STRUCTURAL, OPTICAL AND JUDD-OFElt PARAMETERS STUDY ON SAMARIUM AND DYSPROSIUM IONS DOPED CALCIUM SULFATE AND MAGNESIUM SULFATE ULTRA-PHOSPHATE GLASSES

ALIYU MOHAMMED ALIYU

A thesis submitted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy

Faculty of Science
Universiti Teknologi Malaysia

FEBRUARY 2019
DEDICATION

This thesis is dedicated to my father (Malan Mohammed C. Aliyu), who taught me that the best kind of knowledge to have is that which is learned for its own sake. It is also dedicated to my mother (Hajiya Habiba Mohammed Aliyu), who taught me that even the largest task can be accomplished if it is done one step at a time.
ACKNOWLEDGEMENT

Thank Almighty God, the Omnipotent, omnipresent and Omniscient, He Who that full His wisdom to every corner of the universe. Here, I would like to express my sincerest gratitude to my supervisor, Prof Dr, Rosli Bin Hussin for his advice, patience, guidance with encouragement throughout my research and also his indispensable assistance in finalizing this dissertation. I wish also, to appreciate my Co-supervisor Dr, Nor Ezzaty Ahmad for her quick response and constant support for the progress of this research. Also, I appreciate my heartfelt gratitude to the university (Universiti Teknologi Malaysia) at large for having a very good and conducive atmosphere for learning.

Notwithstanding, my deepest gratitude’s goes to my parents (Mal. Mohammed C. Aliyu, and Hajiya Habiba Mohammed Aliyu) for their support, encouragement, and prayers. Thank my wife Hafsat Yahaya Ibrahim for her patient, sacrifice and prayers, this includes a support and prayers from my brothers and sisters (Mal. Alhassan Muhammad Aliyu, Aminu Mohammed Aliyu, Aisha Dalha Musa, Binta Alhassan Ahmad, Rukaiya Akilu et cetera). Finally thank my friends and my entire family who have made this journey more delightful.
Trivalent rare earth (Dy$^{3+}$ and Sm$^{3+}$) doped calcium sulfophosphate, 20CaSO_4-(80-x)P_2O_5-xDy$_2$O$_3$, 20CaSO_4-(80-x)P_2O_5-xSm$_2$O$_3$ and magnesium sulfophosphate 20MgSO_4-(80-x)P_2O_5-xDy$_2$O$_3$, 20MgSO_4-(80-x)P_2O_5-xSm$_2$O$_3$ with 0.2 $\leq x \leq$ 1.5 mol% of ultra-phosphate glass system were prepared using conventional melt-quenching method followed by annealing process at 300 ºC for 4 hours. The amorphous phase of glass samples were characterized by X-ray diffraction (XRD) method, while the structural features of the samples were measured using Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. The optical properties of glass samples were characterized by ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy and photoluminescence (PL) spectroscopy. The infrared spectra revealed the bonding link of the host affected by modifier oxides (MgO, CaO) and intermediate oxides (SO$_4$). Their linkages consist of P-O-P network, PO$_2$ units, PO$_-$, P=O, O-S-O and SO$_4$ groups with no evidence of rare earth ions network as a result of the low concentrations of dopant. In addition, the similar tetrahedral arrangement was also shown by Raman spectra. The NMR spectra were used to identify the phosphate compositional change through conversion of Q3 (in P$_2$O$_5$) to Q2, Q1 and Q0 which follow the predictions of the Van Wazer’s model. The NMR spectra affirmed the presence of Q3, Q2, and Q1 groups, referring to existence of ultra-, meta- and pyrophosphate units, although the Q2 and Q1 are more predominant. Changes in Qn distributions in host phosphate networks are due to the breaking of P-O-P linkages to form P-O-M networks (where M is metal ions). The physical and nuclear properties such as density, molar volume, field strength, oxygen packing density, ionic packing density, inter nuclear distance, ion concentration and polaron radius were evaluated. The absorption characteristic presented by the UV-Vis-NIR spectra showed eight peaks from transition of Sm$^{3+}$, and six peaks for transition of Dy$^{3+}$ ions. All transitions correspond to the transition from ground state to excited state of Sm$^{3+}$ and Dy$^{3+}$ ions, respectively. The energy gap ranges from 4.090 – 4.185 eV, 4.517 – 4.612 eV and Urbach energy from 0.105 – 0.119, 0.155 – 0.135 eV with respect to the rare earth ions content. The photoluminescence spectra of Dy$^{3+}$ ions illustrate three prominent bands around 481 nm ($^4\text{F}_{9/2} \rightarrow ^6\text{H}_{15/2}$), 577 nm ($^4\text{F}_{9/2} \rightarrow ^6\text{H}_{13/2}$), and 660 nm ($^4\text{F}_{9/2} \rightarrow ^6\text{H}_{11/2}$), and for Sm$^{3+}$ ions five peaks were observed around 560 nm ($^4\text{G}_{5/2} \rightarrow ^6\text{H}_{5/2}$), 597 nm ($^4\text{G}_{5/2} \rightarrow ^6\text{H}_{7/2}$), 642 nm ($^4\text{G}_{5/2} \rightarrow ^6\text{H}_{9/2}$), 703 nm ($^4\text{G}_{5/2} \rightarrow ^6\text{H}_{11/2}$) and 735 nm ($^4\text{G}_{5/2} \rightarrow ^6\text{H}_{13/2}$). The absorption and emission spectra were used to evaluate the Judd-Ofelt parameters and radiative properties such as transition probabilities, radiative lifetimes and branching ratios of rare earth ions. Based on this study, calcium sulfophosphate glass and magnesium sulfophosphate glass doped with rare earth ions could be suggested as promising luminescent host material for solid-state lighting device application.
Nadir bumi tiga valensi (Dy\(^{3+}\) dan Sm\(^{3+}\)) dop kalsium sulfofosfat \(20\text{CaSO}_4-(80-x)\text{P}_2\text{O}_5-x\text{Dy}_2\text{O}_3\) dan magnesium sulfofosfat \(20\text{MgSO}_4-(80-x)\text{P}_2\text{O}_5-x\text{Dy}_2\text{O}_3\), \(20\text{CaSO}_4-(80-x)\text{P}_2\text{O}_5-x\text{Sm}_2\text{O}_3\) dan magnesium sulfofosfat \(20\text{MgSO}_4-(80-x)\text{P}_2\text{O}_5-x\text{Sm}_2\text{O}_3\) dengan \(0.2 \leq x \leq 1.5\) mol\% dalam sistem kaca ultra-fosfat telah disediakan dengan menggunakan kaedah pelindapan lebur lazim yang diikuti dengan proses penyepuhlindapan pada 300 °C selama 4 jam. Fasa amorfus sampel kaca telah dicirikan oleh kaedah pembelauan sinar-X (XRD), sementara ciri-ciri struktur sampel telah diukur menggunakan spektroskopi inframerah transformati Fourier (FTIR), spektroskopi Raman dan spektroskopi resonans magnet nuklear (NMR). Sifat optik sampel kaca dicirikan melalui spektroskopi ultraungu-cahaya nampak inframerah dekat (UV-Vis-NIR) dan spektroskopi fotoluminesens. Spektrum inframerah menunjukkan hubungan ikatan hos terjejas oleh oksida pengubahsuai (MgO, CaO) dan oksida pertengahan (SO\(_4\)). Hubungan rangkaian terdiri daripada P-O-P, unit PO\(_2\), PO-, P=O, O-S-O dan kumpulan SO\(_4\), tanpa menunjukkan rangkaian ion-ion nadir bumi disebabkan oleh komposisi dopan yang rendah. Tambahan pula, susunan tetrahedra yang sama juga ditunjukkan oleh spektrum Raman. Spektrum NMR telah digunakan untuk mengenal pasti perubahan komposisi fosfat melalui penukaran Q\(^3\) (dalam P\(_2\)O\(_5\)) kepada Q\(^2\), Q\(^1\) dan Q\(^0\) yang mengikuti ramalan model Van Wazer. Spektrum NMR menegaskan kehadiran kumpulan Q\(^3\), Q\(^2\), dan Q\(^1\) yang merujuk kepada kehadiran unit ultra-, meta- dan pirofosfat walaupun Q\(^2\) dan Q\(^1\) lebih dominan. Perubahan dalam taburan Q\(^n\) dalam rangkaian hos fosfat adalah disebabkan oleh pecahnya rangkaian P-O-P untuk membentuk rangkaian P-O-M (M merupakan ion logam). Ciri-ciri fizikal dan nuklear seperti ketumpatan, isipadu molar, kekuatan medan, ketumpatan kepadatan oksigen, ketumpatan padatan ionik, jarak antara nukleus, kepekatan ion dan jejari polaron telah ditentukan. Ciri penyerapan yang ditunjukkan oleh spektra UV-Vis-NIR menunjukkan lapan puncak dari peralihan ion Sm\(^{3+}\) dan enam puncak untuk peralihan ion Dy\(^{3+}\). Semua peralihan adalah masing-masing sepadan dengan peralihan dari keadaan asas ke keadaan teruja ion Sm\(^{3+}\) dan Dy\(^{3+}\). Jurang tenaga berjulat dari 4.090 – 4.185 eV, 4.517 – 4.612 eV dan tenaga Urbach dari 0.105 – 0.119 eV, 0.155 – 0.135 eV menurut kandungan ion nadir bumi. Spektrum fotoluminesens bagi ion Dy\(^{3+}\) menunjukkan tiga jalur yang menonjol sekitar 481 nm (\(^4F_{9/2} \rightarrow ^6H_{15/2}\)), 577 nm (\(^4F_{9/2} \rightarrow ^6H_{13/2}\)), dan 660 nm (\(^4F_{9/2} \rightarrow ^6H_{11/2}\)), dan bagi ion Sm\(^{3+}\) lima puncak telah dicerap sekitar 560 nm (\(^4G_{5/2} \rightarrow ^6H_{5/2}\)), 597 nm (\(^4G_{5/2} \rightarrow ^6H_{7/2}\)), 642 nm (\(^4G_{5/2} \rightarrow ^6H_{9/2}\)), 703 nm (\(^4G_{5/2} \rightarrow ^6H_{11/2}\)) dan 735 nm (\(^4G_{5/2} \rightarrow ^6H_{13/2}\)). Spektrum serapan dan pancaran telah digunakan untuk menentukan parameter Judd-Ofelt dan sifat pancaran seperti kebarangkalian peralihan, masa hayat pancaran dan nisbah cabangan ion nadir bumi. Berdasarkan kajian ini, kaca kalsium sulfofosfat dan kaca magnesium sulfofosfat yang didop dengan ion nadir bumi boleh dicadangkan sebagai bahan hos luminesens berpotensi bagi aplikasi peranti pencahayaan keadaan pepejal.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Background of the Research 1
1.2 Research Problem 5
1.3 Research Objectives 6
1.4 Scope of the Research 7
1.5 Significant of Research 7
1.6 Thesis Plan 8

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction 11
2.2 Phosphate based Glass 11
2.3 Modifier Pseudo-reaction on Phosphate Glass 13
2.4 X-ray Diffraction (XRD) Analysis on Phosphate Glass 17
2.5 Structure of Phosphate by IR 19
 2.5.1 Infrared Spectral Studies on Phosphate Glass 20
2.6 Raman Spectral Studies of Phosphate Glass 30
2.7 NMR Spectral Studies on Phosphate Glass 37
2.8 Luminescence Studies 43
 2.8.1 Emission and Excitation 45
 2.8.2 Emission Spectra of Samarium Doped Phosphate Glass 45
 2.8.3 Excitation Spectra of Samarium Doped Phosphate Glass 51
 2.8.4 Emission Spectra of Dysprosium Doped Phosphate glass 53
2.9 Optical Properties 56
 2.9.1 Absorption Spectra of Samarium Doped Phosphate Glass 56
2.10 Judd-Ofelt theory 62
 2.10.1 Quantitative analysis of Judd and Ofelt theory 63

CHAPTER 3 RESEARCH METHODOLOGY 68
 3.1 Introduction 68
 3.2 Samples preparation by Melt Quench method 69
 3.3 Samples Instrumentation 72
 3.3.1 X-ray Diffraction Measurement 72
 3.3.2 Glass Density Measurement 73
 3.3.3 IR Measurement 76
 3.3.4 NMR Measurement 77
 3.3.5 Raman Measurement 77
 3.3.6 UV-Vis-NIR Measurement 78
 3.3.7 Photoluminescense Spectrophotometer 79

CHAPTER 4 RESULT AND DISCUSSION 82
 4.1 Introduction 82
 4.2 Glass Formation 82
 4.3 Phase Analysis 83
 4.4 IR Spectra Analysis 85
 4.5 Raman Spectra Analysis 92
4.6 Nuclear Magnetic Resonance (NMR) Spectra Analysis 98
4.7 Physical properties analysis 99
4.7.1 Density, Oxygen Packing Density and Ionic Packing Density 99
4.8 Luminescence Spectra Analysis 105
4.8.1 Phosphate based doped Samarium and Dysprosium ion 105
4.9 Optical Properties 115
4.9.1 Absorption Spectra Analysis of Magnesium Sulfate Doped Sm$^{3+}$ and Dy$^{3+}$ ions 115
4.9.2 Refractive Index and Band Gap Analysis 120
4.10 Judd-Ofelt Analysis 129
4.11 Radiative properties 141

CHAPTER 5 CONCLUSION AND FUTURE PERSPECTIVES 149
5.1 Introduction 149
5.2 Conclusion 149
5.3 Future perspectives 151

REFERENCES 153
LIST OF PUBLICATIONS 179
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Stoichiometry on Phosphate glass</td>
<td>15</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Observed peaks frequencies (cm$^{-1}$) of IR spectra</td>
<td>29</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Observed peaks frequencies (cm$^{-1}$) of Raman spectra</td>
<td>35</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Chemical composition for xCaSO$_4$-(100-x) P$_2$O$_5$ with 10 ≤ x ≤ 30 mol % glass system</td>
<td>70</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Chemical composition for 20CaSO$_4$ (80 - x) P$_2$O$_5$-xSm$_2$O$_3$ with 0.3 ≤ x ≤ 1.5 mol % glass system</td>
<td>70</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Chemical composition for 20CaSO$_4$ (80 - x) P$_2$O$_5$-xDy$_2$O$_3$ with 0.2 ≤ x ≤ 1.0 mol % glass system</td>
<td>71</td>
</tr>
<tr>
<td>Table 3.4</td>
<td>Chemical composition for xMgSO$_4$-(100-x) P$_2$O$_5$ with 20 ≤ x ≤ 40 mol % glass system</td>
<td>71</td>
</tr>
<tr>
<td>Table 3.5</td>
<td>Chemical composition for 20MgSO$_4$ (80 - x) P$_2$O$_5$-xSm$_2$O$_3$ with 0.2 ≤ x ≤ 1.0 mol % glass system</td>
<td>71</td>
</tr>
<tr>
<td>Table 3.6</td>
<td>Chemical composition for 20MgSO$_4$ (80 - x) P$_2$O$_5$-xDy$_2$O$_3$ with 0.3 ≤ x ≤ 1.5 mol % glass system</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>IR bands assignment for un-doped calcium sulfate/magnesium sulfate ultra-phosphate with 20 ≤ x ≤ 40 and 10 ≤ x ≤ 30 mol% glass system</td>
<td>88</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>IR bands assignment for doped samarium and dysprosium phosphate based with 0.2 ≤ x ≤ 1.0 mol % glass system</td>
<td>91</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Raman bands assignment for doped samarium and dysprosium phosphate based with 0.2 ≤ x ≤ 1.0 mol % glass system</td>
<td>97</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Physical properties of 20MgSO$_4$-(80-x) P$_2$O$_5$-xSm$_2$O$_3$ and 20CaSO$_4$-(80-x) P$_2$O$_5$-xDy$_2$O$_3$ with 0.2 ≤ x ≤ 1.0 mol % glass system</td>
<td>103</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Physical properties of 20MgSO$_4$-(80-x) P$_2$O$_5$-xDy$_2$O$_3$ and 20CaSO$_4$-(80-x) P$_2$O$_5$-xSm$_2$O$_3$ with 0.3 ≤ x ≤ 1.5 mol % glass systems</td>
<td>104</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Observed peak positions (cm$^{-1}$), Nephelauxetic ratio (β) and Bonding parameter (δ) for 20CaSO$_4$-(80-x)-xDy$_2$O$_3$ and 20MgSO$_4$-(80-x)-xSm$_2$O$_3$ with 0.2 ≤ x ≤ 1.0 mol % glass system</td>
<td>119</td>
</tr>
</tbody>
</table>
Table 4.7 Other calculated optical and physical properties of 20MgSO₄-(80-x) P₂O₅-xSm₂O₃ and 20CaSO₄-(80-x) P₂O₅-xDy₂O₃ with 0.2 ≤ x ≤ 1.0 mol % glass system

Table 4.8 Other calculated optical and physical properties of 20MgSO₄-(80-x) P₂O₅-xDy₂O₃ and 20CaSO₄-(80-x) P₂O₅-xSm₂O₃ with 0.3 ≤ x ≤ 1.5 mol % glass system

Table 4.9 Experimental (f exp) and Calculated (f cal) oscillator strength (×10⁻⁶) and root mean square deviation (σ rms) for 20CaSO₄-(80-x) P₂O₅-xDy₂O₃ with 0.2 ≤ x ≤ 1.0 mol % glass system

Table 4.10 Judd-Ofelt parameter (Ω₃ = ×10⁻²⁰ cm²), Quality factor of our present work and previous for 20CaSO₄-(80-x) P₂O₅-xDy₂O₃ with 0.2 ≤ x ≤ 1.0 mol % glass system

Table 4.11 Experimental (f exp) and Calculated (f cal) oscillator strength (×10⁻⁶) and root mean square deviation (σ rms) for 20MgSO₄-(80-x) P₂O₅-xSm₂O₃ with 0.2 ≤ x ≤ 1.0 mol % glass system

Table 4.12 Judd-Ofelt parameter (Ω₃ = ×10⁻²⁰ cm²), Quality factor of our present work and previous for 20MgSO₄-(80-x) P₂O₅-xSm₂O₃ with 0.2 ≤ x ≤ 1.0 mol % glass system

Table 4.13 Experimental (f exp) and Calculated (f cal) oscillator strength (×10⁻⁶) and root mean square deviation (σ rms) for 20MgSO₄-(80-x) P₂O₅-xSm₂O₃ with 0.3 ≤ x ≤ 1.5 mol % glass system

Table 4.14 Judd-Ofelt parameter (Ω₃ = ×10⁻²⁰ cm²), Quality factor of our present work and previous for 20CaSO₄-(80-x) P₂O₅-xSm₂O₃ with 0.3 ≤ x ≤ 1.5 mol % glass system

Table 4.15 Experimental (f exp) and Calculated (f cal) oscillator strength (×10⁻⁶) and root mean square deviation (σ rms) for 20MgSO₄-(80-x) P₂O₅-xDy₂O₃ with 0.3 ≤ x ≤ 1.5 mol % glass system

Table 4.16 Judd-Ofelt parameter (Ω₃ = ×10⁻²⁰ cm²), Quality factor of our present work and previous for 20MgSO₄-(80-x) P₂O₅-xDy₂O₃ with 0.3 ≤ x ≤ 1.5 mol % glass system

Table 4.17 The Energy levels assignments with reduced matrix elements of Sm³⁺ and Dy³⁺ ion

Table 4.18 The obtained ΔE (cm⁻¹), A (s⁻¹), A md (s⁻¹), A ed (s⁻¹) and the branching ratio βr (%) for 20CaSO₄-(80-x)-Dy₂O₃ with 0.2 ≤ x ≤ 1.0 mol %

Table 4.19 The obtained ΔE (cm⁻¹), A (s⁻¹), A md (s⁻¹), A ed (s⁻¹) and the branching ratio βr(%) for 20MgSO₄-(80-x)-Sm₂O₃ with 0.2 ≤ x ≤ 1.0 mol %
Table 4.20 | The obtained ΔE (cm$^{-1}$), A (s$^{-1}$), A_{md} (s$^{-1}$), A_{ed} (s$^{-1}$) and the branching ratio βr (%) for 20CaSO$_4$-(80-x)-Sm$_2$O$_3$ with $0.3 \leq x \leq 1.5$ mol %

Table 4.21 | The obtained ΔE (cm$^{-1}$), A (s$^{-1}$), A_{md} (s$^{-1}$), A_{ed} (s$^{-1}$) and the branching ratio βr (%) for 20MgSO$_4$-(80-x)-Dy$_2$O$_3$ with $0.3 \leq x \leq 1.5$ mol %

145

146
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Phosphate polymerized Qⁿ species (Brow, 2000)</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Magnesium cation as network modifier oxides (Higazy, 1995)</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The effect of Oxygen to phosphate ratio ([O]/[P]) on phosphate structural network (Dias, 2005)</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>XRD spectra of xFe₂O₃ (55-x) P₂O₅-30CaO-5MgO-10B₂O₃ glasses with, 0 ≥ x ≥ 15 mol % (Stefan and Karabulut, 2014)</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>X-ray spectra for xNa₂SO₄ - (1-x)(0.4Fe₂O₃- 0.6P₂O₅) glass samples (Lai et al., 2012)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>X-ray diffraction patterns for (42 - x) P₂O₅-50ZnO-8MgO-xTiO₂ glass samples (Ismail et al., 2016)</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>IR spectra of (50-y) Na₂O-yCuO-10Bi₂O₃-40P₂O₅ glasses (Chahine et al., 2004b)</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>IR spectra of xMgO-(40- x)CaO-60P₂O₅ glasses with 0 ≤ x≤ 0.4 (a) Range of 1600-4000 cm⁻¹ (b) Range of 400-1800 cm⁻¹ (Hussin et al., 2009)</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Infrared spectra of xCaO-(100 -x) (0.4Fe₂O₃-0.6P₂O₅) glasses (Qian et al., 2013)</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Series of IR spectra for (45-x) Na₂O-xBaO-5ZnO-50P₂O₅ glasses at room temperature (1) 45Na₂O-5ZnO-50P₂O₅ (2) 35Na₂O-10BaO-5ZnO-50P₂O₅ (3) 25Na₂O-20BaO-5ZnO-50P₂O₅ (4) 15Na₂O-30BaO-5ZnO-50P₂O₅ (5) 5Na₂O-40BaO-5ZnO-50P₂O₅ (6) 45BaO-5ZnO-50P₂O₅ (Hafid et al., 2002)</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>IR spectra of phosphate silicate from P₂O₅-SiO₂-K₂O-CaO-MgO-MoO₃ glass system (Szumera, 2014)</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>IR spectra of P₂O₅ based glasses (a) full range (b) far IR range (Thieme et al., 2015)</td>
<td>27</td>
</tr>
<tr>
<td>Figure 2.13</td>
<td>Raman spectra of 24M₂SO₄-xM₂O-52ZnO-23 P₂O₅ glasses (Thieme et al., 2015)</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.14</td>
<td>Raman spectra of xNa₂SO₄ - (1-x)(0.4Fe₂O₃- 0.6P₂O₅) glasses (Lai et al., 2012)</td>
<td>32</td>
</tr>
</tbody>
</table>
Figure 2.15 Raman spectra of \(x\text{MgO-(40- }x\text{) CaO-60P}_2\text{O}_5\) glasses (Hussin et al., 2009)

Figure 2.16 Raman spectra of \(x\text{Li}_2\text{O-(40-}x\text{) ZnO-60P}_2\text{O}_5\) glasses (Moguš-Milanković et al 2010)

Figure 2.17 \(^{31}\text{P MAS NMR spectra of }x(\text{MgO})\text{(1-}x\text{)(P}_2\text{O}_5)\) glasses (Fayon et al., 2001)

Figure 2.18 \(^{31}\text{P MAS NMR spectra of }x\text{CdO(1-}x\text{)}\text{P}_2\text{O}_5\) glasses (Hussin et al., 2002)

Figure 2.19 \(^{31}\text{P MAS NMR spectra of }x\text{Na}_2\text{O-0.5P}_2\text{O}_5\text{-}(0.5-}x\text{) GeO}_2\) glasses (Sahar et al., 2007)

Figure 2.20 \(^{31}\text{P MAS-NMR spectra of the }50\text{P}_2\text{O}_5\text{-}(50-}x\text{) Na}_2\text{O-xCuO}\) glasses (Shih et al., 2003)

Figure 2.21 NMR spectra of \(x\text{TiO}_2\text{-}(65-}x\text{) P}_2\text{O}_5\text{-35 CaO glasses (Silva et al., 2010)}\)

Figure 2.22 Schematic Jablonski diagram of the system

Figure 2.23 Emission spectra of Sm\(^{3+}\) doped Zinc-phosphate glasses (Sashedri et al. 2015)

Figure 2.24 Emission spectra of Sm\(^{3+}\) doped fluoro-phosphate glass (Babu, et al 2014)

Figure 2.25 Emission spectra of Sm\(^{3+}\):PKAZLF glasses (Lim et al., 2013)

Figure 2.26 The emission spectra of PKANb:Sm glasses (Srihari and Jayasankar, 2017)

Figure 2.27 Excitation spectrum of Sm\(^{3+}\) LZP glasses (Reddy et al., 2015)

Figure 2.28 Excitation spectrum of Sm\(^{3+}\) doped 20ZnO-10Li\(_2\)O-10Na\(_2\)O-60P\(_2\)O\(_5\) glasses (Ramteke et al., 2017)

Figure 2.29 Emission spectra of PZSM:Dy glasses (Ahmadi et al., 2016)

Figure 2.30 Emission spectra of PKAZLFDY glasses (Vijaya et al., 2013a)

Figure 2.31 Excitation spectrum of Dy\(^{3+}\) doped phosphate glass (Sreedhar et al., 2013)

Figure 2.32 The UV-Vis-NIR spectra of PZSMS-Ag glass (Ahmadi et al., 2017)

Figure 2.33 Absorption spectrum of Sm\(^{3+}\) -doped phosphate glass (Dousti et al., 2013)
Figure 2.34 Absorption spectrum (a) UV–visible and (b) NIR regions for Dy$^{3+}$ doped phosphate glasses (Linganna et al., 2014)

Figure 2.35 Tauc plots of Direct (a) and Indirect (b) band gap for Sm$^{3+}$ doped phosphate glass (Kesavulu and Jayasankar, 2012)

Figure 2.36 The $(ahv)^{1/2}$ against (hv) of Dy$^{3+}$ doped lead phosphate glasses (Marzo (Marzouk et al., 2012)

Figure 3.1 Preparation and characterization chart

Figure 3.2 Model BD 6400053-01 X-ray Diffractometer

Figure 3.3 Presica Model XT 220 (Digital balance)

Figure 3.4 Perkin-Elmer Spectrum GX FTIR spectroscopy

Figure 3.5 Advance III HD NMR spectroscopy

Figure 3.6 1112 XploRA PLUS Raman spectroscopy

Figure 3.7 Shimadzu 3101 UV-Vis-NIR Spectrophotometer

Figure 3.8 Perkin-Elmer LS 55 Fluorescence Spectrophotometer

Figure 4.1 XRD pattern of xMgSO$_4$-(100-x) P$_2$O$_5$ with 20 ≤ x ≤ 40 mol % glass system

Figure 4.2 XRD pattern of xCaSO$_4$-(100-x) P$_2$O$_5$ (10 ≤ x ≤ 30 mol %) glass system

Figure 4.3 XRD pattern of 20MgSO$_4$ (80 - x) P$_2$O$_5$-xSm$_2$O$_3$ with 0.2 ≤ x ≤ 1.0 mol % glass system

Figure 4.4 XRD pattern of 20CaSO$_4$ (80 - x) P$_2$O$_5$-xDy$_2$O$_3$ with 0.2 ≤ x ≤ 1.0 mol % glass system

Figure 4.5 FTIR spectra of xMgSO$_4$-(100-x) P$_2$O$_5$ with 20 ≤ x ≤ 40 mol % glass system

Figure 4.6 FTIR spectra of xCaSO$_4$-(100-x) P$_2$O$_5$ with 10 ≤ x ≤ 30 mol % glass system

Figure 4.7 FTIR spectra of 20MgSO$_4$-(80-x) P$_2$O$_5$-xSm$_2$O$_3$ with 0.2 ≤ x ≤ 1.0 mol % glass system

Figure 4.8 FTIR spectra of 20CaSO$_4$-(80-x) P$_2$O$_5$-xDy$_2$O$_3$ with 0.2 ≤ x ≤ 1.0 mol % glass system

Figure 4.9 Raman spectra of xMgSO$_4$-(100-x) P$_2$O$_5$ with 20 ≤ x ≤ 40 mol % glass system

Figure 4.10 Raman spectra of xCaSO$_4$-(100-x) P$_2$O$_5$ with 10 ≤ x ≤ 30 mol % glass system
Figure 4.11 Raman spectra of $20\text{MgSO}_4-(80-x) \text{P}_2\text{O}_5-x\text{Sm}_2\text{O}_3$ with $0.2 \leq x \leq 1.0$ mol % glass system

Figure 4.12 Raman spectra of $20\text{CaSO}_4-(80-x) \text{P}_2\text{O}_5-x\text{Dy}_2\text{O}_3$ with $0.2 \leq x \leq 1.0$ mol % glass system

Figure 4.13 $^{31}\text{P}-\text{NMR}$ spectra of $x\text{CaSO}_4-(100-x) \text{P}_2\text{O}_5$ with $10 \leq x \leq 30$ mol % glass system

Figure 4.14 Variation of ρ and M_v for $20\text{MgSO}_4-(80-x)-x\text{Sm}_2\text{O}_3$ with $0.2 \leq x \leq 1.0$ mol % glass system

Figure 4.15 Variation of ρ and M_v for $20\text{CaSO}_4-(80-x)-x\text{Dy}_2\text{O}_3$ with $0.2 \leq x \leq 1.0$ mol % glass system

Figure 4.16 Variation of OPD and I_p for $20\text{MgSO}_4-(80-x)-x\text{Sm}_2\text{O}_3$ with $0.2 \leq x \leq 1.0$ mol % glass system

Figure 4.17 Variation of OPD and I_p for $20\text{CaSO}_4-(80-x)-x\text{Dy}_2\text{O}_3$ with $0.2 \leq x \leq 1.0$ mol % glass system

Figure 4.18 Excitation spectra of $20\text{MgSO}_4-(80-x)-x\text{Sm}_2\text{O}_3$ with $0.2 \leq x \leq 1.0$ mol % glass system

Figure 4.19 Emission spectra of $20\text{MgSO}_4-(80-x)-x\text{Sm}_2\text{O}_3$ with $0.2 \leq x \leq 1.0$ mol % glass system

Figure 4.20 Energy Level scheme for absorption, emission and excitation transitions of MSP: Sm^{3+} ion.

Figure 4.21 Excitation spectra of $20\text{MgSO}_4-(80-x)-x\text{Dy}_2\text{O}_3$ with $0.3 \leq x \leq 1.5$ mol % glass system

Figure 4.22 Emission spectra of $20\text{MgSO}_4-(80-x)-x\text{Dy}_2\text{O}_3$ with $0.3 \leq x \leq 1.5$ mol % glass system

Figure 4.23 Energy level scheme for absorption, emission and excitation transitions of CSP: Dy^{3+} ion.

Figure 4.24 Excitation spectra of $20\text{CaSO}_4-(80-x)-x\text{Dy}_2\text{O}_3$ with $0.2 \leq x \leq 1.0$ mol % glass system

Figure 4.25 Emission spectra of $20\text{CaSO}_4-(80-x)-x\text{Dy}_2\text{O}_3$ with $0.2 \leq x \leq 1.0$ mol % glass system

Figure 4.26 Excitation spectra of $20\text{CaSO}_4-(80-x)-x\text{Sm}_2\text{O}_3$ with $0.3 \leq x \leq 1.5$ mol % glass system

Figure 4.27 Emission spectra of $20\text{CaSO}_4-(80-x)-x\text{Sm}_2\text{O}_3$ with $0.3 \leq x \leq 1.5$ mol % glass system

Figure 4.28 Absorption spectra of $20\text{MgSO}_4-(80-x)-x\text{Sm}_2\text{O}_3$ with $0.2 \leq x \leq 1.0$ mol % glass system
Figure 4.29 Absorption spectra of 20MgSO₄-(80-x)-xDy₂O₃ with 0.3 ≤ x ≤ 1.5 mol % glass system

Figure 4.30 Absorption spectra of 20CaSO₄-(80-x)-xSm₂O₃ with 0.3 ≤ x ≤ 1.5 mol % glass system

Figure 4.31 The Plot of (αhv)² against (hv) for 20CaSO₄-(80-x)-xDy₂O₃ with 0.2 ≤ x ≤ 1.0 glass system

Figure 4.32 The Plot of (αhv)² against (hv) for 20CaSO₄-(80-x)-xDy₂O₃ with 0.2 ≤ x ≤ 1.0 glass system

Figure 4.33 The Plot of (αhv)² against (hv) for 20MgSO₄-(80-x)-xSm₂O₃ with 0.2 ≤ x ≤ 1.0 glass system

Figure 4.34 The Plot of (αhv)² against (hv) for 20MgSO₄-(80-x)-xSm₂O₃ with 0.2 ≤ x ≤ 1.0 glass system

Figure 4.35 Variation of ρ, refractive index and Av. molar volume for MSP:Dy glass system

Figure 4.36 Variation of ρ, refractive index and Av. molar volume for CSP:Sm glass system

Figure 4.37 Variation of optical band gap and Urbach energy for MSP:Dy glass system

Figure 4.38 Variation of optical band gap and Urbach energy for CSP:Sm glass system
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM</td>
<td>American society for testing materials</td>
</tr>
<tr>
<td>A</td>
<td>Absorbance</td>
</tr>
<tr>
<td>BO</td>
<td>Bridging Oxygen</td>
</tr>
<tr>
<td>CSA</td>
<td>Chemical shift anisotropy</td>
</tr>
<tr>
<td>CRN</td>
<td>Continuous random network</td>
</tr>
<tr>
<td>CF</td>
<td>Crystal field</td>
</tr>
<tr>
<td>DFT</td>
<td>Density function theory</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential thermal analysis</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy dispersive X-ray spectroscopy</td>
</tr>
<tr>
<td>E</td>
<td>Electric field</td>
</tr>
<tr>
<td>ED</td>
<td>Electric dipole</td>
</tr>
<tr>
<td>EM</td>
<td>Electromagnetic field</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>HF</td>
<td>Hydrogen fluoride</td>
</tr>
<tr>
<td>JO</td>
<td>Judd-Ofelt</td>
</tr>
<tr>
<td>KBr</td>
<td>Potassium bromide</td>
</tr>
<tr>
<td>LED</td>
<td>Light emitting diode</td>
</tr>
<tr>
<td>LNS</td>
<td>Local network structure</td>
</tr>
<tr>
<td>LRO</td>
<td>Long range order</td>
</tr>
<tr>
<td>MAS</td>
<td>Magic angle spinning</td>
</tr>
<tr>
<td>MD</td>
<td>Magnetic dipole</td>
</tr>
<tr>
<td>MRN</td>
<td>Modified random network</td>
</tr>
<tr>
<td>NBO</td>
<td>Non bridging oxygen</td>
</tr>
<tr>
<td>NIR</td>
<td>Near infrared region</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>NPs</td>
<td>Nano-particles</td>
</tr>
<tr>
<td>NR</td>
<td>Non radiative</td>
</tr>
<tr>
<td>O/P</td>
<td>Oxygen to phosphate ratio</td>
</tr>
<tr>
<td>OPD</td>
<td>Oxygen parking density</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>PGs</td>
<td>Phosphate glass structure</td>
</tr>
<tr>
<td>PL</td>
<td>Photoluminescence</td>
</tr>
<tr>
<td>OPO</td>
<td>Oxygen-phosphorus-oxygen</td>
</tr>
<tr>
<td>P=O</td>
<td>Terminal oxygen</td>
</tr>
<tr>
<td>P:S</td>
<td>Phosphate to sulfur ratio</td>
</tr>
<tr>
<td>RF</td>
<td>Radio frequency</td>
</tr>
<tr>
<td>RMS</td>
<td>Root mean square</td>
</tr>
<tr>
<td>REIs</td>
<td>Rare earth ions</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>SQF</td>
<td>Spectroscopic quality factor</td>
</tr>
<tr>
<td>SRO</td>
<td>Short range order</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermo-gravimetric analysis</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>Vis</td>
<td>Visible</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{rad}</td>
<td>Radiative transition probability</td>
</tr>
<tr>
<td>A_{ed}</td>
<td>Electric-dipole transition</td>
</tr>
<tr>
<td>A_{md}</td>
<td>Magnetic-dipole transition</td>
</tr>
<tr>
<td>$A_{T(\text{total})}$</td>
<td>Total radiative transition probability</td>
</tr>
<tr>
<td>B_0</td>
<td>Magnetic field</td>
</tr>
<tr>
<td>β_r</td>
<td>Branching ratio</td>
</tr>
<tr>
<td>β</td>
<td>Nephelauxetic ratio</td>
</tr>
<tr>
<td>c</td>
<td>Speed of light</td>
</tr>
<tr>
<td>e</td>
<td>Electric charge</td>
</tr>
<tr>
<td>E_{op}</td>
<td>Optical absorption</td>
</tr>
<tr>
<td>E_{opt}</td>
<td>Optical band gap</td>
</tr>
<tr>
<td>ε</td>
<td>Dielectric constant</td>
</tr>
<tr>
<td>$\varepsilon(v)$</td>
<td>Molar extinction coefficient</td>
</tr>
<tr>
<td>ϵ</td>
<td>Torsional vibration</td>
</tr>
<tr>
<td>f_{exp}</td>
<td>Experimental oscillator strength</td>
</tr>
<tr>
<td>f_{cal}</td>
<td>Calculated oscillator strength</td>
</tr>
<tr>
<td>h</td>
<td>Plank’s Constant</td>
</tr>
<tr>
<td>I_{int}</td>
<td>Initial intensity</td>
</tr>
<tr>
<td>I_{tran}</td>
<td>Transmitted intensity</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
<tr>
<td>n</td>
<td>Refractive index</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>μ</td>
<td>Reduced mass</td>
</tr>
<tr>
<td>λ</td>
<td>Lambda</td>
</tr>
<tr>
<td>ν</td>
<td>Wave number</td>
</tr>
<tr>
<td>ν_{as}</td>
<td>Asymmetric vibration</td>
</tr>
<tr>
<td>ν_{ss}</td>
<td>Symmetric vibration</td>
</tr>
<tr>
<td>γ</td>
<td>Gyromagnetic ratio</td>
</tr>
<tr>
<td>θ</td>
<td>Brag’s angle</td>
</tr>
<tr>
<td>τ_{rad}</td>
<td>Lifetime</td>
</tr>
<tr>
<td>Symbol</td>
<td>Term</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Q^3</td>
<td>Ultra-phosphate</td>
</tr>
<tr>
<td>Q^2</td>
<td>Meta-phosphate</td>
</tr>
<tr>
<td>Q^1</td>
<td>Poly/Pyrophosphate</td>
</tr>
<tr>
<td>Q^0</td>
<td>Ortho-phosphate</td>
</tr>
<tr>
<td>α_{ep}</td>
<td>Thermal expansion</td>
</tr>
<tr>
<td>δ_{cha}</td>
<td>Chemical shift anisotroph</td>
</tr>
<tr>
<td>δ</td>
<td>Bending vibration/Bonding parameter</td>
</tr>
<tr>
<td>ω</td>
<td>Angular frequency</td>
</tr>
<tr>
<td>R_m</td>
<td>Molar refractivity</td>
</tr>
<tr>
<td>α_{ep}</td>
<td>Molar polarizability</td>
</tr>
<tr>
<td>α_e</td>
<td>Electronic polarizability</td>
</tr>
<tr>
<td>M</td>
<td>Metallization Criterion</td>
</tr>
<tr>
<td>N_A</td>
<td>Avogadro’s constant</td>
</tr>
<tr>
<td>ε_{opt}</td>
<td>Optical dielectric constant</td>
</tr>
<tr>
<td>T_c</td>
<td>Crystallization temperature</td>
</tr>
<tr>
<td>T_g</td>
<td>Glass transition temperature</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting temperature</td>
</tr>
<tr>
<td>$|U_A|$</td>
<td>Reduced matrix</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Batch calculation</td>
<td>165</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Physical properties</td>
<td>167</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Judd-Ofelt calculations</td>
<td>171</td>
</tr>
<tr>
<td>Appendix D</td>
<td>List of publications</td>
<td>176</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Research

Glass is an amorphous solid material which displays the structural characteristics of liquid having a glass transition (T_g). It is typically brittle, some are transparent and plays a vital role in the progress of society, and used for decoration as window panes, packaging (Jars for food, bottles, for drinks), housing and building, fibre optic cables etc. According to the American Society for Testing Materials (ASTM) defined glass as "an inorganic product of fusion, which has been cooled to a rigid condition without crystallizing". It is a mixture of sand and other minerals melted together at very high temperature (normally between 900 and 2000°C). The exact melting temperature depends on the glass composition. Chemically, a glass is actually like a liquid at room temperature, it became softer gradually at higher temperature and more like a liquid which allows the glass to be poured, blown, pressed and mould into different shapes. Even though, there are other methods used in glass formation, it can be formed by chemical vapour deposition (CVD), by sol-gel processing of solution, thermal evaporation techniques (TET), Sputtering techniques and by neutron irradiation of crystalline materials (Shelby and Schubert, 1997).

The oxides glasses are formed when metals combine with oxygen, the principles that classified cations in glass network are categorized in 3 stages these are; Glass formers, Modifiers and Intermediate glasses.

Network modifiers are alkali or alkaline earth metals oxides that break or interrupt the network when they are added to the host materials to increase the workability of a glass, examples are CaO, MgO and Na$_2$O$_3$ etc.
Intermediate are oxides capable of entering the network of glass formers, sometimes to re-enforce other networks. They act as network formers like aluminum, but ordinarily, they cannot form glass network themselves rather they join existing glass networks added to obtain a special properties examples: Al₂O₃, Ti₃O, TeO₂, SeO₂, WO₃ etc (Hussin, 2011) including SO₄.

Addition of modifier oxides e.g K₂O; Rb₂O to basic constituent (network former) such as Phosphate, borate, silicate etc can alter the structure and physical properties depending on the quantity added, the properties of modified glass show a non-linear behaviour with a gradual increase in alkali oxide. The deviation from linearity causes the host anomaly (Saddeek, 2004). The structure of binary phosphate is similar to that of binary silicate based on the tetrahedral structure. This structure depends on the phosphate content and the content of glass modifier oxides, such as CaO, MgO, and Na₂O etc. Addition of glass modifier to phosphate glass will increase its durability and results in the cleavage of P-O-P linkages to form non-bridging oxygen’s (NBOs) thereby disrupting the structure of the glass having covalent P-O-M bonds and also ionic cross-linkages between non-bridging oxygen (NBOs).

The glass formers are the major bulk materials that result in the formation of glasses viz: Tellurium oxide (TeO₂), Silicon dioxide (SiO₂), Phosphorus pentoxide (P₂O₅) and Boron trioxide (B₂O₃) etc. Other constituent of glasses are the flux responsible for reducing the melting temperature of the glass former such as PbO, even though, certain times may lead to the changes in properties of the glass former, while colour additive are added to give out a colour to the glass e.g. silver or gold. The Fining/Refining agents are to improve the quality characteristics of the glass by removing bubbles examples, arsenic, antimony oxides etc.

Phosphate glasses differ from other glass-former due to the existence of terminal oxygen on each network, results in less cross-link, such as terminal oxygen (TO) limit the connectivity of phosphate glass structure (PGs) and reduces their inter-atomic forces and rigidity. This may cause easy in the de-polymerisation process. Furthermore, phosphate-based glasses contain a lesser cross-link with the high number of TO atoms. When mixed with other metal oxides result in higher flexibility of $p_4^{−}$.
tetrahedra. For this reason, ranges of phosphate glass formation are expected to be wider than the other based glasses (Egan et al., 2000). It has the ability to dissolve completely in an aqueous solution, and the dissolution rate is sensitive to glass composition (Bunker et al., 1984). This indicates that phosphate-based glasses have numerous advantages over the other based glasses due to superior physical properties e.g high ultraviolet (UV) transmission (Brow, 2000), high electrical conductivity (Shih et al., 2003). This is suitable candidates for technological applications as optical fibers for data transmission, host glasses for solid state lasers, solid state batteries and glass-to-metal sealing (Hassan and Hafid, 2004), poor chemical durability can often limit their suitability, although can be improved by modifier addition. It also has high thermal expansion coefficients (258×10^{-7} to $99 \times 10^{-7}/^\circ C$) low melting temperature and low glass transition temperature (T_g below $420^\circ C$) depending on composition (Shih et al., 1998). Low softening temperatures of phosphate glasses make it suitable for hermetic seals (Marzouk et al., 2017).

However, the thermal expansion (a_{ep}) of the glass depends on the asymmetry of the amplitude of thermal vibrations in the glass. Therefore, the thermal vibration is small when there are many strong bonds present in the network. These properties make them useful candidates for fast ion conducting materials and other important applications (Hassan and Hafid, 2004).

Ultra-phosphate glass region, are categories of phosphate glass with RO/P$_2$O$_5$ ratio less than one, where RO or R$_2$O is the modifying oxides, despite the fact that hydroxyl (OH) group may serve as a modifier which affects the optical and thermal properties of the glass but often neglected. Ultra-phosphate region mostly has a longer terminal oxygen (P=O) and a shorter P-O Q3 bond length when compared with any of the phosphate polymorphs (Mercier et al., 1999). It is easier in de-polymerization processes.

Sulphur species are found in oxide glasses and melts of volcanic process. Commercially, silica glasses batches contain low levels of sulphur (< 0.2 wt.% S) which are deliberately added in the form of sulphate refining agent or as sulphide to provide a uniquely amber colour (Bingham and Hand, 2008), sulfur when mixed with
phosphate glasses are satisfied in immobilizing radioactive waste. Many glasses materials are thermally and chemically stable having good electrical conductivity and compatibility with electrode materials with a small amount of sulphur. Cadmium sulphides attract more interest in the field of integrated optics, opto-electronics and photovoltaic devices with a higher quantity of sulfur. The studies are consistent with the hypothesis, that sulphur interact with phosphate network by occupying the interstice spaces of oxygen in non-bridging position as a weaker cation-network interaction, the results in an increased in conductivity within mol % of Sulphur (Chowdari et al., 1993).

Many types of radioactive waste were certainly incorporated in glass for long-term safe storage (i.e vitrified) contains a larger amount of sulphur. Generally, low solubility of sulphate in silicate (SiO$_2$) melts. In oxidation conditions where a waste glass melt could be safely operated and this can result in sulphur becoming the waste-loading limiting constituent (McKeown et al., 2001). Meanwhile, much is still required to know more about the relationship between sulfur solubility in phosphate glass system.

Rare earth ions (REI) comprises of lanthanide and actinide, the lanthanides are known elements in 4f shell level located inside the atom. Their spectra arising from 4f–4f transitions which are narrow and insensitive to their environment, unlike transition metal in 3d spectra, transitions of these elements by excitation and de-excitation causes emissions which are detected in the infrared, visible, or ultraviolet region. These ions -doped glasses have attracted more attention due to their usefulness in many optical applications such as optical fibers and solid state lasers (Amjad et al., 2013). For optical amplifier applications as well as lasers, host glasses such as phosphate, boro-tellurite, and fluoro-iodate glasses are the vastly promising candidate (Florez et al., 2000). The ions incorporated in glasses are extensively used in order to activate the luminescence and optical materials. The studies provide fundamental data on radiative properties such as transition probability, radiative life-time, branching ratios and are used for optical device.
Trivalent RE ions -doped phosphate glasses have been developed basically for IR active optical devices (Sava et al., 2013). The ions attract higher demand for various visible lasers and many other light sources when doped with host glasses. Further research was developed on phosphate based glasses doped Dy\(^{3+}\) Tb\(^{3+}\) Er\(^{3+}\) and Eu\(^{3+}\) (Pisarska et al., 2011) which identify the various colors of red, orange, blue, yellow and violet/blue emission. However, this work differs with Pisarka by modifier oxides and the dopant.

The calcium/magnesium sulfate ultra-phosphate glasses –doped rare earth (Sm\(^{3+}\) and Dy\(^{3+}\)) has been chosen to improve the quality of glasses. The research aims to investigate the structure and optical properties of calcium/magnesium sulfate ultra-phosphate glasses, this may help to verify the luminescence properties of RE materials for better efficiency, hoping that the quantitative estimate on both the structure and optical studies would be accurate.

1.2 Research Problem

Phosphate glass was recognized as a valuable material in optical glasses. Incomparable features of phosphate in the structure or optical stability attract more attention to many researchers, but due the hygroscopic and volatility in phosphate reduces its performance in many applications, this can also have limitations in their low absorption and emission cross-section. Other anomalous behaviours in phosphate glasses contribute to its setback in vitreous phosphate pentoxide (P\(_2\)O\(_5\)). Ultra-phosphate on the other hand, is chemically unstable with regards to hydrolysis of P-O-P bonding by atmospheric moisture attack which mean the vitreous phosphate have low resistance to moisture (Lu et al., 2015) and the same time.

Ultra-phosphate region has every tendency in becoming crystal. Hence, if the chemical durability were identified the potential application needs to be expanded accordingly. To improve the required performance by choosing a suitable modifier oxide such as CaO, MgO, ZnO, PbO etc, magnesium oxide added to phosphate exhibit a higher forming ability (Karakassides et al., 2004). Many researchers are more
interested to study the structure and luminescence properties of binary or multi-component phosphate glasses doped with RE ions. Studies on the structural features of the phosphate-based glass system especially in the composition of calcium sulfo-phosphate and magnesium sulfo-phosphate glasses need to be the focus. The effects of doping RE ions (Sm$^{3+}$ and Dy$^{3+}$) on its optical and luminescence properties and the influence of the ions on the structural features need to be studied. The calculated values of Judd-Ofelt parameters will be utilized in evaluating the various radiative parameters such as transition probabilities radiative lifetimes and branching of rare earth ion (REI).

1.3 Research Objectives

The objectives of the research are:

(a) To determine the amorphous phase of un-doped xCaSO$_4$ (80-x) P$_2$O$_5$, xMgSO$_4$ (80-x) P$_2$O$_5$ and doped 20CaSO$_4$ (80-x) P$_2$O$_5$-xSm$_2$O$_3$, 20MgSO$_4$ (80-x) P$_2$O$_5$-xDy$_2$O$_3$ at different concentration.

(b) To determine the influence of calcium sulfate/ magnesium sulfate as a modifier oxide on the structure and physical properties of ultra-phosphate based glasses.

(c) To determine the effect of rare earth ions (Sm$^{3+}$ and Dy$^{3+}$) on optical (e.g Band gap, Urbach energy) and luminescence properties of calcium sulfate/ magnesium sulfate ultra-phosphate glasses at different concentration.

(d) To evaluate the Judd-Ofelt intensity parameters (Ω_λ) from experimental and calculated oscillator strength for Sm$^{3+}$ and Dy$^{3+}$ ions so as to demonstrate the validity of the theory and to verify the optical quality of the materials.
1.4 **Scope of the Research**

In achieving the objectives, the work has the following scope.

(a) The amorphous phase of the samples was determined by X-ray diffraction (XRD) spectroscopy for calcium sulphate/magnesium sulfate ultra-phosphate glass doped dysprosium and samarium ion prepared by the melt-quenching method.

(b) The structural characterization was also investigated using FTIR, Raman and NMR spectroscopy,

(c) Optical and luminescence characterization were identified using Photoluminescence and UV-Vis-NIR spectrometer.

(d) Judd-Ofelt intensity parameter was analyzed and compared with those in literature

1.5 **Significant of Research**

The spectroscopic study of phosphate glass doped and un-doped rare earth (RE) helped in developing material for optical data transmission, laser amplification, fibre optical amplifier or biomedical applications. Phosphates were chosen as a host due to its low transition temperature and are well fitted for doping RE ions for optical devices (Marino et al., 2001). Phosphate encourages de-polymerization process owing to terminal oxygen availability, de-polymerization is important in increasing the phosphate durability. Also, the used of ultra-phosphate (Q3) glasses phase contain a relatively larger amount of hydroxyl group responsible for protonic conductor (Mercier et al., 1998, Mercier et al., 1999), another side, lesser work has been observed on ultra-phosphate glass phase.

Due to the limited research based on xCaSO\textsubscript{4}-(100-x) P\textsubscript{2}O\textsubscript{5} and xMgSO\textsubscript{4}-(100-x) P\textsubscript{2}O\textsubscript{5} glass system doped rare earth ions. Therefore, the present study is aimed to
understand the effect of RE\(^{3+}\) (Sm\(^{3+}\), Dy\(^{3+}\)) ions and to analyze the optical and luminescence properties of the samples. Consequently, the spectroscopic studies will give information about the efficiency of the samples; it can also give a better understanding of the structural and optical features of sulphate containing alkaline earth. The remarkable outcomes of this study will help in developing many functional glasses and long afterglow material. Therefore, knowing the structure and optical and luminescence characteristics of the glass system will contribute to the new knowledge in material field.

1.6 Thesis Plan

Preparation and characterization of REI (Sm\(^{3+}\) and Dy\(^{3+}\)) doped phosphate-based glasses using conventional melt quench method will be discussed below, the thesis comprises of five chapters viz;

Chapter 1: Present the background of the research and an overview mentioned with emphasis on the development of phosphate glasses including the behaviour of REI, research problems, research objectives, scope of research and significance of the study including the thesis outline.

Chapter 2: Explores the literature review on magnesium/calcium sulfo-phosphate glasses with other modifier oxides; Phosphate based glass, modifier pseudo-reaction on phosphate glass, XRD, FTIR, Raman and NMR analysis on phosphate glass, Structure by IR, Raman and NMR, optical, luminescence properties and the Judd-Ofelt analysis was also discussed.

Chapter 3: Demonstrate the experimental method which includes Samples preparation by the melt-quench method, samples instrumentation on XRD, FTIR, Raman, NMR, UV-Vis-NIR and Photoluminescence spectroscopy.

Chapter 4: The results of our findings were discussed in this chapter which serves as the most important part of the thesis.
Chapter 5: Conclusion and the future perspectives
REFERENCES

Ardelean, I., Rusu, D., Andronache, C. & Ciobotă, V. 2007. Raman study of xMeO·(100–x)[P₂O₅· Li₂O](MeO⇒ Fe₂O₃ or V₂O₅) glass systems. Materials Letters, 61, 3301-3304.

Carnall, W., Fields, P. & Rajnak, K. 1968. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr$^{3+}$, Nd$^{3+}$, Pm$^{3+}$, Sm$^{3+}$, Dy$^{3+}$, Ho$^{3+}$, Er$^{3+}$, and Tm$^{3+}$. The Journal of Chemical Physics, 49, 4424-4442.

Chahine, A., Et-Tabirou, M., Elbenaissi, M., Haddad, M. & Pascal, J. 2004a. Effect of CuO on the structure and properties of (50−x/2) Na$_2$O·xCuO·(50−x/2) P$_2$O$_5$ glasses. Materials Chemistry and Physics, 84, 341-347.

Higazy, A. & Bridge, B. 1985. Infrared spectra of the vitreous system \(\text{Co}_3\text{O}_4\text{P}_2\text{O}_5\) and their interpretation. *Journal of materials science*, 20, 2345-2358.

Hraiech, S., Ferid, M., Guyot, Y. & Boulon, G. 2013. Structural and optical studies of \(\text{Yb}^{3+}, \text{Er}^{3+}\) and \(\text{Er}^{3+}/\text{Yb}^{3+}\) co-doped phosphate glasses. *Journal of Rare Earths*, 31, 685-693.

Leng, Y. 2009. *Materials characterization: introduction to microscopic and spectroscopic methods*, John Wiley & Sons.*Hong Kong University of Science and Technology*. 49-54

Marzouk, M., Elbatal, F., Elbadry, K. & Elbatal, H. 2017. Optical, structural and thermal properties of sodium metaphosphate glasses containing Bi$_2$O$_3$ with

Ramteke, D., Balakrishna, A., Kumar, V. & Swart, H. 2017. Luminescence dynamics and investigation of Judd-Ofelt intensity parameters of Sm^{3+} ion containing glasses. *Optical materials*, 64, 171-178.

Tanko, Y., Sahar, M. & Ghoshal, S. 2016b. Prominent spectral features of Sm$^{3+}$ ion in disordered zinc tellurite glass. *Results in Physics*, 6, 7-11.

