ini telah dicapai dalam tiga fasa. Pertama, satu lapisan zink oksida (ZnO) nano kelompok (NCs) telah dimendapkan pada sampel n-PSi yang ditumbuhkan secara optimum dengan menggunakan kaedah percikan frekuensi radio. Ketebalan lapisan ZnO NCs pada n-PSi berubah antara 300 nm dan 500 nm untuk suhu penyepuhindapan antara 600 °C hingga 900 °C. Ketebalan dan suhu optimum didapati masing-masing adalah 300 nm dan 700 °C. Kedua, elektrod platnium (Pt) dimendapkan diatas struktur n-PSi/ZnO NCs melalui percikan frekuensi radio untuk mendapatkan pengesan foto ultraungu MSM (Pt/n-PSi/ZnO NCs/Pt). Akhirnya, prestasi pengesan foto ultraungu dinilai menggunakan pengukuran arus-voltan (I-V). Sampel n-PSi dan n-PSi/ZnO NCs yang optimum telah disepeuhindapan menggunakan laser Nd-YAG di bawah beberapa tembakan (denyutan) untuk menentukan kesan terhadap ciri-ciri struktur, morfologi, optik dan elektrik sampel n-PSi/ZnO NCs. Spektra fotoluminesen n-PSi/ZnO NCs yang disintesis secara optimum menunjukkan pancaran pinggir jalur dekat yang kuat (jalur ungu yang berpusat pada 380 nm bagi tenaga jurang jalur sebanyak 3.26 V). Ciri-ciri I-V pengesan foto ultraungu MSM yang difabrikasikan diperiksa dalam gelap dan di bawah penyinaran cahaya ultraungu (380 nm). Hasil kajian menunjukkan bahawa penyepuhindapan laser dapat meningkatkan prestasi pengesan foto ultraungu Pt/n-PSi/ZnO NCs/Pt yang difabrikasikan dengan nilai yang tinggi untuk tindak balas (6.35 A/W), fotosensitiviti (3772.92) serta masa tindak balas (0.30 s) dan masa pemulihan (0.26 s) yang lebih cepat. Kesimpulannya, pengesan foto ultraungu MSM yang dicadangkan dapat memberi kelebihan untuk pelbagai aplikasi optoelektronik.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION 1
1.1 Background of the Study 1
1.2 Problem Statement 3
1.3 Objective of the Thesis 3
1.4 Scope of the Work 4
1.5 Thesis Outline 5

CHAPTER 2 LITERATURE REVIEW 7
2.1 Introduction 7
2.2 Synthesis, Properties and Photodetector Applications of n-PSi 8
2.2.1 Properties of PSi Layers Grown by PECE Process 8
2.2.2 Mechanisms of Si Dissolution and Pore Formation 10
2.2.3 Transport of Charge Carrier in PSi 12
2.2.4 Thickness and Porosity Parameters 14
2.3 Band Structures 15
CHAPTER 2

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.1 Prospects of Porous Silicon</td>
<td>16</td>
</tr>
<tr>
<td>2.4 Energy Band Gap Structure of Semiconductor Materials</td>
<td>17</td>
</tr>
<tr>
<td>2.5 Synthesis of ZnO</td>
<td>18</td>
</tr>
<tr>
<td>2.5.1 Lattice Parameters and Crystal Structures of ZnO</td>
<td>19</td>
</tr>
<tr>
<td>2.5.2 Optical Properties of ZnO</td>
<td>21</td>
</tr>
<tr>
<td>2.6 Methods for PSi Synthesis</td>
<td>23</td>
</tr>
<tr>
<td>2.7 Applications of PSi</td>
<td>25</td>
</tr>
<tr>
<td>2.8 Overview of Photodetectors</td>
<td>26</td>
</tr>
<tr>
<td>2.8.1 ZnO Films in Photodetector</td>
<td>27</td>
</tr>
<tr>
<td>2.8.2 ZnO based Photodetectors</td>
<td>28</td>
</tr>
<tr>
<td>2.9 Mechanism of Light Absorption by Semiconductors</td>
<td>32</td>
</tr>
<tr>
<td>2.9.1 Light Absorption in Direct Band Gap Semiconductors</td>
<td>33</td>
</tr>
<tr>
<td>2.9.2 Light Absorption in Indirect Band Gap Semiconductor</td>
<td>34</td>
</tr>
<tr>
<td>2.9.3 Photoconduction Mechanism in ZnO Nanostructures</td>
<td>34</td>
</tr>
<tr>
<td>2.10 Nd-YAG Laser Annealing</td>
<td>36</td>
</tr>
</tbody>
</table>

CHAPTER 3 RESEARCH METHODOLOGY

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>39</td>
</tr>
<tr>
<td>3.2 Samples Preparation</td>
<td>41</td>
</tr>
<tr>
<td>3.2.1 Photo-electrochemical Etching Cell (PECE)</td>
<td>41</td>
</tr>
<tr>
<td>3.2.2 Radio Frequency (RF)/Direct Current (DC) Sputtering System</td>
<td>41</td>
</tr>
<tr>
<td>3.2.3 Thermal Annealing Processes</td>
<td>43</td>
</tr>
<tr>
<td>3.3 Nd-YAG Laser Annealing</td>
<td>43</td>
</tr>
<tr>
<td>3.3.1 Laser Annealing Processes</td>
<td>44</td>
</tr>
<tr>
<td>3.4 Characterization Procedures</td>
<td>45</td>
</tr>
<tr>
<td>3.4.1 X-ray Diffraction (XRD) Measurement</td>
<td>46</td>
</tr>
<tr>
<td>3.4.2 Field Emission Scanning Electron Microscopy (FESEM)</td>
<td>47</td>
</tr>
<tr>
<td>3.4.3 Energy Dispersive X-ray Analysis (EDX)</td>
<td>48</td>
</tr>
</tbody>
</table>

viii
3.4.4 Atomic Force Microscopy (AFM) 49
3.5 Optical Characterization using Photoluminescence (PL) Spectroscopy 49
3.6 Sample Synthesis 51
3.6.1 Substrate Preparation 51
3.6.2 Synthesis of n-PSi layers by PECE Techniques 52
3.7 Porosity Measurement of PSi Layers by Weighting Method 53
3.8 Thickness Measurement of PSi Layers 54
3.9 Deposition of ZnO Seed Layer on n-PSi Layer 54
3.10 Annealing Process of ZnO Seed Layer 55
3.11 Structural and Optical Characterizations of Deposited n-PSi/ZnO NCs 55
3.12 Fabrication of Ultraviolet Photodetector 55
3.13 Photoresponse Measurement of Ultraviolet Photodetector 56
3.14 Contact Metallization 57

CHAPTER 4 RESULTS AND DISCUSSION 58
4.1 Introduction 58
4.2 Effects of Etching Current Density on the Structure, Morphology, and Emission Properties of n-PSi 59
4.2.1 XRD Pattern 59
4.2.2 FESEM and EDX Analyses 62
4.2.3 AFM Analyses 66
4.2.4 Photoluminescence (PL) Spectra 67
4.3 Effect of Laser Pulse on the Structure, Morphology, and Emission Properties of n-PSi 69
4.3.1 XRD Analysis 69
4.3.2 FESEM and EDX Analyses 72
4.3.3 AFM Analyses 75
4.3.4 Photoluminescence (PL) Spectra 77
4.4 Effect of Annealing Temperature on the Structure, Morphology and PL Properties of RF Sputtered n-PSi/ZnO NCs 79
4.4.1 XRD Analysis 80
4.4.2 FESEM and EDX Analysis 82
4.4.3 AFM Images 85
4.4.4 PL Spectra 86

4.5 Influences of Laser Pulses on the Structure, Morphology, and PL Emission Properties of n-PSi/ZnO NCs Film 88
4.5.1 XRD Pattern 89
4.5.2 FESEM and EDX Analysis 91
4.5.3 AFM Micrographs 94
4.5.4 PL Spectral Analysis 95

4.6 Performance of Pt/n-PSi/Pt Photodetector Made without Laser Annealing of n-PSi 96
4.6.1 I-V Characteristics 96
4.6.2 Spectral Sensitivity 99
4.6.3 Spectral Responsivity 102

4.7 Performance of Pt/n-PSi/Pt Photodetector Made From n-PSi With Laser Annealing 106
4.7.1 I-V Characteristics 106
4.7.2 Spectral Sensitivity 108
4.7.3 Spectral Responsivity 109

4.8 Comparative Performance Evaluation of Photodetectors Made Using n-PSi Without and With Laser Annealing 113

4.9 Performance of Pt/n-PSi/ZnO NCs/Pt UV Photodetector Made From n-PSi/ZnO NCs Without Laser Annealing 117
4.9.1 I-V Characteristics 117
4.9.2 Spectral Sensitivity 119
4.9.3 Spectral Responsivity 122

4.10 Performance of Photodetector Made From n-PSi/ZnO NCs Films With Nd-YAG Laser Annealing 126
4.10.1 I-V Characteristics 126
4.10.2 Spectral Sensitivity 128
4.10.3 Spectral Responsivity 130
4.11 Comparative Performance Evaluation of Photodetectors Made Using n-PSi/ZnO NCs Without and With Laser Annealing 133

4.12 Originality of the Thesis 136

CHAPTER 5 CONCLUSIONS 138

5.1 Conclusions 138

5.2 Future Studies 140

REFERENCES 141

LIST OF PUBLICATIONS 164
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Wurtzite ZnO phonon modes, frequencies (cm(^{-1})) and mode spectroscopy activity [61, 62].</td>
<td>20</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>ZnO nanostructures based studied UV photodetectors parameters reported in the literature</td>
<td>31</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>DC/RF sputtering parameters for ZnO seed layer deposition on n-PSi substrates [157].</td>
<td>54</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>The anodization current density dependent average crystallite size of the synthesized n-PSi.</td>
<td>61</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>The etching current density dependent average discrepancy values of the proposed n-PSi samples.</td>
<td>62</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>The average pore diameter and the porosity of the grown n-PSi at different current density.</td>
<td>66</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Results of the present study when compared other works in the literature in terms of nanocrystallite size, energy gap band gap, and porosity of the optimum n-PSi samples.</td>
<td>69</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Average crystallite size variation for annealed n-PSi with different laser pulses.</td>
<td>71</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Variation of average discrepancy values of annealed n-PSi at different laser pulses.</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>The annealing pulses number dependent energy band gap, strain, R(_{\text{rms}}) roughness, crystallite size of n-PSi saple.</td>
<td>77</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>The energy gap and the average pore diameter of the n-PSi grown at different laser pulses.</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Comparison of the crystallite size, energy gap and pore diameter of the n-PSi obtained in the present study with other similar reported works in the literature.</td>
<td>79</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Annealing temperature (T) dependent band gap energy, crystallite size, strain, R(_{\text{rms}}) of n-PSi/ZnO NCs thin films.</td>
<td>82</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Annealing temperature (T) dependent band gap energy and thickness of n-PSi/ZnO NCs thin films.</td>
<td>88</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Number of laser pulses dependent average crystallite size and microstrain of the synthesized n-PSi/ZnO NCs.</td>
<td>91</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Average crystallite size, band gap energy, microstrain and the R(_{\text{rms}}) surface roughness of the synthesized n-PSi/ZnO NCs as a function of number of laser pulses.</td>
<td>95</td>
</tr>
<tr>
<td>Table 4.14</td>
<td>The average pore diameter and the energy gap of the grown n-PSi at different laser pulses.</td>
<td>96</td>
</tr>
<tr>
<td>Table 4.15</td>
<td>Performance parameters of the fabricated photodetector and a comparison with other similar works.</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Table 4.16</td>
<td>Comparison the present photodetector’s performance with other literature reports.</td>
<td></td>
</tr>
<tr>
<td>Table 4.17</td>
<td>Calculated parameters of the designed photodetectors obtained at changing laser pulses and exposed to UV light (380 nm).</td>
<td></td>
</tr>
<tr>
<td>Table 4.18</td>
<td>Comparison of the responsivity of the fabricated photodetectors with other reported works.</td>
<td></td>
</tr>
<tr>
<td>Table 4.19</td>
<td>Comparative performance evaluation of the proposed optimum Pt/n-PSi/Pt UV photodiode fabricated from n-PSi sample without and with Nd-YAG laser annealing.</td>
<td></td>
</tr>
<tr>
<td>Table 4.20</td>
<td>Evaluated parameters of the studied photodetectors fabricated from n-PSi/ZnO NCs films annealed at different temperatures (under UV light illumination at bias voltage of 5 V without laser irradiation).</td>
<td></td>
</tr>
<tr>
<td>Table 4.21</td>
<td>Comparing the performance parameters of the proposed optimum photodetector with other works reported in the literature.</td>
<td></td>
</tr>
<tr>
<td>Table 4.22</td>
<td>Evaluated parameters of the studied photodetectors (at 380 nm illumination and changing bias voltages) fabricated from n-PSi/ZnO NCs films after laser annealing with different pulses.</td>
<td></td>
</tr>
<tr>
<td>Table 4.23</td>
<td>Comparing the performance parameters of the proposed optimum photodetector with other works reported in the literature.</td>
<td></td>
</tr>
<tr>
<td>Table 4.24</td>
<td>Comparative performance evaluation of the proposed optimum Pt/n-PSi/ZnO NCs/Pt UV photodiode (measured at bias voltage of +5 V) fabricated from n-PSi/ZnO NCs sample without and with Nd-YAG laser annealing.</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Electrochemical dissolution of Si [44]</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Band diagram of the c-Si/PSi/electrolyte interface under current flow (a) c-Si wafer of p-type and (b) c-Si wafer of n-type [22]</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Schematic representation of the weighing method used to calculate (a) the porosity and (b) thickness of the PSi layer [46]</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Electronic band structures for insulator, semiconductor and conductor</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Energy band structures and possible electron excitations direct band gap (a) and indirect energy band gap materials (b) [48, 54].</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Crystal unit cell of ZnO hexagonal wurtzite phase</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Mechanisms of e⁻-h⁺ pair’s generation in semiconductor under light illumination (a) Excess electrons, (b) Excess holes, and (c) Electrons thermalizes to the band edges [136]</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Schematic of the photoconduction mechanism in ZnO nanowires based photodetector: (a) oxygen-trapping process under dark condition, and (b) hole-trapping and photoconduction process under UV illumination [115].</td>
<td>36</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Schematic displaying the Q Switched Nd–YAG laser pulse arrival on the target material.</td>
<td>38</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>The detailed flow-chart of research in terms of methods and execution.</td>
<td>40</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Graphic representation of the PECE cell used to generate n-PSi samples.</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Schematic diagram of the RF/DC sputtering process.</td>
<td>42</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Schematic presentation of the used thermal annealing tube furnace.</td>
<td>43</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Schematic presentation for experimental setup of the laser annealing process.</td>
<td>45</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Experimental setup of the HR-XRD measurement.</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>A schematic of FESEM configuration.</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>Schematic presentation of AFM.</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.9</td>
<td>Schematic diagram of the PL spectroscopy setup.</td>
<td>50</td>
</tr>
</tbody>
</table>
Figure 3.10 The PL mechanism revealing the energy level of acceptor (E_a), donor (E_d) and intermediate (E_i) for the processes of (a-d) radiative recombination and (e) non-radiative recombination [153].

Figure 3.11 Diamond cutter machine.

Figure 3.12 Graphic representation of the digital balance weighting (a) without porosity, (b) with Porosity and (c) after removal the porosity.

Figure 3.13 Schematic diagram of the fabricated MSM (Pt/ n-PSi/ZnO NCs/Pt) photodetector based on RF sputtered ZnO NCs thin film on photo-electrochemically etched n-PSi layer (a) Photodetector design and (b) Electrode Geometry arrangements.

Figure 3.14 Graphic illustration of the experimental arrangement for UV photoresponse.

Figure 3.15 Top view image of the ZnO NCs MSM photodetector.

Figure 4.1 XRD patterns of synthesized n-PSi obtained at the current density of (a) 0 mA cm$^{-2}$, (b) at current density15 mA cm$^{-2}$, (c) at current density 30 mA cm$^{-2}$, and (d) at current density 45 mA cm$^{-2}$.

Figure 4.2 FESEM images (top view) of synthesized n-PSi obtained at the current density of (a) 0 mA cm$^{-2}$, (b) at current density15 mA cm$^{-2}$, and (c) at current density 30 mA cm$^{-2}$, and (d) at current density 45 mA cm$^{-2}$.

Figure 4.3 Cross-section view of synthesized n-PSi obtained at the current density of (a) 15 mA cm$^{-2}$, (b) 30 mA cm$^{-2}$ and (c) 45 mA cm$^{-2}$.

Figure 4.4 EDX spectra of synthesized n-PSi obtained at the current density of (a) 15 mA cm$^{-2}$, (b) 30 mA cm$^{-2}$ and (c) 45 mA cm$^{-2}$.

Figure 4.5 AFM images (3D view) of the grown n-PSi samples obtained at different anodization current density of: (a) 0 mA cm$^{-2}$, (b) 15 mA cm$^{-2}$, (c) 30 mA cm$^{-2}$ and (d) 45 mA cm$^{-2}$.

Figure 4.6 PL spectra for all prepared n-PSi samples with varying etching current density at room temperature.

Figure 4.7 XRD patterns of n-PSi annealed under varying laser pulses.

Figure 4.8 The n-PSi sample’ FESEM images (top view) under laser annealing effect at (a) 3, (b) 5, (c) 10 and (d) 20 pulses.

Figure 4.9 FESEM images (cross-sectional view) of n-PSi sample under effect of laser annealing at (a) 3, (b) 5, (c) 10 and (d) 20 pulses.
Figure 4.10 The n-PSi sample EDX spectra under laser annealing effect at (a) 3, (b) 5, (c) 10 and (d) 20 pulses.

Figure 4.11 The 3D images of AFM for the n-PSi samples grown obtained at different laser pulse numbers: (a) 3, (b) 5, (c) 10 and (d) 20.

Figure 4.12 PL spectra for different laser pulses annealed n-PSi samples.

Figure 4.13 XRD patterns of n-PSi/ZnO NCs films grown onto Si (111) substrate and annealed at (a) 600 °C, (b) 700 °C, (c) 800 °C and (d) 900 °C.

Figure 4.14 FESEM images (top view) of n-PSi/ZnO NCs thin films annealed at temperature: (a) 600 °C, (b) 700 °C, (c) 800 °C and (d) 900 °C.

Figure 4.15 FESEM images (cross-sectional view) of n-PSi/ZnO NCs thin films annealed at temperature: (a) 600 °C, (b) 700 °C, (c) 800 °C and (d) 900 °C.

Figure 4.16 EDX of n-PSi/ZnO NCs films grown onto Si (111) substrate and annealed at temperature: (a) 600 °C, (b) 700 °C, (c) 800 °C and (d) 900 °C.

Figure 4.17 3D AFM images for n-PSi/ZnO NCs thin film annealed at (a) 600 °C, (b) 700 °C, (c) 800 °C and (d) 900 °C.

Figure 4.18 Room temperature PL spectra of n-PSi/ZnO NCs thin films annealed at 600 °C, 700 °C, 800 °C and 900 °C.

Figure 4.19 XRD patterns of n-PSi/ZnO NCs films grown onto Si (111) substrate and annealed at different of the number of pulses.

Figure 4.20 FESEM images of n-PSi/ZnO NCs thin films annealed at laser pulses of: (a) 3, (b) 5, (c) 10 and (d) 20.

Figure 4.21 FESEM images (cross-section view) of n-PSi/ZnO NCs thin films annealed at laser pulses of: (a) 3, (b) 5, (c) 10 and (d) 20.

Figure 4.22 EDX spectra of n-PSi/ZnO NCs thin films (subjected to FESEM measurements) annealed at laser pulses of: (a) 3, (b) 5, (c) 10 and (d) 20.

Figure 4.23 3D AFM images of n-PSi/ZnO NCs thin films annealed at laser pulses of: (a) 3, (b) 5, (c) 10 and (d) 20.

Figure 4.24 Room temperature PL spectra of n-PSi/ZnO NCs thin films annealed at different number of laser pulses.

Figure 4.25 I-V characteristics of the fabricated photodetector recorded in dark and UV light exposure under varied etching current density of (a) 15 mA cm$^{-2}$, (b) 30 mA cm$^{-2}$, and (c) 45 mA cm$^{-2}$.

xvi
Figure 4.26 Bias voltage dependent photoresponse (under UV light illumination) of the UV Pt/n-PSi/Pt photodetector fabricated from samples prepared with 15 mA cm\(^{-2}\), (b) 30 mA cm\(^{-2}\) and (c) 45 mA cm\(^{-2}\).

Figure 4.27 Varied anodization current density dependent responsivity of the studied photodetector recorded at +5 V bias for (a) 15 mA cm\(^{-2}\), (b) 30 mA cm\(^{-2}\) and (c) 45 mA cm\(^{-2}\).

Figure 4.28 I-V behaviour of the designed n-PSi photodetector (after laser annealing) with pulses (a) 3, (b) 5, (c) 10, and (d) 20 recorded at dark and UV light condition.

Figure 4.29 Response-relaxation behavior of the MSM photodetector as a function of varied bias (under UV light exposure) after annealed using different laser pulses (a) 3, (b) 5, (c) 10, and (d) 20 recorded at each on/off cycle.

Figure 4.30 Responsivity of the studied laser annealed n-PSi photodetector recorded at applied voltage of +5 V at varied pulses of (a) 3, (b) 5, (c) 10 and (d) at 20.

Figure 4.31 Comparing the I-V curves of the best photodetector under the condition of dark and light exposure) made using n-PSi (a) Dark current with and without Laser annealing and (b) UV light with and without laser annealing.

Figure 4.32 Comparing the photo-response at bias of +5 V for the UV photodetector made using n-PSi without and with laser annealing (under UV light illumination).

Figure 4.33 Responsivity of the optimum UV photodetector (at bias voltage of +5 V) made using n-PSi with and without Nd-YAG laser annealing (fluence of 40 mJ cm\(^{-2}\)).

Figure 4.34 I-V curves of the studied Pt/n-PSi/ZnO/Pt photodetectors annealed at different temperatures of (a) 600 °C, (b) 700 °C, (c) 800 °C, and (d) 900 °C.

Figure 4.35 Bias voltage dependent photoresponse (under UV light illumination) of the UV photodetector fabricated from n-PSi/ZnO NCs annealed at varying temperatures of (a) 600 °C, (b) 700 °C, (c) 800 °C and (d) 900 °C measured in the on/off cycle.

Figure 4.36 Spectral responsivity of Pt/n-PSi/ZnONCs/Pt photodetectors (measured under UV light illumination at bias voltage of 5 V) fabricated using n-PSi/ZnO NCs films annealed at (a) 600 °C, (b) 700 °C, (c) 800 °C and (d) 900 °C.

Figure 4.37 I-V curves of the proposed photodetector (measured in the dark and UV illumination) made from n-PSi/ZnO sample after laser annealing with (a) 3, (b) 5, (c) 10, and (d) 20 pulses.
Figure 4.38 Bias voltages dependent relaxation response curve of MSM photodetectors (measured under UV illumination) made from n-PSi/ZnO NCs sample after laser annealing with (a) 3, (b) 5, (c) 10, and (d) 20 pulses measured in the on/off cycle.

Figure 4.39 Spectral responsivity of MSM photodetectors (measured under UV illumination at optimum bias voltage of 5 V) made from n-PSi/ZnO NCs sample after laser annealing with (a) 3, (b) 5, (c) 10, and (d) 20 pulses.

Figure 4.40 Comparing the $I-V$ curves of the optimum UV photodetector (under dark and UV light illumination) made using n-PSi (a) Dark with and without Laser annealing and (b) UV Light with and without Laser annealing.

Figure 4.41 Comparing the photo-response (measured under UV light illumination at bias voltage of 5 V) of the optimum UV photodetector made using n-PSi/ZnO NCs without and with laser annealing.

Figure 4.42 Responsivity for the optimum UV photodetector (at bias voltage of 5 V) made using n-PSi/ZnO NCs without and with Nd-YAG laser annealing.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE</td>
<td>Electrochemical etching</td>
</tr>
<tr>
<td>PSi</td>
<td>Porous silicon</td>
</tr>
<tr>
<td>n-PSi</td>
<td>nano – porous silicon</td>
</tr>
<tr>
<td>PEC</td>
<td>Photo –electrochemical etching</td>
</tr>
<tr>
<td>a. u.</td>
<td>Arbitrary unit</td>
</tr>
<tr>
<td>AFM</td>
<td>Atomic force microscopy</td>
</tr>
<tr>
<td>NBE</td>
<td>Band edge emission</td>
</tr>
<tr>
<td>Si</td>
<td>Silicon</td>
</tr>
<tr>
<td>CdS</td>
<td>Cadmium sulfide</td>
</tr>
<tr>
<td>CdTe</td>
<td>Cadmium telluride</td>
</tr>
<tr>
<td>UVPDs</td>
<td>Ultraviolet Photodetectors</td>
</tr>
<tr>
<td>CB</td>
<td>Conduction Band</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>c-Si</td>
<td>Crystallite silicon</td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
</tr>
<tr>
<td>APDS</td>
<td>Avalanche photodiode</td>
</tr>
<tr>
<td>DI</td>
<td>Distilled water</td>
</tr>
<tr>
<td>PINs</td>
<td>Positive intrinsic negative photodiode</td>
</tr>
<tr>
<td>EMT</td>
<td>Effective mass theory</td>
</tr>
<tr>
<td>e⁻-h⁺</td>
<td>Electron – hole</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy dispersive x– ray</td>
</tr>
<tr>
<td>G</td>
<td>Photo carrier –generation rate</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width at half maximum</td>
</tr>
<tr>
<td>He-Cd</td>
<td>Helium cadmium</td>
</tr>
<tr>
<td>HF</td>
<td>Hydrofluoric acid</td>
</tr>
<tr>
<td>MS</td>
<td>Metal semiconductor</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>PL</td>
<td>Photoluminescence</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>Pt</td>
<td>Platinum</td>
</tr>
</tbody>
</table>
P - Porous

KOH - Potassium hydroxide

RCA - Radio corporation of America

RF - Radio frequency

RT - Room temperature

RM_{S} - Root mean square

rpm - Round per minute

SEM - Scanning electronic microscopy

SiO_{2} - Silicon dioxide

$C_{2}H_{5}OH$ - Ethanol

$H_{2}O_{2}$ - Hydrogen peroxide

UV - Ultra violet

VB - Valance band

XRD - X-ray diffraction

ZnO - Znic oxide
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)</td>
<td>Average Crystallite size</td>
</tr>
<tr>
<td>(\Delta D)</td>
<td>Average discrepancy</td>
</tr>
<tr>
<td>(I)</td>
<td>Current</td>
</tr>
<tr>
<td>(I-V)</td>
<td>Current Voltage</td>
</tr>
<tr>
<td>(J)</td>
<td>Current density</td>
</tr>
<tr>
<td>(JV)</td>
<td>Current density–voltage</td>
</tr>
<tr>
<td>(P)</td>
<td>Density of bulik silicon</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Diffraction Bragg angle</td>
</tr>
<tr>
<td>(m_d)</td>
<td>Dissolved silicon mass</td>
</tr>
<tr>
<td>(m_e^*)</td>
<td>Effective mass of the electron in the conduction band</td>
</tr>
<tr>
<td>(m_h^*)</td>
<td>Effective mass of the hole in the valance band</td>
</tr>
<tr>
<td>(m_o)</td>
<td>Electron rest mass</td>
</tr>
<tr>
<td>(eV)</td>
<td>Electron volt</td>
</tr>
<tr>
<td>(J_{ep})</td>
<td>Electropolishing voltage</td>
</tr>
<tr>
<td>(E_g)</td>
<td>Energy band gap</td>
</tr>
<tr>
<td>(E_{ex})</td>
<td>Energy band gap excitation light source</td>
</tr>
<tr>
<td>(E_s)</td>
<td>Energy excited surface state</td>
</tr>
<tr>
<td>(E_v)</td>
<td>Energy of carriers at the bottom of the VB edge</td>
</tr>
<tr>
<td>(S)</td>
<td>Etched wafer area</td>
</tr>
<tr>
<td>(m_d)</td>
<td>Dissolved silicon mass</td>
</tr>
<tr>
<td>(\nu)</td>
<td>Frequency</td>
</tr>
<tr>
<td>(P_{in})</td>
<td>Incident solar power</td>
</tr>
<tr>
<td>(a_{bs})</td>
<td>Lattice constant of bulk silicon</td>
</tr>
<tr>
<td>(a_{ps})</td>
<td>Lattice constant of PSi layer</td>
</tr>
<tr>
<td>(C)</td>
<td>Lattice constant of the strained ZnO filim</td>
</tr>
<tr>
<td>(c_o)</td>
<td>Lattice constant of the unstrained ZnO filim</td>
</tr>
<tr>
<td>(I_m)</td>
<td>Maximum current</td>
</tr>
<tr>
<td>(J_m)</td>
<td>Maximum current density</td>
</tr>
<tr>
<td>(P_m)</td>
<td>Maximum power output</td>
</tr>
<tr>
<td>(E_{ph})</td>
<td>Photon energy</td>
</tr>
</tbody>
</table>
\(h \) - Planck’s constant
\(d \) - Pore diameter
\(\varepsilon_{zz} \) - Strain
\(d_1 \) - Thickness of porous layer
\(m_t \) - Total mass of etched Si
\(V \) - Voltage
\(m_2 \) - Weight of the Si after etching
\(m_3 \) - Weight of the Si after removal of the porous layer
\(m_1 \) - Weight of the Si before etching
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The distinctive features of porous silicon (PSi) are based on its unique morphology, which has unraveled new opportunities in the manufacture of Si-based optoelectronics. Nevertheless, the efficiency of such devices is dependent on the quality of fabricated PSi nanostructures, where controlled growth methods are constantly demanded to synthesize materials with desirable characteristics. In this regard, the electrochemical etching method appears as a suitable technique to synthesize high quality n-PSi materials with varied structures and morphologies. The dependence of the optoelectronic properties of the as-prepared n-PSi on the porosity (size, shape, homogeneity and density distribution), morphology and fabrication conditions can be influenced by fine-tuning the photo-electrochemical etching (PECE) processing parameters (e.g. etching duration, current density, coating process, etc.) [1]. Moreover, it has been shown that the crystallinity and optoelectronic properties of the synthesized PSi material can be remarkably improved by coating its front surface with n-type semiconductor materials [2]. Thus, several efforts have been made to produce PSi-based devices with optimum photodetection performance, where the key emphasis was to enhance the electrical and charge carrier transport characteristics of PSi [3]. Despite the varied attempts, the optimum conditions for synthesizing n-PSi with the desirable optoelectronic properties remain to be achieved.

Taking into consideration the prospect of n-PSi with strong visible and ultraviolet photoluminescence at room temperature, it is being widely researched for use as ultraviolet photodetectors (UVPDs) in fields of medicine, manufacturing, and technology [4]. Motivated by this emerging demand, this study intends to optimize the electrical and optical properties of n-PSi for fabrication as metal-semiconductor-metal (MSM) ultraviolet photodetectors (UVPDs). To adjust the morphological properties
of n-PSi, various parameters involved in photo-electrochemical etching (PECE) method were varied. The dependence of the electrical and optical properties of n-PSi on its morphology was then analyzed. Furthermore, the n-PSi layer was coated with a layer of ZnO (a direct wide band gap semiconductor material) NCs to enhance its UV photodetection property [5, 6]. This modification is imperative since the conventional UV detectors based on polycrystalline ZnO thin film have low photoresponsivity and long response time (of the order of few minutes) [7]. Previous studies on ZnO UV detector focused on improving the efficiency of micro mask electrodes rather than photoresponsivity [8]. Attempts have been made to improve the photoresponsivity of ZnO UV detectors by modifying the surfaces of as-prepared ZnO thin films [9]. Studies have shown that covering the ZnO film surface with nanosheets of diverse kinds of polymers could significantly improve the responsivities of photodetectors [7]. The surface coating of ZnO films with polyamide nylon enhanced their photoresponse to four orders of magnitude, although the response time was short (range of few seconds) [10]. In addition, the coating of P-Si with ZnO nanofilms could significantly improve its resistivity, resulting in fast response in the UV region.

The so called PD (or photosensor) device directly converts optical signal into electrical signal through the photovoltaic (PV) effect. Photodetector is a transducer that modifies one of the characteristics when light energy is incident on it. The Ohmic resistance of a photoresistor can be modified in the same way as rods and cones cells in retina neurons of human eye alter their electrochemical response. Likewise, chlorophyll in plant leaves adjusts the rate of CO₂ conversion to O₂. Other PDs alter the flow of electrical current or the potential difference across their terminals. Easily reproducible and cost-effective PDs that exhibit sufficiently fast response to produce a measurable output from a small amount of light energy must be developed for potential applications in the field of high-speed optical communications. Examples of this kind of photodetectors include avalanche photodiodes (APDs) and positive intrinsic negative photodiodes (PINs).
1.2 Problem Statement

Studies on the fabrication of efficient PDs are constantly expanding given the urgent need for more advanced and better devices with high stability, speed, sensitivity, selectivity, and large signal to noise ratio. [11-13]. PSi based PDs have been fabricated using different methods [14, 15], particularly the PECE method, which has produced excellent and high quality PDs [15]. However, the optimum method for the growth of PSi with controlled pore size distribution has not been realized despite the many efforts to do so. This is imperative as controlling the structure, morphology, optical and electrical properties (I-V curves, rise time, recovery time, sensitivity and responsivity) of ZnO based PDs will enhance their overall gain and reduce their loss rate. Moreover, the influence of laser annealing (varied fluences, laser energy, pulses, repetition time, etc.) on the structure, morphology, optical and electrical properties of grown n-PSi/ZnO NCs based MSM PDs has not been examined systematically. Thus, it is expected that coupling the established PECE method with pulse laser annealing process will lead to the synthesis of better quality n-PSi and n-PSi/ZnO NCs under optimum conditions. In this view, this thesis attempts to combine the PECE technique with Nd:YAG laser annealing to improve the optical, electrical and morphological properties of grown n-PSi and n-PSi/ZnO NCs samples (at optimum growth condition), resulting in the fabrication of high performing and efficient MSM UV PDs. Such modifications in the overall behavior of n-PSi samples are anticipated to produce an optimized MSM UVPD characterized by large surfaces and high-quality structures needed for diverse applications. The optimally synthesized n-PSi and n-PSi/ZnO NCs samples can further be used to fabricate MSM PDs of high efficiency and fast response.

1.3 Objective of the Thesis

Based on the abovementioned problem statement and the identified research gaps, the following objectives are set:
(a) To synthesize n-PSi on Si substrates using the photo-electrochemical etching (PECE) method under different processing parameters for the growth optimization and subsequent characterizations.

(b) To determine the influence of growth parameters (temperature and thickness) on the structure, morphology and optical properties of n-PSi/ZnO NCs produced using RF sputtering technique.

(c) To evaluate the influence of Nd-YAG laser annealing parameters on the structure, morphology, optical properties and electrical properties of the fabricated MSM UV photodetectors based on optimum n-PSi and n-PSi/ZnO NCs samples.

(d) To compare the performances of the proposed MSM UV PDs fabricated with and without laser annealing.

1.4 Scope of the Work

The research scope of this thesis includes:

(a) The optimization of the growth parameters of photo-electrochemical etching (PECE) and radio frequency (RF) sputtering methods for the synthesis of n-PSi on Si-substrate and deposition of ZnO NCs on n-PSi layer, respectively.

(b) The structural, morphological and optical characterizations of the n-PSi and n-PSi/ZnO NCs samples at room temperature using X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and photoluminescence (PL) spectroscopy.

(c) The fabrication of MSM UV PDs using the optimally synthesized n-PSi and n-PSi/ZnO NCs samples.
(d) The performance evaluation of the proposed photodetectors (MSM UV PDs) in the dark and under UV light illumination.

(e) The measurement of I-V characteristics of the designed MSM UV PDs.

(f) The annealing of the optimally synthesized samples using Nd-YAG laser under varied laser parameters (anodization current and voltage) to improve the performance of the PDs.

(g) Comparative analysis of the photodetection performances of PDs fabricated from laser annealed and un-annealed samples.

1.5 Thesis Outline

Chapter one presents a brief background on the subject matter and an overview of the syntheses of PSi and ZnO films as well as the significance of photodetectors. Chapter two provides a comprehensive literature review and theoretical background of the formation and deposition of n-PSi layers in addition to their photodetector application. The basic principle and mechanism of photodetector operation is also presented in this chapter. Chapter three presents in detail the research methodology, which comprises experimental set up of the various synthesis methods of n-PSi and ZnO NCs, description of the characterization tools, fabrication of the MSM UV photodetector and the process of laser annealing. The preparation of the Si samples used to synthesize PSi layers was also described in this chapter. Furthermore, this chapter explains the process of fabricating the Pt/n-PSi/ZnO NCs/Pt UV photodetector. Chapter 4 presents the results on the effect of varying the current density of PECE method on the structural and optical properties of n-PSi layers deposited on n-type c-Si wafer of (111) orientations. Afterwards, the n-PSi layer with optimal current density (from each orientation) was selected as the best substrate to grow ZnO NCs using the RF sputtering technique. The properties of the samples required for the fabrication of the photodetector device and the effects of temperature annealing on the morphology, structural, and optical characteristics of ZnO NCs arrays synthesized on PSi substrate are discussed. The n-PSi layer with optimal thickness and
temperature annealing (from each orientation) was selected as the most suitable substrate for fabrication of the photodetector device. In addition, the results on the influence of Nd-YAG laser annealing on the structural and optical properties of n-PSi and n-PSi/ZnO NCs are presented in this chapter. The results are comparatively analysed in this chapter. Chapter 5 concludes the thesis with deductions inferred from the results.
REFERENCES

A. Banik, “Preparation Of Pyramidal Zinc Oxide Particle As An Antireflective Coating For Application In Solar Cell,” 2010.

G. Kenanakis, M. Androulidaki, E. Koudoumas, C. Savvakis, and N. Katsarakis, “Photoluminescence of ZnO nanostructures grown by the aqueous

L. Chuah, Z. Hassan, S. Ng, and H. A. Hassan, “Porous Si (111) and Si (100) as an intermediate buffer layer for nanocrystalline InN films,” *Journal of Alloys and Compounds*, vol. 479, no. 1-2, pp. L54-L58, 2009.

LIST OF PUBLICATIONS

A. INTERNATIONAL JOURNALS

4- Asad A.Thahe, Hazri Bakhtiar, Z Hassan, Noriah Bidin, Laser Annealing Enhanced the photophysical performance of Pt/n – PSi /ZnO NCs – Based photodetector, Journal of photochemistry and photobiology A:Chemistry.

B. INTERNATIONAL CONFERENCES
