OPTIMIZATION OF CHARANTIN RICH POWDER FROM *MOMORDICA CHARANTIA* USING EXTRACTION AND SPRAY DRYING PROCESSES

AHMAD SYAHMI BIN ZAINI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Philosophy

School of Chemical and Energy Engineering
Faculty of Engineering
Universiti Teknologi Malaysia

AUGUST 2018
...Special Dedication to my late father, Zaini bin Mohd Yasin...
ACKNOWLEDGEMENT

First and foremost, I am humbly thankful to Allah S.W.T. for giving me the strength to complete this thesis. With His guidance and blessings I am able to finish my research and thesis. I wish to express my sincere appreciation to the person that helped me a lot and help me to complete this thesis, Assoc. Prof. Dr Mohd Azizi Bin Che Yunus, my beloved supervisor. Without his patience, guidance, critics, friendship and encouragement, this thesis would not been possible and cannot achieve the objectives of my research. In addition, I’m also very appreciate her kindness for providing financial supports throughout my research. I also would like to express my appreciation and thanks to my co-supervisor, Dr Mohd Johari bin Kamaruddin for his creative idea, constructive critism, encouragement and his interesting explanation always impressed me in doing my research.

I would like to thank the person especially my fellow colleagues at Centre of Lipid Engineering and Applied Research (CLEAR); Mdm Zuhaili Idham, Dr Lee Nian Yian, Dr Helen Kong, Mdm Noor Sabariah Mahat, Mr Ahmad Hazim, Mr Nicky RP, Mrs Husnina, Mrs Faadila, Ms Aiysah, and Ms Diyana. It was a great pleasure to be able to work with an awesome person like them and sharing their expert view on providing idea or solution to the problem encountered in my study. To my beloved family members especially Siti Hawa Noordin, Ahmad Syahizal Nordin Zaini, Syahidah Ezana Zaini, Ahmad Fahmee Zaini, and Syuhaidah Aiza Zaini for all the motivation, understanding and patience have encouraged me for completing my research.

Lastly, I would like to thank all that have been involves in this research directly or in directly and i hope that we can work together again in the future. Thank you very much.
ABSTRACT

Momordica charantia (M. charantia) fruits have a lot of health benefits through its antitumor, antimicrobial, antiviral, immunotoxin, antifertility and antimutagenic properties. Besides, M. charantia has the potential of controlling glucose levels in hyperglycemic states in Asian countries. The target compound in this fruits is charantin. Thus, a research on the production of charantin rich powder from M. charantia was carried out using a water-based extraction and spray dryer. The objectives of this research are to determine the optimum conditions for the extraction of charantin from M. charantia, to investigate the optimum condition of total solid content of maltodextrin for the feedstock of the spray drying process, and to optimize the parameters of the M. charantia powder spray drying process to produce higher quality charantin encapsulation. The process conditions of this study were particle size (250 ≤ particle diameter ≤ 300) µm, extraction time (6 hours) and ratio sample:solvent (1:20). The optimum temperature for maximum extraction was 80 °C which yielded 8.238 mg/mL of charantin. The optimum feedstock solution level was 10° brix of total solid content of maltodextrin which yielded 6.948 mg/mL of charantin. The spray drying was run at an inlet temperature ranging from 150 °C to 190 °C and a feed flow rate ranging from 2 to 4 mL/min. The maximum charantin concentration during spray drying process condition was achieved at 170 °C and 3 mL/min with the concentration of 2.400 mg/mL, powder yield of 2.9 g, encapsulation efficiency of 29.1% and moisture content of 2.3%. The optimization of spray drying conditions were evaluated in term of inlet temperature and feed flow rate with respect to responses of powder yield, concentration of charantin and moisture content. The results showed that a temperature of 175.96°C and feed flow rate of 2.41 mL/min produced the highest powder yield, moisture content and concentration of charantin with 3.51 g, 2.5% and 1.563 mg/mL, respectively. The regression coefficient, R^2 for powder yield, concentration of charantin and moisture content were 0.8741, 0.7579 and 0.7651, respectively. This shows that the higher value of R^2 is consistent with the data predicted using an experimental data model. The results of this study have a potential for commercialization as the powder contains rich encapsulation of charantin.
ABSTRAK

Buah peria katak memberi banyak kesan yang baik kepada kesehatan menerusi antitumor, antimikrob, antivirus, imunotoksin, antikesuburan dan antimutagenik. Selain itu, peria katak juga berpotensi dalam mengawal paras glukosa pada keadaan hiperglisemik di negara-negara Asian. Sasaran komponen dalam buah peria katak ialah charantina. Oleh itu, satu kajian tentang pengeluaran serbuk charantina daripada peria katak telah dijalankan dengan menggunakan kaedah penyarian berasaskan air dan pengeriting sembub. Objektif dalam kajian ini termasuklah menentukan keadaan optimum bagi proses penyarian charantina daripada peria katak, mengkaji tahap keadaan optimum terhadap jumlah kandungan pepejal maltodekstrin bagi suapan proses pengeritingan sembub dan menentukan keadaan optimum parameter bagi proses pengeritingan sembub buah peria katak dalam menghasilkan pengkapsulan charantina yang berkualiti tinggi. Keadaan proses yang digunakan dalam kajian ini adalah saiz zarah (250 ≤ diameter zarah ≤ 300) µm, masa penyarian (6 jam) dan nisbah sampel:pelarut (1:20). Suhu optimum bagi penyarian maksimum ialah 80 °C yang menghasilkan 8.238 mg/mL charantina. Paras larutan suapan optimum ialah 10° brix jumlah kandungan pepejal maltodekstrin yang menghasilkan 6.948 mg/mLcharantina. Pengeritingan sembub dijalankan pada suhu masukan dalam julat 150 °C hingga 190 °C dan kadar aliran suapan dalam julat 2 mL/min hingga 4 mL/min. Kepekatan charantina maksimum yang dicapai ketika proses pengeritingan sembub pada keadaan 170 °C dan 3 mL/min dengan kepekatan 2.400 mg/mL, hasil berat serbuk 2.9 g, kecekapan pengkapsulan 29.1% dan kandungan kelembapan 2.3%. Pengoptimuman keadaan pengeritingan sembub dinilai berdasarkan kepada suhu masukan dan kadar aliran suapan terhadap gerak balas hasil berat serbuk, kepekatan charantina dan kandungan kelembapan. Hasil keputusan menunjukkan bahawa suhu 175.95°C dan kadar aliran suapan 2.41 mL/min menghasilkan berat serbuk yang tinggi, kepekatan charantina dan kandungan kelembapan masing-masing adalah 3.51g, 2.457% dan 1.563 mg/mL. Pekali regresi, R^2 untuk hasil berat serbuk, kepekatan charantina dan kandungan kelembapan masing masing adalah 0.8741, 0.7579 dan 0.7651. Ini menunjukkan nilai R^2 yang tinggi adalah konsisten dengan data ramalan menggunakan model data eksperimen. Keputusan kajian ini berpotensi untuk dikomersialkan sebagai serbuk yang kaya kandungan pengkapsulan charantina.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Background of Study 1
1.2 Problem Statement 4
1.3 Objectives of Research 5
1.4 Scopes of Research 5
1.5 Significance of Research 6
1.6 Limitation of Study 7
1.7 Thesis Outline 7

2 LITERATURE REVIEW 9
2.1 Introduction 9
2.2 Momordica charantia (M. charantia) Plant 9
2.2.1 Phytochemicals in M. charantia 12
2.3 Charantin 18
2.3.1 Structure and Characteristic of Charantin 18
2.4 Extraction of Compounds 20
2.4.1 Solid-liquid Extraction 21
2.4.2 Extraction of bioactive compound from *M. charantia* 23

2.5 A Review on Conventional Extraction 24
 2.5.1 Soxhlet Extraction Method 24
 2.5.2 Type of Solvent used for Soxhlet Extraction 24
 2.5.3 Water-Based Extraction 25

2.6 A Review on the Spray Drying Process 26
 2.6.1 Spray Dryer 26
 2.6.2 Application of Spray Drying in Industries 31

2.7 Response Surface Methodology (RSM) 32

3 RESEARCH METHODOLOGY 37

3.1 Introduction 37

3.2 Methodology Layout 38
 3.2.1 Sampling 39
 3.2.2 Sample Preparation 39

3.3 Method of Extraction 41
 3.3.1 Water Based Extraction 41
 3.3.2 Experimental Design 42

3.4 Drying Process 43
 3.4.1 Maltodextrin as Encapsulation Agent 43
 3.4.2 Spray Drying 43

3.5 Expression of Results 45
 3.5.1 Powder Yield 46
 3.5.2 Encapsulation Efficiency 46
 3.5.3 Moisture Content 47

3.6 Determination of Extraction Yield using Soxhlet Extraction 47

3.7 Analysis of Extract and Powder Yield 48
 3.7.1 High Performance Liquid Chromatography (HPLC) Analysis 49
 3.7.2 Calibration Curve of Charantin Standard 49

3.8 Statistical Design of Experiment 50
4 RESULT AND DISCUSSION

4.1 Introduction
4.2 Soxhlet Extraction
4.3 Best Operating Water-Based Extraction Condition
 4.3.1 Determination of Water-Based Extraction Temperature
4.4 Determination of Total Solid Content of Maltodextrin on Spray Drying Feedstock
 4.4.1 Identification of the Charantin Compound in the *M. charantia* Powder
4.5 Spray Drying of *M. charantia* Powder
 4.5.1 Effect of Inlet Temperature on Powder Yield and Concentration of Charantin
 4.5.2 Effect of Feed Flow Rate on Powder and Concentration of Charantin
 4.5.3 Effect of Spray Drying Conditions on Moisture Content
4.6 Optimization of Encapsulation Process using Response Surface Methodology
 4.6.1 Optimization of Powder Yield
 4.6.2 Optimization of Concentration of Charantin
 4.6.3 Optimization of Moisture Content

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion
5.2 Recommendations

REFERENCES
Appendices A-F
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>M. charantia production according to states in Malaysia in 2015</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Nutrient Composition of Raw M. charantia</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Review on hypoglycemic studies using animal models</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Physical characteristic of charantin</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Example of some extracted bioactive compounds by different solvents</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Recent researches of the application of spray drying processes</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>The application on response surface methodology</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental run for spray drying process</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>The coded levels of the independent variables for central composite design</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>General format of ANOVA table</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Experimental data for spray drying of M. charantia fruits</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Analysis of variance for powder yield</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>(modified second order model fitted)</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Analysis of fitted Variance for linear models</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>Analysis of fitted Variance two-factor interaction models</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>(Suggested)</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Analysis of fitted Variance for quadratic model</td>
<td>73</td>
</tr>
<tr>
<td>4.6</td>
<td>Analysis of Variance for moisture content</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>(second order polynomial model fitted)</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Unripe M. charantia</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>White flesh M. charantia</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Molecular structure of stigmasterol glucoside</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Molecular structure of β-sitosterol glucoside</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>A schematic diagram of the spray dryer</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow diagram of the experimental procedure</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>AS 200 Basic Retsch Milling and Sieving</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>Dried M. charantia</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Ground M. charantia</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>NE5-28D Series Clifton Shaking Water Bath</td>
<td>42</td>
</tr>
<tr>
<td>3.6</td>
<td>Lab-Plant Spray Drier SD-04</td>
<td>44</td>
</tr>
<tr>
<td>3.7</td>
<td>Soxhlet Extraction</td>
<td>48</td>
</tr>
<tr>
<td>4.1</td>
<td>Soxhlet Extraction of M. charantia using particle size 300 µm and 6 hours extraction time</td>
<td>54</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of temperature on the concentration of charantin at 60 ºC, 80 ºC and 95 ºC</td>
<td>56</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of total solid content of maltodextrin on charantin yield at temperature 150 ºC and 190 ºC respectively</td>
<td>59</td>
</tr>
<tr>
<td>4.4</td>
<td>HPLC chromatogram of charantin standard which consist of two peak; stigmasterol glucoside (peak 6.523) and β-sitosterol glucoside (peak 7.304)</td>
<td>61</td>
</tr>
<tr>
<td>4.5</td>
<td>HPLC chromatogram of charatin powder shows poor peak separation. Elution condition used 100% ethanol, flow rate of 1 mL/min, injection volume of 200 µm and wavelength detection at 204 nm</td>
<td>61</td>
</tr>
<tr>
<td>4.6</td>
<td>HPLC chromatogram of charatin powder shows peak well separation. Elution condition used ethanol-water (80:20 V/V), flow rate of 1 mL/min, injection volume of 200 µm and wavelength detection at 204 nm</td>
<td>62</td>
</tr>
</tbody>
</table>
4.7 Effect of temperature (150, 170, and 190) ºC with constant feed flow rate at (2, 3, and 4) mL/min on powder yield 65

4.8 Effect of temperature (150, 170, and 190) ºC with constant feed flow rate at (2, 3, and 4) mL/min on concentration of charantin 66

4.9 Effect of feed flow rate at (2, 3, and 4) mL/min with constant temperature of (150, 170, and 190) ºC on powder yield 67

4.10 Effect of feed flow rate at (2, 3, and 4) mL/min with constant temperature of (150, 170, and 190) ºC on concentration of charantin 68

4.11 Moisture content of M. charantia Powder at temperatures of 150 ºC, 70 ºC and 190 ºC with constant feed flow rate of 2, 3, and 4 mL/min 69

4.12 Surface plot of powder yield versus feed flow rate and inlet temperature 72

4.13 Surface plot of concentration of charantin versus feed flow rate and inlet temperature 75

4.14 Surface plot of moisture content versus feed flow rate and inlet temperature 77
LIST OF ABBREVIATIONS

DE Dextrose Equivalent
RSM Response Surface Methodology
HPLC High Performance Liquid Chromatography
PLE Pressurize Liquid Extraction
SD Spray Drying
CTD Cast Tape Drying
SC-SO₂ Supercritical Carbon Dioxide
E-PVC Emulsion Polymerization
S-PVC Suspension Polymerization
ANOVA Analysis of Variance
SSR Sum of Squares Regression
SSE Sum of Square Error
SST Sum of Square Total
QSRR Quantitative Structure-Retention Relationship
ADMI American Dry Milk Institute
IDF International Dairy Federation
PY Powder Yield (g)
EE Encapsulation Efficiency (%)
TCE Total concentration of charantin in extraction process (mg/mL)
TCS Total concentration of charantin in powder after spray dried (mg/mL)
MC Moisture Content (%)
LIST OF SYMBOLS

Mt Metric Tons
R^2 Regression Coefficient
W_{after} Mass of the bottle after spray drying (g)
W_{before} Mass of the bottle before spray drying (g)
M_a Mass crucible after drying (g)
M_b Mass crucible before drying (g)
W_1 Mass of extracted oil (g)
W_2 Mass of sample used (g)
Y Peak area (mAU*S)
m Slope of the equation line
x Concentration of β-sitosterol glucoside/stigmasterol glucoside
c Intercept line
Y Predicted responses
β_0 Intercept regression coefficient
β_1, β_2 Linear regression coefficient
β_{12} Interaction regression coefficient
β_{11}, β_{22} Quadratic regression coefficient
Y_u Experimental data
\bar{Y} Mean for experimental data
\hat{Y}_u Predicted data
p Number of terms in model/equation
N Number of experiment
CHAPTER 1

INTRODUCTION

1.1 Background of Study

The study of natural products like plants can be a very thought-provoking subject for scientists to explore further. For decades, plants have been inevitably powerful sources of vast amount of compounds such as vitamins, phenolics, and metabolites that are rich in bio-activities like antioxidant, anticarcinogenic, antibacterial, and antiinflammatory properties. Hence, plants have become a major source for researchers in identifying and developing natural colorants, biodiesel, new drugs and so forth with no or less side effect. With this intention, the demand and requirement of plant studies have increased among natural product researchers.

Momordica charantia (M. charantia), a plant commonly known as bitter melon, bitter gourd, kugua, karela or balsam pear which belongs to the Cucurbitaceae family was selected in this study. Physically, *M. charantia* looks like a climber and bears oblong fruits similar in shape to the cucumber (Raina *et al.*, 2016). *M. charantia* is a plant with great nutritional value and has been commonly used as medicine. Traditionally, *M. charantia* is famous as a method for controlling glucose levels in hyperglycemic people in Asian countries who consume this fruit’s juice in the early morning on an empty stomach (Raina *et al.*, 2016; Zhang *et al.*, 2016). Besides being antidiabetic, others medicinal properties such as antitumor, antimicrobial, antiviral, immunotoxin, antifertility and antimutagenic, have been clarified for *M. charantia*.
Researchers from United Kingdom found that *M. charantia* fruits contain biologically active chemicals such as steroids, protein, saponins, alkaloids, triterpenes and fixed oils (Raman and Lau, 1996). *M. charantia* contains several phytochemicals that have been isolated which include charantin, charine, cryptoxanthin, goyasaponins, gypsogenin, gentisic acid, momordicilin, momodicsins, momordenol and so forth (Grover and Yadav, 2004).

Basically, *M. charantia* extracts in concentrated and powder form is the main commercial source of charantin. Charantin consists of a mixture of two compounds which are stigmasteryl glucoside and sitosteryl glucoside (Pitipanapong et al., 2007). According to Belinda (2000), aside from its usage to treat diabetes, charantin can also be used as a substitute for existing insulin injection treatments that are used to treat diabetes patients by stimulating their pancreas to reduce sugar content in the blood. As they are free from side effects, this compound is now broadly accepted as a surrogate medicine for diabetes mellitus (Sharma et al., 1996).

In the food and pharmaceutical industries, the microencapsulation technique has been widely used to protect food ingredients against volatile losses, deterioration, or premature interaction with other ingredients (Fang and Bhandari, 2011). Research by Jafari et al. (2016) defined microencapsulation as a process of seizing active substances within other materials to produce particles with dimensions of a few micrometers to a few nanometers. Besides the encapsulation technique, another factor that plays an important role in feed and powder characteristics is the selection of carrier agent. There are several types of encapsulation agents that are commonly used by researchers, including maltodextrin (Fongin et al., 2017; Matsuura et al., 2015; Oberoi and Sogi, 2015), the combination of maltodextrin and gum arabic (Idham et al., 2012; Nguyen et al., 2017; Premi and Sharma, 2017), sucrose and glucose (Bayram et al., 2005), and skim milk powder (Shamaei et al., 2017). Maltodextrin is low cost, has low viscosity at higher temperatures according to level of dextrose equivalent (DE) (Matsuura et al., 2015; Wangsakan et al., 2003) and can protect active compounds from oxidization. Thus, maltodextrin was used in this research as an encapsulation agent followed by spray drying which is used as an encapsulation technique for charantin.
Many studies have been conducted by previous researchers on the extraction of active compounds from *M. charantia* fruits. The most common methodologies used for the extraction of active compound include solvent extraction (Horax *et al.*, 2010; Virdi *et al.*, 2003), pressurized liquid extraction (Pitipanapong *et al.*, 2007; Syahariza *et al.*, 2017), heat reflux extraction (Budrat and Shotipruk, 2008; Shan *et al.*, 2012) and water-based extraction (Jain and De, 2016; Wang *et al.*, 2014). The hindrance of using solvent extraction is that it contains high toxicity of extracted yield and is costing when pressurized liquid extraction is applied. Thus, the feedstock of *M. charantia* for spray drying was prepared using water-based extraction method.

Spray drying is a method used to dehydrate fluids such as milk, coffee, and eggs, and it is also used widely in the pharmaceutical and chemical industries (Thirugnanasambandham and Sivakumar, 2015). This is the most important technology used to change the physical properties and remove water content in food. Spray drying is also a method of producing dry powder from a slurry or liquid by rapidly drying it with hot gas. The hot drying gas can be passed as a counter-current or co-current flow to the atomizer direction. The particle separator is typically a cyclone device that operates competently as the co-current flow allows particles to have a lesser residence time within the system. The particles in the chamber which are usually paired with a fluidized bed system enable for greater residence time if the counter-current flow method is used (Møller *et al.*, 2009).

All spray dryers use a spray nozzle or atomizer to disperse the slurry or liquid into a controlled drop size spray. The most common nozzles used are the single fluid pressure swirl nozzle and the rotary nozzle, while the two-fluid or ultrasonic nozzles are used in some applications too. The drying process is core, very rapid and is generally heated to temperatures lower than 100 °C, thus, spray drying is recommended for the encapsulation of heat-sensitive food ingredients. (Fang and Bhandari, 2011).

The optimization and assessment of the extraction process using mathematical and intelligent modeling seem to be essential for industrial applications (Sodeifian *et al.*, 2016). An experimental design has been used to optimize the number of
experiments. To support the interpretation of experimental design result which is discussed mainly in terms of powder yield, concentration of charantin and moisture content, response surface methodology (RSM) was used in this present study. RSM is an effective statistical tool for optimization as it consists of multiple variables that influences powder yield. Study by Sablania and Bosco (2018) state that, the equation and statistical analysis showed an effect on all the responses while the optimized conditions of spray drying validated the model.

1.2 Problem Statement

There are a lot of studies regarding the encapsulation of potential herbs using the spray drying process. However, there are some limitations on the spray drying methodology itself. For example, the drying process takes place without knowing the concentration of the active compound before and after process, as well as the active compound loss. In addition, feedstock preparation for the spray drying process is one of its weaknesses as the preparation take places without the extraction process and with unknown concentrations of the active compound. Besides that, proximate analysis is more appropriate to be used to determine the physical characteristics on a powder, for example its particle size, moisture content, bulk density and ash.

Thus, to overcome this limitation, the extraction of M. charantia fruits using water based extraction was implemented in order to quantify its active compounds such as charantin so to prepare the feedstock for the spray drying process. In addition, the powder produced was analyzed in terms of physical (moisture content) and chemical (concentration charantin) characteristic in order to confirm that the product contains antidiabetic properties.
1.3 Objectives of Research

The objectives of the research are:

i. To determine the optimum condition for the extraction of charantin from *M. charantia*.

ii. To investigate the optimum condition of total solid content of maltodextrin for the feedstock of the spray drying process.

iii. To optimize the parameters of the *M. charantia* powder spray drying process to produce high quality charantin encapsulation.

1.4 Scopes of Research

The scopes of this research include:

i. Water based extraction

Feedstock preparation was performed with a particle size $250 \leq dp \leq 300 \mu m$ and run using a water-based extraction for 6 hours at 60 °C, 80 °C, and 95 °C with ratio sample: solvent (1:20).

ii. Encapsulation process of charantin

Total solid content of maltodextrin which ranged from 5° – 20° Brix was determined according to the suitable amount of carrier agent and later was set as a constant parameter along with the best condition of extraction temperature. Suitable nozzle sizes in the range of 0.5 – 1.5 mm was set as a constant parameter before the encapsulation studies were conducted at inlet temperature in ranging from 150 °C to 190 °C and a feed flow rate ranging from 2 to 4 mL/min.
iii. Optimization of Spray Drying Process

The operating conditions of the spray drying process such as the inlet temperature, X_1 (150 – 190) °C and feed flow rate, X_2 (2 -4) mL/min with respect to responses such as powder yield, concentration of charantin and moisture content were optimized using respond surface methodology and contour plot.

iv. Analysis of *M. charantia* extracts and powder

The concentrations of charantin in the Soxhlet extraction, water-based extraction and spray dried powder were quantified using High Performance Liquid Chromatography (HPLC) analysis and the physiochemical characteristic of the dried powder was studied in terms of moisture content.

1.5 Significance of Research

M. charantia can be commercialized as it is rich in bioactive compounds especially charantin as charantin is one of the sources for the treatment of the diabetic mellitus disease. Using this treatment, the number of diabetic patients can be reduced in the future. Furthermore, the use of the spray dry method provides a promising alternative in the pharmaceutical industry as an encapsulation technique as it distribute the particles with control shelf life.

Lastly, the experimental procedures of this research may be used by third parties and also give benefits for future study. Besides that, other parties can decide on a suitable parameter based on this research’s experimental data and adopt it according to their uses.
1.6 Limitation of Study

The limitation of this study is the water-based extractor which is, a shaking water bath equipment used in the laboratory. The maximum operating temperature of the equipment is only up to 95°C. In addition, the up-scaling of the feed flow rate pump to spray drying was 1mL/min and not in decimal places.

1.7 Thesis Outline

Overall, this thesis consists of 5 chapters. Chapter 1 began with an introduction to the research project. This chapter included the background of the research, problem statement, objective of research, scope of research, significant of research and limitation of research. Three research objectives were stated within the scope of research.

In Chapter 2, the literature review describes the fundamental theory and application used in this study. This includes previous studies on the extraction process and spray drying process on a wide range of samples. In addition, it also provides an overview on the characteristics of the material which is the M. charantia fruit and the factors affecting the Soxhlet extraction. Besides that, the chapter also describes an overview on optimization using Response Surface Methodology (RSM).

Chapter 3 discusses in detail the research methodology used for the extraction process and spray drying process. The flow of this research includes the pretreatment of sample, preparation of feedstock using the water-based extraction, determination of the total solid content of maltodextrin and extraction temperature, encapsulation using the spray drying technique, and optimization of the drying process. The method for the quantification of charantin which is High Performance Liquid Chromatography and the moisture content analysis are also discussed in this chapter.
In Chapter 4, the results and discussion obtained from the process conducted in Chapter 3 are described briefly. The results from the Soxhlet extraction are presented first in order to determine the exact amount contained in the *M. charantia* fruits. Next, the extraction and pre-encapsulation processes are discussed further in terms of both extract yield and powder yield concentration of charantin. Then, the spray drying results are illustrated and conversed in terms of the effect of spray drying conditions towards powder yield, concentration of charantin and moisture content. Lastly, the optimization of data is computed using response surface methodology (RSM).

The conclusion in Chapter 5 answers all the objectives stated in Chapter 1. Recommendations are also provided for future work and improvement.
REFERENCES

Budrat, P., and Shotipruk, A. (2008). Extraction of phenolic compounds from fruits of bitter melon (Momordica charantia) with subcritical water extraction and antioxidant activities of these extracts. *Chiang Mai Journal of Science, 35*(1), 123-130

Chatterjee, S., Jain, A., and De, S. (2017). Effect of different operating conditions in cloud point assisted extraction of thymol from Ajwain (Trachyspermum Ammi L.) seeds and recovery using solvent. *Journal of Food Science and Technology-Mysore, 54*(13), 4353-4361

optimization of spray drying conditions. *Journal of Drug Delivery Science and Technology, 36*, 46-54

Supercritical Carbon Dioxide. *Doctor Philosophy, Universiti Sains Malaysia, Penang*

