SEISMIC RETROFIT OF LOW-DUCTILE COLUMNS THROUGH CONCRETE JACKETING WITH INOXYDABLE REINFORCEMENT

YOUSEF KARIMI VAHED

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JULY 2017
DEDICATION

“Specially Dedicated To…

My Beloved Father, Mother, Wife, daughters, Sisters, and Brothers

Thanks for all the love, support, motivation and always being there whenever I need you

My Supervisors

Dr. Sophia C. Alih

And

Dr. Mohamadreza Vafaei

For their guidance and assistance throughout the whole thesis”
ACKNOWLEDGEMENT

Praise to God almighty, the compassionate and the merciful, who has created mankind with wisdom and given them knowledge.

At first, I would like to thank my main supervisor and advisor, Dr. Sophia C. Alih, for his kind encouragement, earnest guidance, appreciative advices, and friendly motivations. I also wish to thank my co-supervisor Dr. Mohammadreza Vafaei, for them grateful advices and impetus. Without continuous support from my main supervisor and my co-supervisor, this research would not be the same as presented in this thesis.

In second, I would like to thank the Dean, head of structure and materials department and all lecturers and staff of the faculty of civil engineering UTM for the facilities provided by them that support me to do this research.

Last but not least, I want to express grateful thanks to my family; my father and mother, my wife, my daughters, my sisters and brothers for their unlimited supports. Without their consistent supports and encouragement, it was impossible for me to accomplish this work.
ABSTRACT

Retrofit of structures often is an inevitable task especially when buildings are not designed for seismic actions or their design has followed older design codes. Many retrofit strategies have been proposed and practiced by previous researchers. Usage of fiber reinforced polymer [FRP], steel jacketing and reinforcement jacketing are among the most common retrofitting methods. For reinforcement jacketing, carbon steel has been widely employed by engineers, however, only a few applications of inoxydable reinforcements can be found in the literature. Moreover, when it comes to reinforcement jacketing, connection between the interface of original column and the jacket plays an important role and has attracted the attention of many researchers. Load transfer mechanism between original column and jacket is another field of study which has not been addressed in previous research. In this study application of inoxydable rebars for seismic retrofit of Reinforced Concrete (RC) columns was investigated. Two new connectors were used to increase the integrity between the original column and jacket. Load transfer mechanism between original column and jacket is another topic addressed in this research. This study included experimental and numerical analysis. For experimental study, 8 full scale RC columns were constructed and retrofitted with different reinforcement jacketing configurations. Numerical studies investigated the effect of different axial forces on the obtained results from experimental test. Results indicated that regardless of the employed retrofit configurations, the retrofitted columns have higher initial stiffness and ultimate strength compared to un-retrofitted columns. However, the retrofitted columns showed significantly lower ductility ratio when compared with un-retrofitted columns. All the retrofitted columns displayed a brittle failure mode in which spalling of concrete at the base of columns occurred without yield or buckling of reinforcements. Results indicated that confined jackets have higher ultimate strength and stiffness compared to un-confined jackets. However, they showed a lower ductility ratio when compared with un-confined jackets. It was observed that, when internal angle connection was used for retrofit, the highest ultimate strength, post-yield stiffness and effective stiffness were achieved. Monitoring the strain distribution between jackets and original columns revealed that confinement in jackets reduced the strain in the longitudinal reinforcement of original columns more than un-confined jackets. Strain values in the stirrups of confined jackets were significantly smaller than that of un-confined jackets. Strain ratios on the surface of concrete of confined jackets were larger than that of un-confined jackets. It is concluded that the proposed connectors have improved the ultimate strength of retrofitted columns as compared to conventionally retrofitted column, as they were unable to elevate the ultimate strengths to the level of a monolithic column.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xxv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxix</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Problem statement and motivation for research</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.3 Objectives of the study</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.4 Research Scope</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.5 Significant of the research</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1.6 Outline of the Thesis</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.2 Types of seismic induced damage to column</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.3 Seismic codes requirement</td>
<td>15</td>
</tr>
</tbody>
</table>
2.3.1 American Concrete Institute (ACI)
 2.3.1.1 Reinforcement details for columns 15
 2.3.1.2 Stirrup and tie hooks 16
 2.3.1.3 Minimum bend diameters 17
 2.3.1.4 Spacing limits for reinforcement 18
 2.3.1.5 Cast-in-place concrete (non-prestressed) 18

2.3.2 Eurocode8 (EN1998-1)
 2.3.2.1 Design for DC M 19
 2.3.2.2 Design for DC H 22

2.4 Seismic retrofit of columns using fiber-reinforced polymer 24
 2.4.1 Behavior of Low-Ductile Reinforced Concrete Columns with FRP Jackets 25
 2.4.1.1 Axial Behaviour 25
 2.4.1.2 Lateral Behavior 28
 2.4.2 Advantages and Disadvantages of the Use of FRP Materials 43

2.5 Seismic retrofit of columns using steel plates 44
 2.5.1 Experimental Behavior of Steel Jacketed Reinforced Concrete Columns 44
 2.5.2 Advantages and disadvantages of the use of steel jacket 52

2.6 Seismic retrofit of columns using reinforcement jacketing 53
 2.6.1 Experimental Behavior of Concrete Jacketed Reinforced Concrete Columns 54
 2.6.2 Interface preparation in concrete jacketing 62
 2.6.3 Advantages and disadvantages of the concrete jacketing 64

2.7 Application of inoxydable rebar in structures 65
 2.7.1 Experimental tests on behaviour of inoxydable rebar in concrete columns 67
 2.7.2 Advantage of inoxydable steel 71

2.8 Analytical analysis 72
2.9 Summary 76
3 RESEARCH METHODOLOGY

3.1 Introduction 78
3.2 Research Design 78
3.3 Experimental studies 80
 3.3.1 Size, scale and material properties of experimentally tested specimens 81
 3.3.2 Determination of construction stages 92
 3.3.3 Instrumentation and test set up 99
 3.3.3.1 LVDTs 100
 3.3.3.2 Strain Gages 101
 3.3.3.3 Load cells 104
 3.3.4 Experimental Test setup 105
 3.3.5 Material test 107
 3.3.5.1 Concrete test 108
 3.3.5.2 Tensile strength test of reinforcements 110
 3.3.5.3 Tests on epoxy glue 112
 3.3.6 Loading protocol 114
 3.3.7 Numerical studies 115

4 EXPERIMENTAL RESULTS AND ANALYSIS 116

4.1 Introduction 116
4.2 Failure mechanism of tested specimens 117
 4.2.1 Un-retrofitted columns 118
 4.2.1.1 Specimen Number 1 118
 4.2.1.2 Specimen number 2 119
 4.2.2 Column retrofitted by conventional method 121
 4.2.2.1 Unconfined Specimen 121
 4.2.2.2 Confined Specimen 123
 4.2.3 Column retrofitted by external rod connector 125
 4.2.3.1 Unconfined Specimen 125
 4.2.3.2 Confined Specimen 127
 4.2.4 Column retrofitted by internal angle connector 128
 4.2.4.1 Unconfined Specimen 129
 4.2.4.2 Confined Specimen 130
 4.3 Hysteresis loops and backbone curves 132
4.3.1 Un-retrofitted columns
 4.3.1.1 Specimen number 1
 4.3.1.2 Specimen Number 2
4.3.2 Column retrofitted by conventional method
 4.3.2.1 Un-confined Specimen
 4.3.2.2 Confined Specimen
4.3.3 Column retrofitted by external rod connector
 4.3.3.1 Un-confined Specimen
 4.3.3.2 Confined Specimen
4.3.4 Column retrofitted by internal angle connector
 4.3.4.1 Un-confined Specimen
 4.3.4.2 Confined Specimen
4.4 Bilinear representations of backbone curves
 4.4.1 Un-retrofitted columns
 4.4.1.1 Specimen Number 1
 4.4.1.2 Specimen Number 2
 4.4.2 Column retrofitted by conventional method
 4.4.2.1 Unconfined Specimen
 4.4.2.2 Confined Specimen
 4.4.3 Column retrofitted by external rod connector
 4.4.3.1 Unconfined Specimen
 4.4.3.2 Confined Specimen
 4.4.4 Column retrofitted by internal angle connector
 4.4.4.1 Unconfined Specimen
 4.4.4.2 Confined Specimen
4.5 Stiffness Degradation
 4.5.1 Un-retrofitted columns
 4.5.2 Column retrofitted by conventional method
 4.5.3 Column retrofitted by external rod connector
 4.5.4 Column retrofitted by internal angle connector
4.6 Energy dissipation capacity
 4.6.1 Un-retrofitted columns
 4.6.2 Column retrofitted by conventional method
 4.6.3 Column retrofitted by external rod connector
 4.6.4 Column retrofitted by internal angle connector
4.7 Strain distribution in the retrofitted specimens

4.7.1 Strain distribution under axial loading

4.7.1.1 Column retrofitted by conventional method

4.7.1.2 Column retrofitted by external rod connector

4.7.1.3 Column retrofitted by internal angle connector

4.7.2 Strain distribution in the elastic range under combination of axial and lateral loads

4.7.2.1 Column retrofitted by conventional method

4.7.2.2 Column retrofitted by external rod connector

4.7.2.3 Column retrofitted by internal angle connector

4.7.3 Strain distribution at ultimate strength

4.7.3.1 Column retrofitted by conventional method

4.7.3.2 Column retrofitted by external rod connector

4.7.3.3 Column retrofitted by internal angle connector

4.8 Summary

5 Numerical analysis and discussion

5.1 Introduction

5.2 Finite Element Simulation

5.2.1 Selection of Appropriate Software

5.2.1.1 Finite element (FE) modeling in ANSYS software

5.2.1.2 ANSYS Solution Control

5.3 Validation of finite element model

5.3.1 Un-retrofitted column

5.3.2 Column retrofitted by conventional method

5.3.3 Column retrofitted by external rod connector

5.3.3.1 Column retrofitted by internal angle connector

5.3.4 Concluding remark on validation of software

5.4 Study on seismic behavior of low-ductile and high ductile column
5.5 Effects of axial force on cyclic behavior of
 experimentally tested columns 217
 5.5.1 Un-retrofitted column 217
 5.5.2 Column retrofitted by conventional method 218
 5.5.3 Column retrofitted by external rod connector 220
 5.5.4 Column retrofitted by internal angle connector 222
 5.5.5 Concluding remark on the effect of axial load intensity 224
5.6 Calculation of lower and upper bound ultimate strength of retrofitted column 224

6 CONCLUSION 228
6.1 Introduction 228
6.2 Seismic Behavior of Low Ductile RC Columns 228
6.3 Effectiveness of reinforcement jacketing for seismic retrofit of low ductile column 229
6.4 Study on load transfer mechanism between original column and jackets 231
6.5 Development of new connectors 231
6.6 Contribution to knowledge 232
6.7 Recommendation for future works 233

REFERENCES 234

Appendices A – B 243–286
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Minimum diameter of bend (Committee et al., 2008)</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Tolerances of d (Committee et al., 2008)</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Limitation for cover for reinforcement (Committee et al., 2008)</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Typical strength and stiffness values for material used in retrofitting (Günaslan, Karaşin, & Öncü, 2014)</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Experimental results of axial tests of columns confined with CFRP jackets (Demers, 1995)</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>Experimental results of full scale axial tests of reinforced concrete columns confined with CFRP and GFRP jackets (Kestner et al. 1997).</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>Experimental investigation of reinforced concrete columns with FRP jackets retrofits (Walkup, 1998)</td>
<td>29</td>
</tr>
<tr>
<td>2.8</td>
<td>Experimental investigations of steel and CFRP column retrofits conducted at UCSD (Seible, Priestley, & Innamorato, 1995)</td>
<td>34</td>
</tr>
<tr>
<td>2.9</td>
<td>Experimental investigations of steel and GFRP column retrofits conducted at UCSD (Priestly et al., 1992)</td>
<td>38</td>
</tr>
<tr>
<td>2.10</td>
<td>Experimental investigations of reinforced concrete columns with steel jacket retrofits (Walkup, 1998).</td>
<td>46</td>
</tr>
<tr>
<td>2.11</td>
<td>Details of Steel Jacketing (Waghmare, 2011).</td>
<td>48</td>
</tr>
<tr>
<td>2.12</td>
<td>Detail for Reinforced Concrete Jacketing (Waghmare, 2011)</td>
<td>57</td>
</tr>
<tr>
<td>2.13</td>
<td>Mechanical Properties of Some Reinforcing Bar Alloys (McGurn, 1998)</td>
<td>67</td>
</tr>
<tr>
<td>3.1</td>
<td>Type of specimens tested in this study</td>
<td>83</td>
</tr>
<tr>
<td>3.2</td>
<td>Position of LVDTs</td>
<td>101</td>
</tr>
</tbody>
</table>
3.3 Installation height of strain gauges measured from the top of foundation

3.4 Average compressive strength of concrete used in foundation, original column and jacket

3.5 Calculation of E value and Poisson’s ratio of concrete of original column and jacket

3.6 Tensile strength test results for Plain Rebar (R8 and R20), Ribbed Rebar (Y10 and Y20) and inoxydable steel rebar (S20)

3.7 Result of pull out test

4.1 Type of specimens tested in this study

4.2 Crack numbers and their corresponding drift values for CC1

4.3 Crack numbers and their corresponding drift values for CC2

4.4 Crack numbers and their corresponding drift values for JCMU

4.5 Crack numbers and their corresponding drift values for JCMC

4.6 Crack numbers and their corresponding drift values for JERU

4.7 Crack numbers and their corresponding drift values for JERC

4.8 Crack numbers and their corresponding drift values for JIAU

4.9 Crack numbers and their corresponding drift values for JIAC

4.10 Crack members and their corresponding drift values for all samples

4.11 Force and displacement for all samples

4.12 Extracted parameters from the idealized backbone curve for CC1

4.13 Extracted parameters from the idealized back bone curve for CC2

4.14 Extracted parameters from the idealized back bone curve for JCMU
4.15 Extracted parameters from the idealized back bone curve for JCMC 152
4.16 Extracted parameters from the idealized back bone curve for JERU 154
4.17 Extracted parameters from the idealized back bone curve for JERC 155
4.18 Extracted parameters from the idealized back bone curve for JIAU 157
4.19 Extracted parameters from the idealized back bone curve for JIAC 158
4.20 Extracted parameters from the idealized back bone curve for all samples 159
4.21 Stiffness degradation of all samples 165
4.22 cumulative energy dissipation for all samples 171
4.23 Summary of obtained experimental results 196
5.1 Coefficient of friction and adhesion values 208
5.2 Comparison between initial stiffness, ultimate load and displacement of columns. 215
5.3 Result of FE models with different axial load for CC 218
5.4 Result of FE models with different axial load for JCMU 219
5.5 Result of FE models with different axial load for JCMC 220
5.6 Result of FE models with different axial load for JERU 221
5.7 Result of FE models with different axial load for JERC 222
5.8 Result of FE models with different axial load for JIAU 223
5.9 Result of FE models with different axial load for JIAC 224
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Retrofitting methods for columns (a) reinforced concrete jacketing, (b) steel jacketing, (c) FRP wrapping.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Reinforced concrete jacketing; a) jacketing of columns and beams (Sabu and Pajgade, 2012), b) jacketing of columns and foundations (ENUICA et al.)</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Potentially inadequate reinforcing columns details (Walkup, 1998)</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Full length diagonal shear cracks resulting from short-column behaviour (Baï et al., 2003)</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Damage to non-ductile columns (Baï et al., 2003)</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>a) Stiffness against displacement for all specimens. b) Dissipated energy rate for all specimens. c) Cumulative dissipated energy for all specimen (Konstantinos G. Vandoros & Dritsos, 2008).</td>
<td>59</td>
</tr>
<tr>
<td>2.5</td>
<td>Alternative methods for connecting old columns to jackets a) bent down bars, b) usage of dowels, c) Welded jacket stirrup geometry (Vandoros and Dritsos, 2008).</td>
<td>64</td>
</tr>
<tr>
<td>2.6</td>
<td>Details of the plastic hinge at the final stage (Franchi et al., 2006)</td>
<td>68</td>
</tr>
<tr>
<td>2.7</td>
<td>Repair and retrofitting of pier (Albanesi et al., 2008)</td>
<td>71</td>
</tr>
<tr>
<td>2.8</td>
<td>Square RC section reinforced with a RC jacket</td>
<td>71</td>
</tr>
<tr>
<td>2.9</td>
<td>Stress-strain curve for concrete of core</td>
<td>71</td>
</tr>
<tr>
<td>2.10</td>
<td>Repair and retrofitting of pier (Albanesi et al., 2008)</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>condition in a RC jacketed section</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Research methodology employed in this study</td>
<td>79</td>
</tr>
</tbody>
</table>
3.2 a) Reinforcement details, b) section details

3.3 Design of the CC; a) column dimension and reinforcement detailing, b) reinforcement skeleton, c) whole column.

3.4 Design of the JCMU; a) dimension and rebar detailing, b) reinforcement skeleton, c) reinforcement for jacketing, d) completed retrofitted column.

3.5 Design of the JCMC; a) dimension and rebar detailing, b) reinforcement skeleton, c) reinforcement for jacketing, d) completed retrofitted column.

3.6 Design of the JERU; a) dimension and rebar detailing, b) reinforcement skeleton, c) reinforcement for jacketing, d) completed retrofitted column.

3.7 Design of the JERC; a) dimension and rebar detailing, b) reinforcement skeleton, c) reinforcement for jacketing, d) completed retrofitted column.

3.8 Design of the JIAU; a) dimension and rebar detailing, b) reinforcement skeleton, c) reinforcement for jacketing, d) completed retrofitted column.

3.9 Design of the JIAC; a) dimension and rebar detailing, b) reinforcement skeleton, c) reinforcement for jacketing, d) completed retrofitted column.

3.10 Set up of internal angle connector

3.11 Set up of external angle connector

3.12 Construction stage of foundation; a) reinforcement mesh, b) concrete pouring

3.13 Set up of original column’s reinforcement

3.14 Construction stages of retrofitted columns; a) pouring of concrete, b) concrete casting, c) curing of specimens

3.15 Preparation for jacketing; a) epoxy glue, b) injecting epoxy, c) using core machine to make holes

3.16 Set up of jacket reinforcement; a) preparing reinforcement of jackets b) installed reinforcing cages into the hole.

3.17 Construction and curing of jacket’s concrete; a) columns ready to be concreted, b) section of jacket, c) concrete pouring, d) concrete curing.

3.18 The position of LVDTs
3.19 Type of LVDT use in experimental test 101

3.20 Strain gauge set up; a) strain gauge on foundation rebars, b) fastening column concrete strain gauge and column reinforcement strain gauges 102

3.21 Location of strain gauges; a) rebars of original column, b) concrete surface of original column, c) rebars of jackets, d) surface of concrete jacket. 103

3.22 Load cell installation 105

3.23 Details of an instrumented specimens 107

3.24 Compressive test of concrete 108

3.25 Test of modulus of elasticity of concrete 109

3.26 Tensile strength test; a) rebars specimen, b) tensile strength testing machine, c) specimens after testing. 111

3.27 Stress-strain curves of three samples of inoxydable steel reinforcement bars, 20mm diameter 111

3.28 Stress-strain curves of three samples of ribbed carbon steel reinforcement bars, 20mm diameter 112

3.29 Pull out test on epoxy glue; a) prepared samples, b) test set up, c) failure of the sample 113

3.30 The employed load protocol according to FEMA 461 (Agency, 2007) 115

4.1 Layout of loading direction 117

4.2 Crack patterns for CC1 a) crack pattern in S direction, b) crushing of concrete at ultimate load, c) exposing of longitudinal reinforcement. 119

4.3 Crack patterns for CC2 a) Crack pattern in S direction b) Crushing of concrete at ultimate load c) Exposing of longitudinal reinforcement 120

4.4 Crack patterns for JCMU a) Crack pattern in S direction b) Crushing of concrete at ultimate load c) Exposing of longitudinal reinforcement 122

4.5 Crack patterns for JCMC (a) Crack pattern in S direction b) Crushing of concrete at ultimate load c) Exposing of longitudinal reinforcement. 124
4.6 Crack patterns for JERU (a) Crack pattern in S direction b) Crushing of concrete at ultimate load c) Exposing of longitudinal reinforcement 126

4.7 Crack patterns for JERC (a) Crack pattern in S direction b) Crushing of concrete at ultimate load c) Exposing of longitudinal reinforcement 128

4.8 Crack patterns for JIAU (a) Crack pattern in S direction (b) Crushing of concrete at ultimate load c) Exposing of longitudinal reinforcement 129

4.9 Crack patterns for JIAC (a) Crack pattern in S direction b) Crushing of concrete at ultimate load c) Exposing of longitudinal reinforcement 131

4.10 Hysteresis loop of CC1 134

4.11 Backbone curves of CC1 134

4.12 Hysteresis loop of CC2 135

4.13 Backbone curve of CC2 135

4.14 Hysteresis loop of JCMU 137

4.15 Backbone curve of JCMU 137

4.16 Hysteresis loop of JCMC 138

4.17 Backbone curve of JCMC 138

4.18 Hysteresis loop of JERU 140

4.19 Backbone curve of JERU 140

4.20 Hysteresis loop of JERC 141

4.21 Backbone curve of JERC 141

4.22 Hysteresis loop of JIAU 143

4.23 Backbone curve of JIAU 143

4.24 Hysteresis loop of JIAC 144

4.25 Backbone curve of JIAC 144

4.26 Idealized force displacement curve adopted from FEMA 356 (FEMA, 2000) 146

4.27 Bilinear representation of backbone curve for CC1 147
4.28 Bilinear representation of backbone curve for CC2 149
4.29 Bilinear representation of backbone curve for JCMU 150
4.30 Bilinear representation of backbone curve for JCMC 152
4.31 Bilinear representation of backbone curve of JERU 153
4.32 Bilinear representation of backbone curve for JERC 155
4.33 Bilinear representation of backbone curve for JIAU 157
4.34 Bilinear representation of backbone curve of JIAC 158
4.35 Stiffness degradation of CC 160
4.36 Stiffness degradation of JCM 162
4.37 Stiffness degradation of JER 163
4.38 Stiffness degradation of JIA 165
4.39 Schematic view of energy 166
4.40 Cumulative Energy dissipation for CC 167
4.41 Cumulative Energy dissipation of JCM 168
4.42 Cumulative energy dissipation curve of JER 169
4.43 Cumulative energy dissipation curve of JIA 170
4.44 Strain ratios under axial load for longitudinal reinforcement of JCM 173
4.45 Strain distribution under axial load for transverse reinforcement of JCM 173
4.46 Strain distribution under axial load for concrete of JCM 174
4.47 Strain ratios under axial load for longitudinal reinforcement of JER 175
4.48 Strain distribution under axial load for transverse reinforcement of JER 176
4.49 Strain distribution under axial load for concrete of JER 176
4.50 Strain distribution under axial load for longitudinal reinforcement of JIA 178
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.51</td>
<td>Strain distribution under axial load for transverse reinforcement of JIA</td>
</tr>
<tr>
<td>4.52</td>
<td>Strain distribution under axial load for concrete of JIA</td>
</tr>
<tr>
<td>4.53</td>
<td>Strain distribution in the elastic range under axial and lateral loads for longitudinal reinforcement of JCM</td>
</tr>
<tr>
<td>4.54</td>
<td>Strain distribution in the elastic range under axial and lateral loads for transverse reinforcement of JCM</td>
</tr>
<tr>
<td>4.55</td>
<td>Strain distribution in the elastic range under axial and lateral loads for concrete of JCM</td>
</tr>
<tr>
<td>4.56</td>
<td>Strain distribution in the elastic range under axial and lateral loads for longitudinal reinforcement of JER</td>
</tr>
<tr>
<td>4.57</td>
<td>Strain distribution in the elastic range under axial and lateral loads for transverse reinforcement of JER</td>
</tr>
<tr>
<td>4.58</td>
<td>Strain distribution in the elastic range under axial and lateral loads for concrete of JER</td>
</tr>
<tr>
<td>4.59</td>
<td>Strain distribution in the elastic range under axial and lateral loads for longitudinal reinforcement of JIA</td>
</tr>
<tr>
<td>4.60</td>
<td>Strain distribution in the elastic range under axial and lateral loads for transverse reinforcement of JIA</td>
</tr>
<tr>
<td>4.61</td>
<td>Strain distribution in the elastic range under axial and lateral loads for concrete of JIA</td>
</tr>
<tr>
<td>4.62</td>
<td>Strain distribution at ultimate strength for longitudinal reinforcement of JCM</td>
</tr>
<tr>
<td>4.63</td>
<td>Strain distribution at ultimate strength for transverse reinforcement of JCM</td>
</tr>
<tr>
<td>4.64</td>
<td>Strain distribution at ultimate strength for concrete of JCM</td>
</tr>
<tr>
<td>4.65</td>
<td>Strain distribution at ultimate strength for longitudinal reinforcement of JER</td>
</tr>
<tr>
<td>4.66</td>
<td>Strain distribution at ultimate strength for transverse of JER</td>
</tr>
<tr>
<td>4.67</td>
<td>Strain distribution at ultimate strength for concrete of JER</td>
</tr>
<tr>
<td>4.68</td>
<td>Strain distribution at ultimate strength for longitudinal reinforcement of JIA</td>
</tr>
<tr>
<td>4.69</td>
<td>Strain distribution at ultimate strength for transverse of JIA</td>
</tr>
<tr>
<td>4.70</td>
<td>Strain distribution at ultimate strength for concrete of JIA</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>5.1</td>
<td>Stress-strain curve for un-confined concrete with 30MPa compressive strength</td>
</tr>
<tr>
<td>5.2</td>
<td>Stress-strain curve of reinforcement with 20mm diameter</td>
</tr>
<tr>
<td>5.3</td>
<td>Simplified stress-strain curve used for the concrete of jackets</td>
</tr>
<tr>
<td>5.4</td>
<td>Solid element used for simulating nonlinear behavior of concrete</td>
</tr>
<tr>
<td>5.5</td>
<td>LINK8 3-D spar elements (Reproduced from ANSYS manual version 14.0)</td>
</tr>
<tr>
<td>5.6</td>
<td>Finite element model of CC; a) concrete sections, simulated by SOLID65 element, b) reinforcements simulated by LINK8 element</td>
</tr>
<tr>
<td>5.7</td>
<td>Finite element model of JCMU; a) concrete sections simulated by SOLID65 element, b) reinforcements simulated by LINK8 element</td>
</tr>
<tr>
<td>5.8</td>
<td>Finite element model of JCMC; a) concrete sections simulated by SOLID65 element, b) reinforcements simulated by LINK8 element</td>
</tr>
<tr>
<td>5.9</td>
<td>Finite element model of JIAU; a) concrete sections simulated by SOLID65 element, b) reinforcements simulated by LINK8 element</td>
</tr>
<tr>
<td>5.10</td>
<td>Finite element model of JIAC; a) concrete sections simulated by SOLID65 element, b) reinforcements simulated by LINK8 element</td>
</tr>
<tr>
<td>5.11</td>
<td>Finite element model of JERU; a) concrete sections simulated by SOLID65 element, b) reinforcements simulated by LINK8 element</td>
</tr>
<tr>
<td>5.12</td>
<td>Finite element model of JERC; a) concrete sections simulated by SOLID65 element, b) reinforcements simulated by LINK8 element</td>
</tr>
<tr>
<td>5.13</td>
<td>Bond-slip curve for ribbed reinforcement embedded in concrete [ANSYS manual, ver16]</td>
</tr>
<tr>
<td>5.14</td>
<td>Boundary conditions of supports</td>
</tr>
<tr>
<td>5.15</td>
<td>Interface shear stress distribution(Lampropoulos and Dritsos, 2011)</td>
</tr>
<tr>
<td>5.16</td>
<td>Comparison of FE model and experimental tests for CC; a) hysteresis loops, b) backbone curve</td>
</tr>
</tbody>
</table>
5.17 Comparison between results of FE model and experimental test of JCMU; a) hysteresis loops, b) backbone curve 212
5.18 Comparison between results of FE model and experimental test of JCMC; a) hysteresis loops, b) backbone curve 212
5.19 Comparison between results of FE model and experimental test of JERU; a) hysteresis loops, b) backbone curve 213
5.20 Comparison between results of FE model and experimental test of JERC; a) hysteresis loops, b) backbone curve 213
5.21 Comparison between results of FE model and experimental test of JIAU; a) hysteresis loops, b) backbone curve 214
5.22 Comparison between results of FE model and experimental test of JIAC; a) hysteresis loops, b) backbone curve 214
5.23 Backbone curve of high ductile and low-ductile un-retrofitted column under cyclic load 216
5.24 Backbone curves of CC 217
5.25 Backbone curves of JCMU 218
5.26 Backbone curves of JCMC 219
5.27 Backbone curves of JERU 220
5.28 Backbone curves of JERC 221
5.29 Backbone curves of JIAU 222
5.30 Backbone curves of JIAC 223
5.31 Hysteresis loops for un-confined condition of monolithic retrofitted column 225
5.32 Hysteresis loops for confined condition of monolithic retrofitted column 226
5.33 Hysteresis loop of original column 227
5.34 Hysteresis loop of jacket 227
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
</tr>
<tr>
<td>CFTP</td>
<td>Carbon Fiber Reinforcement Polymer</td>
</tr>
<tr>
<td>FE</td>
<td>Finite Element</td>
</tr>
<tr>
<td>FEMA</td>
<td>Federal Emergency Management Agency</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>FRP</td>
<td>Fiber Reinforced Polymer</td>
</tr>
<tr>
<td>GFRP</td>
<td>Glass Fiber Reinforced Polymer</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear Variable Displacement Transducer</td>
</tr>
<tr>
<td>RC</td>
<td>Reinforced Concrete</td>
</tr>
<tr>
<td>SS</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>DC L</td>
<td>Low Ductility Class</td>
</tr>
<tr>
<td>DC M</td>
<td>Medium Ductility Class</td>
</tr>
<tr>
<td>DC H</td>
<td>High Ductility Class</td>
</tr>
<tr>
<td>CCDF</td>
<td>Conventional Curvature Ductility Factor</td>
</tr>
<tr>
<td>HSW</td>
<td>High Strength Wire</td>
</tr>
<tr>
<td>SCC</td>
<td>Consolidating Concrete</td>
</tr>
<tr>
<td>LCC</td>
<td>Life Cyclic Cost</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{stc}</td>
<td>cross section area of the legs in the core and jacket stirrups</td>
</tr>
<tr>
<td>A_{stij}</td>
<td>cross section area of the legs in the core and jacket stirrups</td>
</tr>
<tr>
<td>$A_{s,req}$</td>
<td>requirement reinforcement</td>
</tr>
<tr>
<td>$A_{s,prov}$</td>
<td>provisions reinforcement</td>
</tr>
<tr>
<td>A_g</td>
<td>gross area of section</td>
</tr>
<tr>
<td>A_{st}</td>
<td>total area of longitudinal reinforcement</td>
</tr>
<tr>
<td>b_c</td>
<td>gross cross-sectional width</td>
</tr>
<tr>
<td>b_o</td>
<td>width of confined core (to the centerline of the hoops)</td>
</tr>
<tr>
<td>b_o</td>
<td>minimum dimension of the concrete core</td>
</tr>
<tr>
<td>b_i</td>
<td>distance between consecutive engaged bars</td>
</tr>
<tr>
<td>C_j</td>
<td>compressive force in the concrete jacket</td>
</tr>
<tr>
<td>C_c</td>
<td>compressive force in the concrete core</td>
</tr>
<tr>
<td>d_c</td>
<td>distance of the resultant compressive force in the concrete jacket from the neutral axis</td>
</tr>
<tr>
<td>D_o</td>
<td>diameter of confined core</td>
</tr>
<tr>
<td>d_{BL}</td>
<td>minimum diameter of longitudinal bars</td>
</tr>
<tr>
<td>d_b</td>
<td>reinforcement diameter</td>
</tr>
<tr>
<td>d</td>
<td>distance from extreme compression fiber to centroid of longitudinal tension reinforcement</td>
</tr>
<tr>
<td>E_c</td>
<td>elastic modulus of concrete</td>
</tr>
<tr>
<td>E_{sec}</td>
<td>secant modulus of concrete</td>
</tr>
</tbody>
</table>
F_j - forces in tension steel of the jacket
F'_j - forces in compression steel of the jacket
F_c - forces in tension steel of the core
F'_c - forces in compression steel of the core
f_{y_{sc}} - yield stress of stirrups in the core
f_{y_{sj}} - yield stress of stirrups in the jacket
f_{cu} - stress corresponding to stirrup fracture strain
f_{c_{min}} - minimum compressive strength of the old or the new concrete in MPa
f_{cc} - maximum principal compressive stress by jacketing
f_{cc} - compressive strength of confined concrete
f_{c0} - strength of unconfined concrete
h_o - depth of confined core (to the centerline of the hoops)
h_c - gross cross-sectional depth
h_c - largest cross-sectional dimension of the column
h_{cr} - height of the critical region
h_s - clear story height
K - confinement ratio
K_e - effective lateral stiffness
K_i - elastic lateral stiffness of the building in the direction under consideration
K_e - effective lateral stiffness of the building in the direction under consideration
L_{cr} - the length of the critical region
L_{cl} - clear length of the column
n - total number of longitudinal bars laterally engaged by hoops or cross ties,

\(P_{roc} \) - axial strength of RC jacketed column by considering confinement

q - behaviour factor

s - spacing of hoops

s - sliding in mm at the interface

\(s_{fu} \) - maximum value of sliding at the interface

T_1 - fundamental period of the building

T_C - period of upper limits of the constant spectral acceleration branch

T_i - effective fundamental period (in seconds) in the direction under consideration calculated by elastic dynamic analysis

x - normalized strain

V_y - effective yield strength

\(\alpha \) - confinement effectiveness factor

\(\varepsilon_{ay,d} \) - design value of tension steel strain at yield,

\(\varepsilon \) - axial strain

\(\varepsilon_{cc} \) - axial strain corresponding to the peak stress in confined concrete

\(\varepsilon_{c0} \) - strain of unconfined concrete

\(\varepsilon_{cc} \) - the strain corresponding to the peak stress, \(f_{cc} \)

\(\mu_1 \) - coefficient of friction or the initial value of the coefficient of friction when considering cyclic loading

\(\mu_\phi \) - required value of CCDF

\(\nu_d \) - normalized design axial force

\(\rho_s \) - longitudinal reinforcement ratio

\(\rho_y \) - longitudinal reinforcement ratio at yield conditions
\(\sigma_1 \) - normal stress at the interface or the initial value of the normal stress at the interface in Mpa

\(\sigma_c \) - normal stress at the interface in Mpa

\(\sigma_c \) - compressive stress in the concrete

\(\tau_f \) - roughened interface shear stress in Mpa

\(\tau_{\text{fud}} \) - ultimate value of the shear stress in Mpa

\(\varphi_c \) - concrete resistance factors

\(\varphi_s \) - steel resistance factors
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Material tests results</td>
<td>259</td>
</tr>
<tr>
<td>B</td>
<td>Results of measured strain values</td>
<td>284</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

It is well known that many buildings designed based on older codes may be susceptible to severe damage during strong earthquakes. Older buildings have been structurally designed for much lower seismic actions compared to buildings that are designed today. This is because the relevant seismic codes have been continually revised as knowledge about seismic behavior has increased.

Many reinforced concrete frame structures that are built prior to the 1970's were designed for either gravity loads alone, or combination of gravity loads and wind loads. Seismic loads often were not considered in the design of these structures. Reinforcing details used in these structures are now recognized as the cause of low-ductile failure modes under seismic loading. As a result, poor performance of these structures is anticipated and observed under moderate to severe seismic loading.

Columns as structural members that transfer gravity loads to foundations play significant role in structural stability. However, due to the poor reinforcing details, and lack of consideration of seismic loads in the initial design, columns are often found to be vulnerable in low-ductile reinforced concrete structures.

In addition to the above mentioned reasons, column retrofitting are necessary and inevitable due to changes in building’s functionality, changes in architectural plans and designs that have not considered forces attributed to collision or explosion.
Jacketing is a method often used to retrofit reinforced concrete columns. Columns may be jacketed through addition of reinforced concrete, steel plates, or various types of fiber reinforced polymer (FRP) materials. Jackets may be used to restore (in the case of damaged or deteriorated columns), maintain, or increase axial load capacity, flexural capacity, and/or shear capacity. Figure 1.1 displays a schematic view of three different retrofit methods for columns. Among retrofit methods of columns, reinforced concrete jacketing has received increasing attention especially for practical application. Low cost, simplicity and reliability are the most important factors for such widespread application in real projects. Figure 1.2 shows some real retrofit cases where RC jacketing is employed for retrofit of columns. Previous studies indicated significant increase in strength and stiffness of retrofitted RC elements through jacketing.

![Figure 1.1](image)

Figure 1.1 Retrofitting methods for columns (a) reinforced concrete jacketing, (b) steel jacketing, (c) FRP wrapping.
In spite of advantages that RC jacketing offers, application of this retrofit strategy has privilege for normal environmental condition. Conventional carbon steel used in reinforcing bars is a corrodible material, therefore, in a harsh environmental condition, like piers of bridges or columns constructed inside sea water undergoes a rapid decay. One solution to this problem is the usage of inoxydable rebars that can resist against corrosion even under a harsh environmental condition.

Despite having higher strength and higher ductility compared to the conventional carbon steel, the usage of inoxydable steel for jacketing has not yet being explored. In fact, the application of this type of reinforcement is still new in the construction industry and limited study has been conducted. It is noteworthy that so far conducted research on RC jacketing (Dritsos, et. al., 1997; Julio, et. al., 2003; Júlio, et. al., 2005; Kaliyaperumal & Sengupta, 2014; Vandoros & Dritsos, 2008) has only utilized the conventional carbon steel as the longitudinal bars.

In addition to the superior mechanical properties as compared to carbon steel, inoxydable rebar has an inherent anti-corrosion characteristic which priorities its usage for harsh environment (Alih & Khelil, 2012).
Currently, there are six standards used for inoxydable rebar, namely US: ASTM A955/A955M – 03b, France: XP A35-014 France, Denmark: National Standards & Official Admissions DS 13080 & DS 13082, UK: BS6744: 2001, Finland: SFS – 1259, and Germany and Italy codes. In construction works, the inoxydable steel is employed for several reasons. Not only it is resistant to corrosion, but also, it has a high ductility which increases the energy dissipation in cyclic loading cases. The austenitic type of this steel is investigated by researcher in order to identify their behavior as reinforcement bar in composite concrete beam. Various types of inoxydable steel are categorized in regard to thermal treatment and chemical compositions.

This research investigates the cyclic behaviour of retrofitted columns by RC jacketing using inoxydable steel. Ductility, energy dissipation capacity, yield and ultimate load bearing capacity of eight full-scale columns retrofitted with different configuration of connectors between original column and jacket were studied experimentally. Numerical studies were performed in order to investigate the effect of different gravity load on the seismic behavior of the retrofitted columns.

1.2 Problem statement and motivation for research

It can be shown that columns are in need of retrofit when one of the following conditions arises:

1. New structures that may include unsafe columns due to bad workmanship or due to errors in modeling and design. Such cases, although not very frequent, have to be dealt with taking into consideration the need to preserve the shape and size of the column without altering the intended functional use of the structure and at the same time without compromising to the structural integrity and safety of the structure.

2. The need to place additional loads on columns due to the change in building usage, this includes either the permission to add more floors, or the change of the allowed occupational use of the structure. Such changes are known to happen, especially in largely populated area.
3. Aging of old structures due to deterioration of concrete, corrosion of reinforcing steel bars or both, which leads to the loss of strength of columns and the inability to carry design loads. These structures may be of historical or monumental values and could be considered as part of our heritage, or they could be ordinary structures that simply cost less to repair and maintain than to demolish and reconstruct.

4. Occasionally some structures, or part of them, are subjected to accidents, such as fire or a car collision with one or more of the columns in a car park or a highway bridge, which leads to reduction of column carrying capacity.

5. Buildings that have not been designed for seismic load or they have been designed based on older version of current seismic codes.

One popular solution to strengthen RC column is to place jackets around the structural elements. Jackets have been constructed using steel plates, reinforced concrete and fibre-reinforced polymer (FRP) composites.

FRP composites and steel plates are basically applied to increase shear capacity and ductility of column. These methods are very effective in avoiding columns bond failure with insufficiently lapped of longitudinal reinforcement, although, they offer little enhancement to the flexural and axial strength of an element. As well as, in appropriating if there is a requirement of considerable increase in stiffness. For such condition concrete jacketing has the privilege and can satisfy demand for increase in axial and flexural strength. Furthermore, in many countries, where reinforced concrete known as most used material for structures, engineers prefer the strengthening solution of adding new material such as concrete. The reason is engineers are more familiar with this type of construction and availability of local experienced contractors and personnel.

However, one of the beneficial construction practice is placing reinforced concrete jackets and a number of studies have been presented (Dritsos et al., 1997; Julio et al., 2003; Júlio et al., 2005; Kaliyaperumal & Sengupta, 2014; Vandoros & Dritsos, 2008) there are many unresolved matters indicating the usage of RC jacketing. While the main aim of any retrofit method is to increase the structural capacity of elements, durability of the employed technique is also of great importance. One of the major concerns for RC jacketing is the corrosion of
employed reinforcing rebars. Almost all of past studies have concentrated on the usage of normal reinforcement (i.e. carbon steel) and less attention has been paid to inoxydable rebars, which are durable for use in harsh environmental conditions like piers of bridges and columns constructed in seawater. Inoxydable rebars have higher yield and ultimate strength and their ductility is often more than normal reinforcements. Therefore, due to difference in the mechanical properties of inoxydable rebars compared to normal rebars, obtained results from past studies may not be applicable for jacketing using inoxydable steel rebars. This implies that, new studies are required to investigate dynamic behavior of RC columns retrofitted by inoxydable reinforcement.

In addition, a review of literature shows that, when it comes to RC jacketing, the load transfer mechanism between the original column and RC jacket has not been well researched. This issue is of great importance especially for retrofitted columns that suffer from inadequate lap splice. One more issue when using concrete jacketing for retrofit is the integrity between the original column and the jacket. An ideal retrofitted column should have axial force and bending moment capacities similar to a monolithic element. However, due to slippage between the body of jacket and original column, retrofitted columns have lower bending moment and axial force capacities compared to original columns. While research and practice engineers have suggested different connector to reduce the slippage rate, still new studies for developing better connectors are needed. Moreover, in this research, new connectors are introduced to increase the bond between the original column and concrete jacket.

1.3 Objectives of the study

The main aim of this study is to investigate dynamic behavior of RC columns retrofitted with inoxydable steel jackets. The main aim of this research is to address the above-mentioned problems through a series of experimental and numerical studies. The specific objectives of this research are as follow:
a) To investigate seismic behavior (i.e. energy dissipation capacity, stiffness degradation and failure mechanism) of low ductile RC columns with inadequate overlap length.

b) To evaluate the effectiveness of inoxydable reinforcement jacketing for seismic retrofit of low ductile RC columns through numerical and experimental studies.

c) To investigate the load transfer mechanism between original low ductile column and the surrounding jacket through and experimental studies.

d) To develop new connectors between original low ductile column and the surrounding jacket and examine their effectiveness through experimental studies.

1.4 Research Scope

The present study focuses on the retrofitting of concrete columns through reinforcement jacketing. Experimental works are conducted on eight full scale columns with the height of 2000mm and cross sectional size of 200mm by 200mm. The compressive strength of concrete used in this study range from 20MP to 30MPa. The yield and ultimate stress of employed ribbed reinforcement bars for 8,10 and 20mm sizes are 508 to 533 N/mm and 598 to 700 N/mm2 respectively. The yield and ultimate stress of inoxydable reinforcement bars used in jackets are 346 and 639N/mm2, respectively; however, the yield and ultimate stress of plain reinforcement bars used in retrofitted column are 371 and 454N/mm2, respectively. Plain reinforcement bars were used for the retrofitted columns. For jackets and foundations ribbed bars were used. In the retrofitted columns, the overlap length of reinforcement was selected based on the recommendation of British standard.

The cyclic loading applied to columns followed the load protocol suggested by the FEMA461. The axial force used in combination with the cyclic load amounted to 100 kN. Inoxydable steel rebars used for jackets were implanted into the foundation using epoxy glue of Hilty Company. The reinforcement bars used in jackets were inserted as per recommendation of Hilty Company. For numerical studies, Ansys software Ver. 16 was employed in this research.
1.5 Significant of the research

This study deals with the retrofit of columns. The outcome of this research can be used to increase the life time of structures and prevent the possibility of sudden collapse due to seismic actions.

In addition, since this study is devoted to the use of inoxydable rebars for the purpose of retrofit, the findings of this research is of great importance for countries like Malaysia in which the environmental condition can easily corrode the normal reinforcement used for the retrofit of columns. This study also elevates our knowledge about dynamic behavior of retrofitted columns. The invented connectors in this study can be also used to improve the seismic behavior of retrofitted columns with inadequate lap splice. Since the application of inoxydable bars in the retrofit of columns has not been researched, this study provides new findings for practical application of inoxydable bar.

1.6 Outline of the Thesis

This thesis consists of six chapters. The organization of this thesis is as below:

Chapter 1 describes an introduction to the work, describes research objectives and the scope of work, and explains significance and motivation of this research.

Chapter 2 presents a literature review on the dynamic behavior of retrofitted structures. The existing retrofit techniques are described in this chapter.

Chapter 3 describes the research methodology which is employed to achieve the defined objectives. It also describes research design procedure. The details of the selected retrofitted columns, performed tests and procedure in the numerical analysis are explained in this chapter.

Chapter 4 presents the obtained results of the proposed retrofit technique for column based on the experimental tests. The failure mechanism of columns, change
in the stiffness and ductility of columns before and after retrofitting are explained in this chapter.

Chapter 5 describes a series of numerical analysis used to improve our understanding about dynamic characteristics of retrofitted columns. Calibration of finite element models are presented in this chapter. Moreover, the effect of different axial load on the cyclic behavior of retrofitted columns is presented in this chapter.

Chapter 6 summarizes the work of this thesis. The research finding, contribution of the thesis and the recommendations for future work are also described in this chapter.
REFERENCES

Committee, A., Institute, A. C., & Standardization, I. O. f. (2008). Building code requirements for structural concrete (ACI 318-08) and commentary.

