EVALUATION OF *Justicia gendarussa* CRUDE LEAF EXTRACT FOR ENHANCEMENT OF FLAVONOIDS PRODUCTION VIA ADVENTITIOUS ROOT CULTURE AND GENETIC MODIFICATIONS

ZAHIDAH BTE AYOB

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Bioscience)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

MAY 2017
Special dedication to

My loving parents
Ayob Mat
Fatimah Sulieman

My beloved sisters
Nurhidayah Ayob
Siti Nuradha Ayob

My sweet nieces
Wan Nur Hannah
Wan Nur Hanis

My future soulmate
MJ

For all your love, prayers, support and sacrifice.
Thank you so much
ACKNOWLEDGEMENT

In the name of Allah the Almighty Lord of the world. I thank Allah for giving me the opportunity and giving me the strength to complete this research and thesis. Heartfelt thanks and grateful to my supervisor, Dr Azman Abd Samad, for his advice, patience, criticism, support and ideas throughout this study are greatly appreciated. I also want to express my sincere appreciation and gratitude to Dr Shajarahtunnur Jamil and Dr Siti Pauliena Mohd Bohari as my co-supervisor for her knowledge, guidance, critics and giving me opportunity to expand my research field onto natural products and animal tissue culture.

The help from my friends such as Kak Ain, Hidayah, Kak Shakila, Wani, Atikah, Syafiqoh and all plant biotechnology lab members, for always giving me motivation and strength during lab works and thesis writing have been invaluable and deeply appreciated. Many thanks also to our lab staff, En Khairul, En Hafizie and Kak Adah for their assistance on every technical problem in the development of my experiments especially detection using GC-FID and cancer cell culture.

To my beloved family especially mother, father, sisters and lovely nieces thank you so much for love, prayers, care and endless support throughout my study at Universiti Teknologi Malaysia. Not forgetting, a special thanks to MJ for the unconditional support and encouraging me get through the difficult times.

Last but not least, I would like to acknowledge the Ministry of Higher Education (MOHE) on MyBrain15 (MyPhD) for financial support and Research Universiti Grant for my research.
ABSTRACT

Justicia gendarussa extract possesses various bioactivities associated with the availability of flavonoids. Low availability of flavonoids could limit or even hinder the bioactivities effects. Therefore, attempts to enhance the flavonoids production via tissue culture approaches are being studied. This study aimed to optimize flavonoids contents in *J. gendarussa* using different tissue culture systems (*in vitro* plant regeneration and adventitious root culture) and genetic transformation methods. The cytotoxicity of plant extracts against various cancer cell lines was also evaluated. Detection and quantification of naringenin and kaempferol were performed using GC-FID. Cytotoxicity tests of crude extract against cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-468, HT-29, HeLa and BxPC-3) were determined by MTT assay. The optimization of elicitors used including yeast extracts (YE), casein hydrolysate (CH) and proline (P) at various concentrations (0, 0.2, 0.4, 0.6, 0.8 or 1.0 mg/L) were examined using nodal explants from *in vitro* plants. Adventitious roots were inoculated into MS liquid medium supplemented with IBA (2.0-4.0 mg/L). For genetic transformation studies, plasmids pCAMBIA 1305.2, which harbour the *PKS* gene and plant selectable marker, *HPT* for hygromycin resistance was used to transform nodal explants of *J. gendarussa* under the optimized transformation protocol using biolistic and *Agrobacterium tumefaciens*-mediated transformation. Results showed that mature leaves extract, JG1 had the highest naringenin (444.35 ± 81.43 mg/kg) and kaempferol (1591.80 ± 94.91 mg/kg), while the cytotoxicity against BxPC-3 cell was the strongest (IC$_{50}$~16 µg/mL). The highest naringenin and kaempferol contents were obtained in leaf crude extracts when treated with 0.6 g/L of CH (1180.30 ± 50.23 mg/kg) and 0.6 g/L of P (385.01 ± 13.10 mg/kg), respectively. Adventitious root culture produced high naringenin (97.54 ± 5.47 mg/kg) and kaempferol (853.82 ± 56.52 mg/kg) when treated with 2.0 mg/L IBA. The optimal parameters for biolistic method were established at 1100 psi helium pressure and 12 cm target distance with 95% of transformation efficiency. Meanwhile, the optimal transformation condition of *A. tumefaciens* method was bacterial concentration at OD$_{600}$nm ~ 0.8, 20 minutes of inoculation time, 500 µM AS and 1 cm explant size with 90% transformation efficiency. Even though *A. tumefaciens* method produced lower percentage of transient GUS expression than biolistic method, a few transformed explants were successfully produced. The integration of the *PKS* gene with band size of 1200 bp into the genome of transgenic plants were verified by PCR, sequencing and subsequently confirmed by Southern blot analysis. The content of kaempferol were found to be higher in stem extracts of transgenic plants (450.40 ± 7.82 mg/kg) than non-transgenic plants (197.13 ± 2.29 mg/kg). In conclusion, addition of elicitors, establishment of adventitious root culture and *A. tumefaciens*-mediated transformation could enhance flavonoid contents in *J. gendarussa*.
ABSTRAK

Ekstrak *Justicea gendarussa* mempunyai pelbagai bioaktiviti berkaitan dengan ketersediaan flavonoid. Ketersediaan kurang flavonoid boleh menghadkan atau menghalang kesan bioaktiviti. Oleh itu, perlu mengekalkan kandungan flavonoid melalui teknik kultur tisu sedang dikaji. Kajian ini bertujuan untuk mengotomisirkan kandungan flavonoid di dalam *J. gendarussa* menggunakan sistem kultur tisu yang berbeza (pertumbuhan pokok *in vitro* dan kultur akar adventitus) dan kaedah transformasi genetik. Kesitoksisan ekstrak pokok terhadap pelbagai titisan sel kanser juga dinilai. Pengesanan dan pengkuantitian naringenin dan kemperferol telah dijalankan menggunakan GC-FID. Ujian kesitoksisan ekstrak daun mentah *J. gendarussa* terhadap titisan sel kanser (MCF-7, MDA-MB-231, MDA-MB-468, HT-29, HeLa dan BxPC-3) telah ditentukan oleh asai MTT. Pengoptimuman elisitor iaitu ekstrak yis (YE), kasein hidrolisat (CH) dan prolin (P) pada pelbagai kepekatan (0, 0.2, 0.4, 0.6, 0.8 atau 1.0 mg/L) telah diperiksa menggunakan eksplan nodal dari pokok *in vitro*. Akar adventitus telah diinokulasi di dalam ceair media MS yang ditambah dengan IBA (2.0-4.0 mg/L). Bagi kajian transformasi genetik, plasmid pCAMBIA 1305.2 yang mempunyai gen PKS and gen penanda pemilihan pokok, HPT untuk rintangan higromisin telah digunakan untuk transformasi eksplan nodal *J. gendarussa* di bawah kaedah transformasi menggunakan biolistik dan transformasi berperantarakan *Agrobacterium tumefaciens*. Hasil kajian daun matang ekstrak, JG1 menunjukkan naringenin tertinggi (444.35 ± 81.43 mg/kg) dan kemperferol (1591.80 ± 94.91 mg/kg), manakala kesitoksisan menentang sel BxPC-3 yang terkuat (IC50~16 µg/mL). Kandungan tertinggi naringenin dan kemperferol diperolehi di dalam ekstrak daun apabila dirawat dengan CH 0.6 g/L (1180.30 ± 50.23 mg/kg) dan P pada 0.6 g/L (385.01 ± 13.10 mg/kg). Kultur akar adventitus menghasilkan tinggi naringenin (97.54 ± 5.47 mg/kg) dan kemperferol (853.82 ± 56.52 mg/kg) apabila dirawat dengan 2 mg/L IBA. Parameter optimum bagi kaedah biolistik adalah tekanan helium 1100 psi dan 12 cm jarak sasaran dengan keberkesanan transformasi sebanyak 95%. Manakala, parameter optimum bagi kaedah *A. tumefaciens* adalah apabila dirawat dengan kepekatan bakteria pada OD600nm~0.8, 20 minit masa inokulasi, ditambah dengan 500 µM kepekatan AS dan saiz eksplan iaitu 1 cm dengan keberkesanan transformasi sebanyak 90%. Walaupun kaedah *A. tumefaciens* menghasilkan peratusan gen GUS transien lebih rendah berbanding kaedah biolistik, beberapa eksplan tetramorfosis telah berjaya dihasilkan. Kehadiran dan integrasi gen PKS dapat dikenalpasti dengan pengesanan saiz jalur 1200 bp di dalam genom pokok transgenik berdasarkan PCR, penjukan dan seterusnya disahkan oleh analisis pemblotan Southern. Kandungan kemperferol didapati lebih tinggi di dalam ekstrak batang pokok transgenik (450.40 ± 7.82 mg/kg) berbanding pokok tanpa tertransformasi (197.13 ± 2.29 mg/kg). Kesimpulannya, penambahan elisitor, penghasilan kultur akar adventitus dan transformasi berperantarakan *A. tumefaciens* boleh meningkatkan kandungan flavonoid di dalam *J. gendarussa*.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxv</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of the problem 1
1.2 Problem Statements 4
1.3 Aim and objectives of the Study 5
1.4 Scope of the Study 6
1.5 Significance of the Study 7

2 LITERATURE REVIEW 8

2.1 Medicinal Plant in Malaysia 8
2.2 Justicia gendarussa 9
 2.2.1 Traditional and Medicinal Uses 10
 2.2.2 Bioactive Compounds 11
 2.2.3 Biological Activities 12
2.3 Flavonoids
 2.3.1 Flavonoids Biosynthetic Pathway
 2.3.2 Roles of Flavonoids
 2.3.3 Naringenin and Kaempferol
 2.3.4 Detection Methods of Flavonoids

2.4 Anticancer
 2.4.1 Cancer Study in Malaysia
 2.4.2 MTT Assay
 2.4.3 Structure-Activity Relationship with flavonoids

2.5 Plant Tissue Culture Approach for Enhancement of Secondary Metabolites
 2.5.1 Elicitation on in vitro Plant
 2.5.2 General Mechanism of Action of Elicitors
 2.5.3 Adventitious Root Culture

2.6 Plant Genetic Transformation
 2.6.1 Structure and Mechanism of Polyketide Synthase (PKS) Gene
 2.6.2 Polyketide Synthase (PKS) Gene Function
 2.6.3 Polyketide Synthase (PKS) in Biosynthesis of Secondary Metabolites
 2.6.4 GUS as Reporter Gene
 2.6.5 Southern Blot Analysis

3 DETECTION AND QUANTIFICATION OF FLAVONOIDS IN J. gendarussa LEAF EXTRACTS BY GC-FID
 3.1 Introduction
 3.2 Materials and Methods
 3.2.1 General Chemicals
 3.2.2 Plant Materials
 3.2.3 Preparation of Fresh Leaf Extracts
 3.2.4 Preparation of Dried Mature Leaf Extracts
 3.2.5 Preparation of Standards
3.2.6 GC-FID System and Quantitative Analysis 48
3.2.7 Statistical Analysis 48
3.3 Results 49
3.3.1 Qualitative and Quantitative Analysis of Naringenin and Kaempferol by GC-FID 49
3.4 Discussion 52
3.4.1 Flavonoids Distribution by GC-FID Analysis 52
3.5 Conclusion 54

4 CYTOTOXIC ACTIVITIES OF J. gendarussa CRUDE EXTRACT AGAINST CANCER CELL LINES 55
4.1 Introduction 55
4.2 Materials and Methods 57
4.2.1 General Chemicals 57
4.2.2 Plant Materials 57
4.2.3 Preparation of Dried Mature Leaf Extracts 57
4.2.4 Cell lines 58
4.2.5 Cell Cultures 58
4.2.6 Optimization of Seeding Density 59
4.2.7 MTT Assay 59
4.2.8 Statistical Analysis 60
4.3 Results 61
4.4 Discussion 77
4.5 Conclusion 80

5 EFFECTS OF ELICITORS AND PLANT GROWTH REGULATORS ON FLAVONOIDS CONTENT OF IN VITRO PLANTS AND ADVENTITIOUS ROOTS OF J. gendarussa 81
5.1 Introduction 81
5.2 Materials and Methods 82
5.2.1 General Chemicals 82
5.2.2 Plant Materials 82
5.2.3 Media Preparation 83
5.2.4 Effects of Different Concentrations of Elicitors on Flavonoids Content in *in vitro* Plants

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.4.1</td>
<td>Surface Sterilization of Explants and Culture Condition for in vitro-Grown Plants</td>
<td>83</td>
</tr>
<tr>
<td>5.2.4.2</td>
<td>Culture Condition for in vitro-Grown Plants</td>
<td>83</td>
</tr>
<tr>
<td>5.2.4.3</td>
<td>Preparation of Plant Extracts</td>
<td>84</td>
</tr>
<tr>
<td>5.2.4.4</td>
<td>GC-FID System and Quantitative Analysis</td>
<td>84</td>
</tr>
</tbody>
</table>

5.2.5 Effects of Different Concentrations of Indole-3-butyric acid (IBA) on Flavonoids Contents in Adventitious Root Culture

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.5.1</td>
<td>Culture Condition for Adventitious Roots Induction</td>
<td>85</td>
</tr>
<tr>
<td>5.2.5.2</td>
<td>Establishment of Adventitious Root Culture</td>
<td>85</td>
</tr>
<tr>
<td>5.2.5.3</td>
<td>Preparation of Root Extracts</td>
<td>85</td>
</tr>
<tr>
<td>5.2.5.4</td>
<td>Total Phenolic Content</td>
<td>86</td>
</tr>
<tr>
<td>5.2.5.5</td>
<td>Total Flavonoid Content</td>
<td>86</td>
</tr>
<tr>
<td>5.2.5.6</td>
<td>GC-FID System and Quantitative Analysis</td>
<td>86</td>
</tr>
</tbody>
</table>

5.2.6 Statistical Analysis

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>Results</td>
<td>87</td>
</tr>
</tbody>
</table>

5.3.1 Effects of Different Concentrations of Elicitors on Flavonoids Contents of *in vitro* Plants

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.2</td>
<td>Effects of Different Concentrations of Indole-3-butyric acid (IBA) on Flavonoids Contents in Adventitious Root Culture</td>
<td>91</td>
</tr>
<tr>
<td>5.3.2.1</td>
<td>Effect of IBA on Adventitious Root Biomass</td>
<td>91</td>
</tr>
</tbody>
</table>
5.3.2.2 Effect of IBA on Total Phenolic and Flavonoids Contents 91
5.3.2.3 Effects of IBA on Naringenin and Kaempferol Contents 92

5.4 Discussion 95
5.4.1 Effects of Elicitors on Flavonoids Contents in vitro Plants 95
5.4.2 Effects of Different Concentrations of Indole-3-butyric acid (IBA) on Flavonoids Content in Adventitious Root Culture 97

5.5 Conclusion 99

6 BIOLISTICS TRANSFORMATION OF POLYKETIDE SYNTHASE (PKS) GENE IN Justicia gendarussa 100

6.1 Introduction 100
6.2 Materials and Methods 101
6.2.1 General Chemicals 101
6.2.2 Plant Materials 101
6.2.3 Media Preparation 102
6.2.4 Surface Sterilization of Explants and Axenic Shoot Culture Establishment 102
6.2.5 Plasmid Sources 102
6.2.6 Cloning of PKS Gene into pCAMBIA 1305.2 Plasmid 103
6.2.6.1 Sub-cloning of PKS Gene from pGEMT-PKS Plasmid 103
6.2.6.2 Digestion of pCAMBIA 1305.2 Plasmid and PKS Fragment with BglII Restriction Enzyme 104
6.2.6.3 Ligation of PKS Fragment into pCAMBIA 1305.2 106
6.2.7 Transformation of Recombinant Plasmid pCAMBIA1305.2PKS into Escherichia coli
Competent Cells

6.2.7.1 Preparation of Competent *E. coli* Strain DH5α Cells 107

6.2.7.2 Transformation of Recombinant Plasmid pCAMBIA 1305.2PKS into *E. coli* Competent Cells 108

6.2.8 Confirmation of Recombinant Plasmid pCAMBIA 1305.2PKS 108

6.2.8.1 Colony Screening 108

6.2.8.2 Restriction Enzyme Analysis 109

6.2.8.3 Bioinformatic Analysis 109

6.2.9 Construction of Recombinant Plasmid pCAMBIA 1305.2PKS 109

6.2.10 Confirmation of the Recombinant Plasmid pCAMBIA 1305.2PKS 110

6.2.11 Quantitative Analysis 111

6.2.12 Biolistic Transformation 111

6.2.12.1 Biolistic Apparatus 111

6.2.12.2 Plasmid DNA Preparation 112

6.2.12.3 Microcarrier Preparation 112

6.2.12.4 Plasmid DNA Coating with Gold Particle Preparation 112

6.2.12.5 Biolistic Parameters 113

6.2.13 Histochemical β-glucuronidase (GUS) Assay 113

6.2.14 Determination of Minimal Inhibitory Concentration of Hygromycin on Explants 114

6.2.15 Optimized Condition, Selection and Regeneration of Putatively Transformed Plants 114

6.2.16 Molecular Analysis of Putatively Transformed Explants 115

6.2.16.1 DNA Isolation 115
6.2.16.2 RNA Extraction
 6.2.16.2.1 Total RNA Isolation
 6.2.16.2.2 DNase Treatment
 6.2.16.2.3 cDNA Synthesis
6.2.16.3 PCR and RT-PCR Analysis
6.2.17 Statistical Analysis

6.3 Results

6.3.1 Construction of Polyketide Synthase (PKS) Gene into pCAMBIA 1305.2 Recombinant Plasmid
 6.3.1.1 Sub-cloning of Polyketide Synthase (PKS) Gene from pGEMT-PKS
 6.3.1.2 Polyketide Synthase (PKS) cloned into pCAMBIA 1305.2

6.3.2 Parameters Affecting Transformation Efficiency of Biolistic Transformation in J. gendarussa
 6.3.2.1 Effect of Helium Pressure on Transformation Efficiency
 6.3.2.2 Effect of Target Distance on Transformation Efficiency

6.3.3 Minimal Inhibitory Concentration for Hygromycin
6.3.4 Putatively Transformed Explants Analysis
 6.3.4.1 Polymerase Chain Reaction (PCR) Analysis
 6.3.4.2 RT-PCR Analysis

6.4 Discussion

6.4.1 Construction of Polyketide Synthase (PKS) Gene into pCAMBIA 1305.3 Recombinant Plasmid
6.4.2 Parameters Affecting Transformation
7 Agrobacterium tumefaciens-MEDIATED TRANSFORMATION OF POLYKETIDE SYNTHASE (PKS) GENE IN Justicia gendarussa

7.1 Introduction 134

7.2 Materials and Methods 135

7.2.1 General Chemicals 135

7.2.2 Transformation of Recombinant Plasmid pCAMBIA 1305.2PKS into Agrobacterium tumefaciens LBA 4404 Competent Cells 136

7.2.2.1 Preparation of Competent A. tumefaciens LBA 4404 Cells 136

7.2.2.2 Transformation of Recombinant Plasmid pCAMBIA 1305.2PKS into A. tumefaciens LBA 4404 Competent Cells 136

7.2.3 A. tumefaciens-Mediated Transformation of J. gendarussa Plant 137

7.2.3.1 Infection Time 138

7.2.3.2 Acetosyringone Concentration (AS) 138

7.2.3.3 Explant Size 138

7.2.4 Histochemical β-glucuronidase (GUS) Assay 139

7.2.5 Optimized Condition, Selection and Regeneration of Putatively Transformed Explants 139

Efficiency of Biolistic Transformation of J. gendarussa 130

6.4.3 Minimal Inhibitory Concentration for Hygromycin 131

6.4.4 PCR and RT-PCR Analysis on Putatively Transformed Explants 132

6.5 Conclusion 133
7.2.6 Molecular Analysis of Putatively Transformed Explants

7.2.6.1 DNA Isolation of Putatively Transformed Explants 139

7.2.6.2 RNA Extraction 140

7.2.6.3 PCR and RT-PCR Analysis 140

7.2.7 Southern Blot Analysis 140

7.2.7.1 Dig-DNA Labelling 140

7.2.7.2 DNA Digestion of Transgenic Plant 141

7.2.7.3 DNA Transfer and Fixation 141

7.2.7.4 Hybridization 142

7.2.7.5 Immunological Detection 143

7.2.8 GC-FID System and Quantitative Analysis of Transgenic Plant 144

7.2.9 Statistical Analysis 144

7.3 Results 145

7.3.1 Transformation of Recombinant Plasmid pCAMBIA 1305.2PKS into A. tumefaciens Strain LBA 4404 145

7.3.2 Parameters Affecting Transformation Efficiency of A. tumefaciens-Mediated Transformation of J. gendarussa Explants 146

7.3.2.1 Bacterial Concentrations 146

7.3.2.2 Infection Time 147

7.3.2.3 Acetosyringone Concentration (AS) 147

7.3.2.4 Explant Size 148

7.3.3 Molecular Analysis of Putatively Transformed Explants 149

7.3.3.1 PCR Analysis 149

7.3.3.2 RT-PCR Analysis 149

7.3.4 Transgenic Plants Analysis 151
7.3.4.1 PCR Analysis of Transgenic Plants 151
7.3.4.2 Southern Blot 152
7.3.4.3 Determination of Flavonoids in Transgenic Plants 153

7.4 Discussion 154
7.4.1 Parameters Affecting Transformation Efficiency of *A. tumefaciens*-Mediated Transformation in *J. gendarussa* Explants 154
7.4.2 Molecular Analysis of Putatively Transformed Explants 157
7.4.3 Transgenic Plants Analysis 157

7.5 Conclusion 159

8 CONCLUSION AND RECOMMENDATIONS 160
5.1 Conclusions 160
5.2 Recommendations 162

REFERENCES 163
Appendices A-G 199-217
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Taxonomy hierarchy of Justicia gendarussa</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical constituents of Justicia gendarussa</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Dietary sources of flavonoids</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Biological activities of flavonoids</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>Typical application of GC to flavonoids analysis</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Medicinal plant derived the chemotherapeutic drugs</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>Cytotoxicity study on Malaysian medicinal plant against various cancer cell lines</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Anticancer study of flavonoids against various cancer cell lines</td>
<td>27</td>
</tr>
<tr>
<td>2.9</td>
<td>Effect of elicitors on the enhancement production of secondary metabolites in medicinal plant</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>The adventitious root culture produces secondary metabolites in medicinal plants</td>
<td>35</td>
</tr>
<tr>
<td>2.11</td>
<td>Polyketide synthase enzyme involve in biosynthesis of secondary metabolites</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Retention times, t_R of naringenin and kaempferol on HP-5 column</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>The seeding density of cell lines for MTT assay</td>
<td>59</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of IC_{50} values between J. gendarussa crude leaf extracts from five different locations, flavonoids and tamoxifen on different cancer cell lines</td>
<td>62</td>
</tr>
<tr>
<td>6.1</td>
<td>PCR components for amplification of PKS gene</td>
<td>105</td>
</tr>
<tr>
<td>6.2</td>
<td>PCR programmed for amplification of PKS gene</td>
<td>105</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.3</td>
<td>Single digestion of pCAMBIA 1305.2 with BglII</td>
<td>106</td>
</tr>
<tr>
<td>6.4</td>
<td>Ligation reaction for PKS fragment into pCAMBIA 1305.2</td>
<td>107</td>
</tr>
<tr>
<td>6.5</td>
<td>PCR programmed for amplification of HPT and GUS genes</td>
<td>111</td>
</tr>
<tr>
<td>6.6</td>
<td>Sequence identity analysis of PKS gene fragment with other nucleotide sequences from GenBank using BLASTN analysis</td>
<td>122</td>
</tr>
<tr>
<td>6.7</td>
<td>Effect of helium pressure and target distance on transient GUS expression</td>
<td>124</td>
</tr>
<tr>
<td>7.1</td>
<td>Effect of bacterial concentrations on transient GUS expression</td>
<td>146</td>
</tr>
<tr>
<td>7.2</td>
<td>Effect of infection time on transient GUS expression</td>
<td>147</td>
</tr>
<tr>
<td>7.3</td>
<td>Effect of Acetosyringone concentrations (AS) on transient GUS expression</td>
<td>148</td>
</tr>
<tr>
<td>7.4</td>
<td>Effect of explants size on transient GUS expression</td>
<td>149</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Justicia gendarussa</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic illustrating the biosynthetic pathway of flavonoids</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of naringenin (1) and kaempferol (2)</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Reduction of MTT to formazan crystal</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Mechanism of β-glucuronidase cleavage the chromogenic (colour generating) substrate 5-bromo-4-chloro-3-indolyl β-D-glucuronic acid (X-gluc) to produce an insoluble blue colourprecipitate dichloro-dibromoindigo</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>GC chromatogram of a standard mixture of two flavonoids</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Chromatograms of naringenin (1) and kaempferol (2) contents in fresh mature leaves extract from Muar (control) (a) and co-injected with standards (naringenin and kaempferol) (b)</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>Naringenin and kaempferol contents in fresh young and mature leaf extracts of J. gendarussa from five different locations</td>
<td>51</td>
</tr>
<tr>
<td>3.4</td>
<td>Distribution contents of naringenin and kaempferol in dried mature leaf extracts from five different locations</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Morphology changes of MCF-7 cells when treated with J. gendarussa crude leaf extracts from five different locations</td>
<td>63</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Morphology changes of MDA-MB-231 cells when treated with J. gendarussa crude leaf extracts from five different locations</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Morphological changes of MDA-MB-468 cells when treated with J. gendarussa crude leaf extracts from five different locations</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Morphological changes of HT-29 cells when treated with J. gendarussa crude leaf extracts from five different locations</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Morphological changes of HeLa cells when treated with J. gendarussa crude leaf extracts from five different locations</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Morphological changes of BxPC-3 cells when treated with J. gendarussa crude leaf extracts from five different locations</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Morphological changes of CHO cells when treated with J. gendarussa crude leaf extracts from five different locations</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Morphology of MCF-7, MDA-MB-231, MDA-MB-468, HT-29, HeLa, BxPC-3 and CHO cells when treated with naringenin and kaempferol</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Morphology of MCF-7, MDA-MB-231, MDA-MB-468, HT-29, HeLa, BxPC-3 and CHO cells when treated with tamoxifen</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Flavonoids contents in the crude leaf extracts treated with different concentrations of elicitors after 2 months culture</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Flavonoids contents in the crude stem extracts treated with different concentrations of elicitors after 2 months culture</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Schematic diagram of adventitious root culture in J. gendarussa</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Effects of different IBA concentrations on</td>
<td></td>
</tr>
</tbody>
</table>
adventitious root biomass after 2 months culture

5.5 Effects of different IBA concentrations on total phenols and flavonoids contents of adventitious root biomass after 2 months culture

5.6 Effects of different IBA concentrations on adventitious root biomass of naringenin and kaempferol contents after 2 months culture

6.1 Schematic diagram construction of recombinant plasmid pCAMBIA 1305.2PKS

6.2 Amplification of PKS gene from pGEMT-PKS intermediate plasmid

6.3 Amplification of PKS gene from randomly picked single colony

6.4 BglII digestion of randomly putatively DNA pCAMBIA 1305.2PKS plasmid

6.5 Polyketide Synthase (PKS) gene nucleotide sequence

6.6 Amplification of two genes, GUS and HPT from pCAMBIA 1305.2PKS

6.7 Transient GUS expression when nodal explants were bombarded with 1100 psi at different target distance

6.8 The effects of different concentrations of hygromycin on percentage of nodal segments survived after 6 weeks culture

6.9 Effect of different concentrations of hygromycin on survival percentage J. gendarussa nodal explants

6.10 PCR analysis of putatively transformed explants bombarded

6.11 RT-PCR analysis of cDNA putatively transformed explants

7.1 Southern blot construction

7.2 Amplification of three genes, PKS, GUS and HPT

7.3 PCR analysis of putatively transformed explants with A. tumefaciens strain LBA 4404
<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4</td>
<td>RT-PCR analysis of cDNA putatively transformed explants using A. tumefaciens strain LBA 4404</td>
</tr>
<tr>
<td>7.5</td>
<td>Transgenic plants</td>
</tr>
<tr>
<td>7.6</td>
<td>PCR analysis of PKS gene in three transgenic plant</td>
</tr>
<tr>
<td>7.7</td>
<td>Southern blot analysis of PKS gene in three randomly selected transgenic plants</td>
</tr>
<tr>
<td>7.8</td>
<td>Naringenin and kaempferol contents in transgenic plants of leaves and nodal explants as compared to non-transgenic plants (control) of 6-months-old.</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

rpm - Rotation per minute
v - Volume
v/v - Volume per volume
w/v - Weight per volume
µg/mL - Microgram per milliliter
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>JG</td>
<td>Justicia gendarussa</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>PKS</td>
<td>Polyketide synthase</td>
</tr>
<tr>
<td>CHS</td>
<td>Chalcone synthase</td>
</tr>
<tr>
<td>GUS</td>
<td>β-glucuronidase</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffer saline</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>IBA</td>
<td>Indole-3-butyric acid</td>
</tr>
<tr>
<td>vir</td>
<td>virulence</td>
</tr>
<tr>
<td>GC-FID</td>
<td>Gas Chromatography-Flame Ionization Detector</td>
</tr>
<tr>
<td>MS</td>
<td>Murashige and Skoog</td>
</tr>
<tr>
<td>X-gluc</td>
<td>5-bromo-4-chloro-3-indolyl β-D-glucuronic acid</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>Sodium carbonate</td>
</tr>
<tr>
<td>NANO₂</td>
<td>Sodium nitrile</td>
</tr>
<tr>
<td>AlCl₃</td>
<td>Aluminium chloride</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyltrimethyl ammonium bromide</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinyl pyrrolidone</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Voucher specimen of Justicia gendarussa</td>
<td>199</td>
</tr>
<tr>
<td>B1</td>
<td>Percentage of viability of MCF-7 cells in crude leaf extracts from five different locations</td>
<td>200</td>
</tr>
<tr>
<td>B2</td>
<td>Percentage viability of MDA-MB-231 cells in crude leaf extracts from five different locations</td>
<td>201</td>
</tr>
<tr>
<td>B3</td>
<td>Percentage viability of MDA-MB-468 cells in crude leaf extracts from five different locations</td>
<td>202</td>
</tr>
<tr>
<td>B4</td>
<td>Percentage viability of HT-29 cells in crude leaf extracts from five different locations</td>
<td>203</td>
</tr>
<tr>
<td>B5</td>
<td>Percentage viability of HeLa cells in crude leaf extracts from five different locations</td>
<td>204</td>
</tr>
<tr>
<td>B6</td>
<td>Percentage viability of BxPC-3 cells in crude leaf extracts from five different locations</td>
<td>205</td>
</tr>
<tr>
<td>B7</td>
<td>Percentage viability of CHO cells in crude leaf extracts from five different locations</td>
<td>206</td>
</tr>
<tr>
<td>B8</td>
<td>Percentage viability of MCF-7, MDA-MB-231 and MDA-MB-468, cells in kaempferol and naringenin</td>
<td>207</td>
</tr>
<tr>
<td>B9</td>
<td>Percentage viability of HT-29, HeLa, BxPC-3 and CHO cells in kaempferol and naringenin</td>
<td>208</td>
</tr>
<tr>
<td>B10</td>
<td>Percentage viability of MCF-7, MDA-MB-231, MDA-MB-468, HT-29, HeLa, BxPC-3 and CHO cells in tamoxifen</td>
<td>209</td>
</tr>
<tr>
<td>C1</td>
<td>Flavonoids contents of crude leaf extracts in different concentration of elicitors</td>
<td>210</td>
</tr>
<tr>
<td>C2</td>
<td>Flavonoids contents of crude stem extracts in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>C3</td>
<td>Standard Curve of Gallic Acid for Total Phenolic Content</td>
<td>211</td>
</tr>
<tr>
<td>C4</td>
<td>Standard Curve of Catechin for Total Flavonoid Content</td>
<td>212</td>
</tr>
<tr>
<td>D</td>
<td>Map of pCambia1305.2</td>
<td>213</td>
</tr>
<tr>
<td>E1</td>
<td>Psi Solution</td>
<td>214</td>
</tr>
<tr>
<td>E2</td>
<td>TfbI solution</td>
<td>214</td>
</tr>
<tr>
<td>E3</td>
<td>TfbII solution</td>
<td>214</td>
</tr>
<tr>
<td>F</td>
<td>Histochemical β-glucuronidase (GUS) assay</td>
<td>215</td>
</tr>
<tr>
<td>G</td>
<td>List of Publications</td>
<td>216</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the problem

The updated strategy of World Health Organisation (WHO) from 2014 to 2023 devotes more attention than its predecessor to prioritizing health services and systems, including traditional and complementary medicine products, practices and practitioners (WHO, 2013). Medicinal plants have been used as traditional treatments for numerous human diseases for thousand years. In rural areas of the developing countries, they continue to be used as the primary source of medicine since western pharmaceuticals are often expensive or inaccessible (Ekor, 2014). The natural products derived from medicinal plants have proven to be an abundant source of biologically active compounds, many of which have been the basis for the development of new leading chemicals for pharmaceuticals (Enzo, 2011).

Numerous researchers have shown high interest in plant secondary metabolites particularly flavonoids which have possessed diverse bioactivities and contributed valuable prospects to the pharmaceutical industries. Flavonoids exhibit various biological effects including lowering plasma levels of low-density lipoproteins, inhibiting platelet aggregation, promoting scavenging free radicals and reducing cell proliferation (Woodman and Chan, 2004). Therefore, in this study, flavonoids such as naringenin (flavanone) and kaempferol (flavonol) were given great attention due to their potential beneficial effects on the human health. Naringenin was reported as strong antioxidant and showed cytotoxicity against human breast cancer cell line, MCF-7 (Cavia-Saiz et al., 2010; Park et al., 2010).
Previous studies reported kaempferol as a strong antioxidant, able to prevent arteriosclerosis, inhibits cell proliferation and induces apoptosis in pancreatic cancer cells (Tu et al., 2007; Zhang et al., 2008).

Justicia gendarussa, which is also known by its common name Gendarussa has been investigated as potential medicinal plants in this study. These plants have distributed in many countries such as India, Indonesia, Malaysia and Sri Lanka. The root and leaf extracts of *J. gendarussa* have been traditionally used to treat many ailments such as chronic rheumatism, inflammations, bronchitis, headache, arthritis, vaginal discharges, dyspepsia, eye disease and fever (Janarthanam and Sumanthi, 2010). Leaf and stem extracts of *J. gendarussa* were reported to possess anti-inflammatory, antioxidant, antibacterial, antifungal, antiangiogenis, antiplatelet, antiarthritic, anthelmintic and hepatoprotective activities (Navarro et al., 2001; Paval et al., 2009; Krishna et al., 2010; Saha et al., 2012). Phytochemical studies on leaf extracts of *J. gendarussa* revealed the presence of flavonoids, alkaloids, triterpenoid saponins, amino acids, aromatic amines and sterols (Chakravarty et al., 1982; Ratnasooriya et al., 2007; Bambang Prajogo et al., 2009; Mustafa et al., 2010; Uddin et al., 2011; Kiren et al., 2014).

According to statistics in Malaysia, the incidence of breast and cervical cancers are common among female patients while colon and pancreas cancers are prevalence among men patients (Bachok et al., 2012; Farooqui et al., 2013). Unfortunately, cancer is a public health problem in all over the world affecting all categories of persons (Iweala et al., 2015). Despite the advancement in cancer therapies such as surgery, radiotherapy, hyperthermia, hormone therapy and chemotherapy, these therapies are ineffective in destroying cancer cells and may cause damage to the healthy cells. Examples of the adverse side effects of cancer treatments include mouth sore, tiredness, hair loss, nausea and vomiting (Jones et al., 2004). For many years herbal medicines have been used and are still used in developing countries as the primary source of medical treatment. Thus, research has developed into investigating the potential properties and uses of terrestrial plants extracts for the preparation of potential nanomaterial based drugs for diseases including cancer (Zakaria et al., 2011b). Many plant species are already being used
to treat or prevent development of cancer. Multiple researchers have identified species of plants that have demonstrated anticancer properties with a lot of focus on those that have been used in herbal medicine in developing countries (Greenwell and Rahman, 2015). In this regard, this is the first study to evaluate the cytotoxic activities in *Justicia gendarussa* crude leaf extracts against breast (MCF-7, MDA-MB-231 and MDA-MB-468), colon (HT-29), cervix (HeLa) and pancreas (BxPC-3) cancer cell lines have been investigated. In order to identify the plants with potential bioactive compounds against cancer cell lines, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay will be performed by using the crude leaf extracts and flavonoids (naringenin and kaempferol) which would give a plausible contribution in cytotoxicity of secondary metabolite towards cancer treatment.

It is well-known that flavonoids possessed remarkable strong anticancer and antioxidant activities (Susanti et al., 2007). The drawbacks of the flavonoids extraction from field-grown plants are low yields and fluctuation in flavonoids concentration due to geographical, seasonal and environmental variations. In addition, the long cultivation period resulting in high-cost commercial drug production (Murthy et al., 2014). Current advances in plant biotechnology offer manipulation of bioactive compounds via tissue culture approaches (Baque et al., 2012). Many strategies for enhancement of plant metabolites such as selection of cell clones, optimization of medium and culture environments, elicitation, nutrient and precursor feeding and biotransformation can be applied. Hence, in this study, alternative methods to enhance the production of flavonoids from *J. gendarussa* were performed through elicitation on *in vitro* plant, adventitious root cultures and genetic transformation methods.

In recent years, many studies on the production of biomass and secondary metabolites through elicitation on *in vitro* plant and adventitious root culture system have been conducted. Elicitors are compounds from various biotic or abiotic sources which may enhance the secondary metabolite in plant cells by triggering the signal in secondary metabolites production (Rao and Ravishankar, 2002). Elicitation can be used as one of the important strategies to increase secondary metabolites production and reduce production cost (Siddiqui et al., 2013). In addition, plant growth
regulators are also one of the most important factors in affecting cell growth, differentiation and metabolites formation (Baque et al., 2012). Previous studies reported that adventitious root tissues are efficient in biomass production because of fast growth rates and stable secondary metabolite productivity (Choi et al., 2000; Kim et al., 2004a; Wu et al., 2006). Hence, in this study, high flavonoids production and biomass can be achieved by optimizing the effects of elicitors and plant growth regulators of in vitro plant and adventitious root cultures conditions.

Modification or enhancement of flavonoids production in Justicia gendarussa plant through genetic transformation would be a powerful tool in flavonoid biosynthetic pathway. It is important to develop a genetic transformation system by optimizing the transformation efficiency parameters followed by introduction of a polyketide synthase (PKS) gene i.e chalcone synthase (CHS), which is the precursor in the flavonoid biosynthesis pathway (Jamalnasir et al., 2014). There are several methods available for genetic plant transformation such as Agrobacterium tumefaciens-mediated transformation, biolistic and electroporation (Yong et al., 2006). In this study, the transformation methods using biolistic and A. tumefaciens-mediated transformation had been optimized using β-glucuronidase (GUS) as a reporter gene. Enhancement of the flavonoids production in J. gendarussa plant is a highly valuable protocol and thereby this is an ideal platform to improve the genetic transformation system in the medicinal plant.

1.2 Problem Statements

Flavonoids such as kaempferol and naringenin have been reported to have antioxidant, anticancer, antibacterial, antiviral and anti-inflammatory properties (Kumar and Pandey, 2013). These flavonoids also act as plant protective agents against various biotic and abiotic stress and also beneficial in preventing degenerative diseases on human (Kasote et al., 2015). To the best of our knowledge, there is no report on the detection and quantification of naringenin and kaempferol in
young and mature leaves of *Justicia gendarussa* especially from different localities in Johor.

Until now, no study has yet been carried out to determine the cytotoxicity effects of *Justicia gendarussa* leaf extracts against human cancer cell lines. This study was intended to demonstrate the anticancer potential of local *J. gendarussa* as an alternative anticancer agent.

Nowadays, medicinal plant studies have gained considerable attention internationally especially from pharmacology industry because of the extensive research on phytochemical and biological activities. However, the quality of the bioactive compounds derived from field-grown medicinal plants may be affected by environmental factors, physiological and developmental stages of the plant. Field cultivation requires a long growth period and plant management, which is a slow, time-consuming and laborious process (Wang et al., 2015). Therefore, in this study, plant cell culture approach is an alternative for the enhancement of the biomass and secondary metabolites production particularly flavonoids. Studies on the effect of elicitor on *in vitro* plant cultures, plant growth regulators of adventitious root cultures and genetic transformation for the enhancement of flavonoids production were not yet explored. In addition, manipulating the medium compositions supplemented with different concentrations of elicitors and plant growth regulators for *in vitro* plant and adventitious root cultures with the introduction of polyketide synthase (PKS) gene into *J. gendarussa* via genetic transformation were attempted in order to enhance the flavonoids production.

1.3 Aim and Objectives of the Study

The aim of the study is to increase the flavonoids (i.e naringenin and kaempferol) contents of *Justicia gendarussa* using tissue culture approaches via adventitious roots cultures and genetic modifications. The study objectives include:
1. To determine flavonoids contents in young and mature leaves of *J. gendarussa* plant.
2. To evaluate the cytotoxicity of *J. gendarussa* crude leaf extract against various cancer cell lines.
3. To assess the effects of different concentrations of elicitor and plant growth regulator on flavonoids contents of *in vitro* plant and adventitious roots cultures of *J. gendarussa*.
4. To determine the effects of transformation parameters on the biolistic transformation efficiency of *J. gendarussa* nodal explants
5. To determine the effects of transformation parameters on the *A. tumefaciens*–mediated transformation efficiency of *J. gendarussa* nodal explants

1.4 Scope of the Study

This research was focused on quantification of flavonoids, namely naringenin and kaempferol in young and mature leaf extracts of *Justicia gendarussa* from different locations in Johor by GC-FID method. The mature leaves that produced high flavonoids content were subjected to cytotoxic MTT assay against various cancer cell lines, MCF-7, MDA-MB-231, MDA-MB-468, BxPC-3, HeLa and HT-29. Plants that produced high flavonoids content and strong cytotoxic activity were selected for further applications of tissue culture approach. In order to enhance the flavonoids content in *J. gendarussa* plants, *in vitro* plant culture, adventitious root culture and genetic plant transformation were applied. Firstly, *in vitro* plants were supplemented with different concentrations of elicitors, while adventitious root cultures were induced and optimized using different concentrations of plant growth regulator in shake flask system. Determination of flavonoids content on *in vitro* plant and adventitious roots cultures were done using the GC-FID method. Secondly, optimization of biolistic and *A. tumefaciens*–mediated transformation parameters for *J. gendarussa* plant by GUS histochemical assay were conducted. The presence of HPT, GUS and PKS genes in transgenic plants were verified by PCR and confirmed using Southern blot analysis. Lastly, the comparison of
flavonoids content in transgenic plants and wild-type plants were determined using the GC-FID method.

1.5 Significance of the Study

This study was conducted to determine flavonoids content in *Justicia gendarussa* plant which contributes to cytotoxic effect against cancer cell lines. High cytotoxic effect of *J. gendarussa* extracts could be served as a good candidate for the development of new anticancer agents. Besides that, the application of *in vitro* plant culture, adventitious roots culture and genetic plant transformation could be applied to enhance flavonoids content in *J. gendarussa*. The establishment of adventitious roots culture system and flavonoids biomass production could enhance the flavonoids content from adventitious roots culture by applying in various strategies such as elicitation, application in a suitable bioreactor and bioprocess technologies. In this study, a fast and reliable method of biolistic and *Agrobacterium tumefaciens*-mediated transformation of *J. gendarussa* were developed. Establishment of plant transformation system provides the first essential step in the systematic study of the flavonoid biosynthetic pathway. The introduction of desired gene i.e PKS gene into the plant genome would modify flavonoids content in putatively transformed plants. Furthermore, a suitable approach for secondary metabolite production i.e flavonoids in *J. gendarussa* plants suggested through adventitious root culture and genetic modifications.
REFERENCES

