AGENT-BASED MODEL FOR SUSTAINABLE EQUIPMENT EXPANSION
WITH CO₂ REDUCTION OF A CONTAINER PORT

JONATHAN YONG CHUNG EE

A thesis submitted in fulfilment of the
Requirement for the award of degree of
Doctor of Philosophy (Mechanical Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

August 2017
To my God and my strength, may Your Name be glorified

"Be warned, my son, of anything in addition to them (wisdom). Of making many books there is no end, and much study wearies the body. Now all has been heard; here is the conclusion of the matter:

Fear God and keep his commandments, for this is the duty of mankind"

– Ecclesiastes 12:12-13
ACKNOWLEDGEMENT

My first appreciation goes to both my supervisor Prof. Ir. Dr. Ab Saman bin Abdul Kader and Prof. Madya Dr. Mohd Zamani bin Ahmad who mentored and allowed many of my academic endeavours shape and mold me. They have been instrumental support throughout this trying process and availed much needed wisdom for me. I wish them nothing but the best moving forward.

Also, special thanks to port experts from Johor Port Authority and Port of Tanjung Pelepas who made yourself free to consult on my research and many valuable input and comments. I also hope for more collaboration on port researches.

Last but not the least, none of this are possible without my parents who encouraged me all the way to fulfill my dreams to teach in higher institute; my younger brother who keeps me in check by being the best like he already is; my now-fiancé, Dr Tan Yun Ting, who has nothing but patience and understanding in the miss-outs in life due to my engaging study. Not missing out my relatives, church members and friends for all your caring concern and well-wishes throughout my PhD pursuit.

To those who have been a part of this journey indirectly or directly, this page cannot contain my gratitude.

May glory be to God, Amen.
ABSTRACT

Conserving port environment is gaining attention, seeing local port authorities beginning to establish green policies as a normative direction into container port expansion. However, there are conflicts among port authorities, port planners, port stakeholders in converting port equipment with carbon reducing technology. This attributes to the absence of electrification approach in port expansion process. This research aims to propose a sustainable equipment expansion approach by an agent-based model (ABM) to quantify carbon-reducing equipment profile that complies with an emission reduction standard (ERS). The approach simulates the port sustainability transition from port agent interaction that determines the expansion design approach. A combination of fundamental port expansion theories and an electrification logic are developed to simulate the carbon-reducing expansion profile. It is to meet the required CO\textsubscript{2} emission reduction standard while not forfeiting financial performance. An agent-based simulator (NETLOGO) is programmed to simulate port sustainability transition and the sustainable expansion profile. The results of PTP case study indicate that it is able to electrify all equipments by 2043. Results also indicate a viable green policy implemented at 4.5\% yearly CO\textsubscript{2} reduction starting at 2024 while meeting the required port capacity and financial performance. Analysis infers the futility of imposing high emission reduction percentage and the execution of more conversions at higher throughput demand phase. In conclusion, ABM model can be a decision-making support system for the port community to execute appropriate emission reduction standard percentage and time to realise the green port concept.
ABSTRAK

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introduction 1
1.2 Research Background 4
1.3 Problem Statement 8
1.4 Research Objective 10
1.5 Scope of Research 10
1.6 Theoretical Framework 11
1.7 Significance of Study 13
1.8 Organisation of Thesis 14

2 LITERATURE REVIEW

2.1 Introduction 15
2.2 Port Equipment Expansion Theory 16
 2.2.1 Cost-Effective Conceptual Framework 18
 2.2.2 Port Equipment Expansion 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3 Criteria of Selection</td>
<td>60</td>
</tr>
<tr>
<td>3.2.4 Sustainability Transition Variables</td>
<td>60</td>
</tr>
<tr>
<td>3.2.5 Sustainable Expansion Variables</td>
<td>61</td>
</tr>
<tr>
<td>3.2.6 Preliminary ABM with New Research Variables</td>
<td>62</td>
</tr>
<tr>
<td>3.3 Development of Agent–based Model</td>
<td>65</td>
</tr>
<tr>
<td>3.4 Development of Mathematic Algorithm for ABM</td>
<td>64</td>
</tr>
<tr>
<td>3.4.1 Port Sustainability Transition Algorithm</td>
<td>68</td>
</tr>
<tr>
<td>3.4.1.1 Port Institution Evolvement</td>
<td>70</td>
</tr>
<tr>
<td>3.4.1.2 Design Approach Evolvement</td>
<td>72</td>
</tr>
<tr>
<td>3.4.2 Sustainable Equipment Expansion Algorithm</td>
<td>75</td>
</tr>
<tr>
<td>3.4.2.1 ARIMA Throughput Forecast</td>
<td>75</td>
</tr>
<tr>
<td>3.4.2.2 Berth Expansion Algorithm</td>
<td>80</td>
</tr>
<tr>
<td>3.4.2.3 Preliminary Equipment Expansion</td>
<td>85</td>
</tr>
<tr>
<td>3.4.2.4 Carbon-Reducing Equipment Electrification Logic</td>
<td>86</td>
</tr>
<tr>
<td>3.4.2.5 Financial Constraint</td>
<td>92</td>
</tr>
<tr>
<td>3.5 Data Collection</td>
<td>97</td>
</tr>
<tr>
<td>3.5.1 Model Building Data</td>
<td>97</td>
</tr>
<tr>
<td>3.5.1.1 SME Consultation</td>
<td>98</td>
</tr>
<tr>
<td>3.5.1.2 Delphi Survey for ERS</td>
<td>98</td>
</tr>
<tr>
<td>3.5.2 Case Study Data</td>
<td>99</td>
</tr>
<tr>
<td>3.6 Development of Agent-based Model Source Code</td>
<td>103</td>
</tr>
<tr>
<td>3.7 Verification of Agent-based Model</td>
<td>104</td>
</tr>
<tr>
<td>3.7.1 Package of Agent Transition Module</td>
<td>103</td>
</tr>
<tr>
<td>3.7.2 Package of Preliminary Expansion</td>
<td>103</td>
</tr>
<tr>
<td>3.7.3 Package of Electrification Logic for Expansion</td>
<td>107</td>
</tr>
<tr>
<td>3.8 Validation Of Agent-based Model</td>
<td>106</td>
</tr>
<tr>
<td>3.8.1 Verification of Agent-based Architecture</td>
<td>104</td>
</tr>
<tr>
<td>3.8.2 Verification of Equipment Expansion Algorithm</td>
<td>105</td>
</tr>
<tr>
<td>3.9 Sensitivity Analysis</td>
<td>108</td>
</tr>
<tr>
<td>3.9.1 Twofold Validation of ABM Architecture</td>
<td>106</td>
</tr>
<tr>
<td>3.9.2 Validation of Equipment Expansion Algorithm</td>
<td>107</td>
</tr>
</tbody>
</table>
4 DATA ANALYSIS & ABM ARCHITECTURE 109

4.1 Introduction 109

4.2 Data Analysis 109

4.2.1 ERS by Delphi Survey 110

4.2.2 McNemar Test Result of ERS 110

4.2.2 Stationary Analysis and Forecast of Time-series Data 112

4.2.2.1 Throughput History 112

4.2.2.2 Ship Call History 115

4.2.3 Analysis of Queue-Congestion Factor 118

4.2.4 Analysis of Estimated ship Service Rate 119

4.2.5 Analysis of Average Equipment Travelled Distance 121

4.2.5.1 RTG Travelling Distance 121

4.2.5.2 PM Travelling Distance 122

4.2.5.3 Emission Calculation Specification 124

4.2.6 Analysis of Overhead Cost 124

4.3 ABM Architecture 126

4.3.1 Overview 127

4.3.2 Design 133

4.3.3 Details 133

4.4 Summary 140

5 RESULTS 141

5.1 Introduction 141

5.2 Integrated ABM for Sustainable Equipment Expansion 141

5.3 Results Package of Sustainable Equipment Expansion 144

5.3.1 Results of Port Institution & Design Approach Transition 144

5.3.2 Results of Preliminary Equipment Expansion 147

5.3.3 Results of Carbon-reducing Expansion 152

5.3.3.1 Carbon-reducing Expansion Cost Breakdown 154

5.3.3.2 Emission Profile 156

5.4 Database Package of Agent-based Model 159

5.5 NETLOGO Source Code Packages 160
5.6 Verification Results of Agent-based Model 161
 5.6.1 Verification of Agent-based Architecture 161
 5.6.2 Verification of Equipment Expansion Algorithm 162
 5.6.3 Verification of Emission Profile 167
5.7 Validation Results of Agent-based Model 170
 5.7.1 Empirical Validation of Agent-based Architecture 170
 5.7.2 Validation of Equipment Expansion Algorithm 172
 5.7.2.1 Preliminary Equipment Expansion 172
 5.7.2.2 Carbon-reducing Equipment Electrification Profile 174
 5.7.2.2 Validation of Emission Profile 175
5.8 Results of Sensitivity Analysis 178
 5.8.1 Sensitivity to ERS Period Change, ERS_t 178
 5.8.1.1 ERS_t Impact on Carbon-reducing Equipment Expansion 179
 5.8.1.2 ERS_t Impact on Emission Profile 179
 5.8.2 Sensitivity to ERS Percentage Change, ERS_% 185
 5.8.2.1 ERS_% Impact on Carbon-reducing Equipment Expansion 185
 5.8.2.2 ERS_% Impact on Emission Profile 188
5.9 Summary 191
6 DISCUSSION 192
 6.1 Discussion of Integrated ABM Novelty 192
 6.1.1 Strength and Weakness of ABM Architecture 195
 6.2 Discussion of Sustainability Transition Results 197
 6.3 Discussion of Carbon-reducing Equipment Expansion Results 199
 6.3.1 Strength and Weakness of ABM Algorithm 202
 6.4 Discussion of Reference Database 205
 6.5 Discussion of Agent-based Simulator in NETLOGO 206
 6.6 Discussion of ABM Correctness 207
 6.7 Discussion of ABM Validity 209
 6.8 Discussion of ABM Robustness 213
 6.8.1 Sufficiency of Single Sensitivity Dimension 215
7 Conclusion 216

7.1 Objective Fulfillment 216
7.2 Concluding Remark 218
7.3 Future Research Recommendation 219

References 220

Appendices A-H 235-249
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>MX-30 Full-Electric Prime Mover Specification</td>
<td>31</td>
</tr>
<tr>
<td>2.2</td>
<td>DES and ABS Model Comparison</td>
<td>42</td>
</tr>
<tr>
<td>2.3</td>
<td>Three Pillars of Port Institution</td>
<td>50</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary of Literature Review Components</td>
<td>55</td>
</tr>
<tr>
<td>3.1</td>
<td>List of Previous Studies on Port Expansion</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Sustainability Transition Variables and Degree-of-freedom</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Sustainable Expansion Variables and Sub-variables</td>
<td>62</td>
</tr>
<tr>
<td>3.4</td>
<td>Determination of Electrification Logic</td>
<td>66</td>
</tr>
<tr>
<td>3.5</td>
<td>State-Variable Combination for Sub-model 1 (Port Institution)</td>
<td>68</td>
</tr>
<tr>
<td>3.6</td>
<td>State-Variable Combination for Sub-model 2 (Design Approach)</td>
<td>69</td>
</tr>
<tr>
<td>3.7</td>
<td>Standardised Port Operation Parameters</td>
<td>104</td>
</tr>
<tr>
<td>3.8</td>
<td>Time-Series Data Set</td>
<td>101</td>
</tr>
<tr>
<td>3.9</td>
<td>Port Operation and Expansion Data Set</td>
<td>101</td>
</tr>
<tr>
<td>3.10</td>
<td>Port Environment Data Set</td>
<td>102</td>
</tr>
<tr>
<td>3.11</td>
<td>Port Costing Data</td>
<td>102</td>
</tr>
<tr>
<td>3.12</td>
<td>Sensitivity Analysis</td>
<td>108</td>
</tr>
<tr>
<td>4.1</td>
<td>Two-Phase Delphi Survey Frequency</td>
<td>110</td>
</tr>
<tr>
<td>4.2</td>
<td>McNemar Test Frequencies for Delphi Survey</td>
<td>111</td>
</tr>
<tr>
<td>4.3</td>
<td>McNemar Test Statistics for Delphi Survey</td>
<td>111</td>
</tr>
<tr>
<td>4.4</td>
<td>Augmented Dickey-Fuller test statistic (Throughput)</td>
<td>113</td>
</tr>
<tr>
<td>4.5</td>
<td>Throughput Forecast Validation (2014-2015)</td>
<td>115</td>
</tr>
<tr>
<td>4.6</td>
<td>Augmented Dickey-Fuller test statistic (Ship Call)</td>
<td>115</td>
</tr>
<tr>
<td>4.7</td>
<td>Ship Call Forecast Validation (2014-2015)</td>
<td>118</td>
</tr>
<tr>
<td>4.8</td>
<td>Analysis Results of Average Travelling Distance</td>
<td>121</td>
</tr>
<tr>
<td>4.9</td>
<td>Summary of Emission Calculation Specification (PTP)</td>
<td>124</td>
</tr>
<tr>
<td>4.10</td>
<td>Definition of Port Agent Entities</td>
<td>127</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.11</td>
<td>State-Variable Combination for Sub-model 1 (Port Institution)</td>
<td>129</td>
</tr>
<tr>
<td>4.12</td>
<td>State-Variable Combination for Sub-model 2 (Design Approach)</td>
<td>130</td>
</tr>
<tr>
<td>4.13</td>
<td>Subject Matter Expert Consultation Record</td>
<td>138</td>
</tr>
<tr>
<td>4.14</td>
<td>Expert Panel List</td>
<td>138</td>
</tr>
<tr>
<td>4.15</td>
<td>Parameters for ABM Sensitivity Analysis</td>
<td>139</td>
</tr>
<tr>
<td>5.1</td>
<td>ABM Sustainability Transition Result</td>
<td>145</td>
</tr>
<tr>
<td>5.2</td>
<td>Berth, QC, RTG and PM Primary Expansion for 2014-2053 (8 phase expansion)</td>
<td>147</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary Result on Preliminary Equipment Expansion</td>
<td>150</td>
</tr>
<tr>
<td>5.4</td>
<td>Carbon-reducing Equipment Expansion</td>
<td>152</td>
</tr>
<tr>
<td>5.5</td>
<td>Estimated Saving on Electrified Equipment (PTP)</td>
<td>154</td>
</tr>
<tr>
<td>5.6</td>
<td>NPV Performance Difference of Sustainable Project</td>
<td>155</td>
</tr>
<tr>
<td>5.7</td>
<td>Emission Profile from Projected Equipment Expansion</td>
<td>156</td>
</tr>
<tr>
<td>5.8</td>
<td>Verification of Berth Expansion</td>
<td>164</td>
</tr>
<tr>
<td>5.9</td>
<td>Verification of Quay Crane Expansion</td>
<td>165</td>
</tr>
<tr>
<td>5.10</td>
<td>Verification of RTG Expansion</td>
<td>165</td>
</tr>
<tr>
<td>5.11</td>
<td>Verification of Prime Mover Expansion</td>
<td>166</td>
</tr>
<tr>
<td>5.12</td>
<td>Verification of RTG & PM Emission Profile</td>
<td>167</td>
</tr>
<tr>
<td>5.13</td>
<td>Verification of Total Emission Profile</td>
<td>168</td>
</tr>
<tr>
<td>5.14</td>
<td>Validation of PTP-Johor Port Sustainability State</td>
<td>171</td>
</tr>
<tr>
<td>5.15</td>
<td>Validation of Berth Expansion</td>
<td>172</td>
</tr>
<tr>
<td>5.16</td>
<td>Validation of QC, RTG, PM Expansion</td>
<td>173</td>
</tr>
<tr>
<td>5.17</td>
<td>Validation of E-RTG Expansion</td>
<td>174</td>
</tr>
<tr>
<td>5.18</td>
<td>Validation of Zero-Emission E-PM Expansion</td>
<td>175</td>
</tr>
<tr>
<td>5.20</td>
<td>Validation of Total Emission (2011-2015)</td>
<td>177</td>
</tr>
<tr>
<td>5.21</td>
<td>Frequency Distribution of ERS Implementation Period</td>
<td>179</td>
</tr>
<tr>
<td>5.22</td>
<td>ERS<sub>i</sub> Period Impact on Carbon-reducing Equipment Expansion</td>
<td>180</td>
</tr>
<tr>
<td>5.23</td>
<td>Emission Performance at ERS of Phase 3 Commencement (Case 1)</td>
<td>182</td>
</tr>
<tr>
<td>5.24</td>
<td>Emission Performance at ERS of Phase 4 Commencement (Case 2)</td>
<td>183</td>
</tr>
<tr>
<td>5.25</td>
<td>Emission Performance at ERS of Phase 5 Commencement (Case 3)</td>
<td>183</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>5.26</td>
<td>ERS% Percentage Impact on Zero-emission Equipment Expansion</td>
<td>185</td>
</tr>
<tr>
<td>5.27</td>
<td>Emission Performance at 4.5% ERS% (Case 1)</td>
<td>188</td>
</tr>
<tr>
<td>5.28</td>
<td>Emission Performance at 6% ERS% (Case 2)</td>
<td>189</td>
</tr>
<tr>
<td>5.29</td>
<td>Emission Performance at 7.5% ERS% (Case 3)</td>
<td>189</td>
</tr>
<tr>
<td>6.1</td>
<td>Strength and Weakness of ABM Architecture</td>
<td>196</td>
</tr>
<tr>
<td>6.2</td>
<td>Strength and Weakness of ABM Algorithm</td>
<td>205</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Frameworks for port research methods</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Sustainable Port and Main Indicators</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Discrepancy of Port Model Combination</td>
<td>12</td>
</tr>
<tr>
<td>2.1</td>
<td>Parallel and Perpendicular Port Arrangement</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Ship-to-Shore (STS) Quay Crane</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Illustration of a E-RTG bus-bar system</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>MX-30 Electric Truck and Fast Charger Station</td>
<td>32</td>
</tr>
<tr>
<td>2.5</td>
<td>Institutional Framework based Port Planning Methodology</td>
<td>36</td>
</tr>
<tr>
<td>2.6</td>
<td>Minimum Marginal Costing for Emission Reduction Benchmark</td>
<td>37</td>
</tr>
<tr>
<td>2.7</td>
<td>Framework of Sustainable Port Development</td>
<td>38</td>
</tr>
<tr>
<td>2.8</td>
<td>Zero-emission Commercialization Phase-in Plan</td>
<td>40</td>
</tr>
<tr>
<td>2.9</td>
<td>Highlight of ABM Architecture in Port Simulation Building Process</td>
<td>44</td>
</tr>
<tr>
<td>2.10</td>
<td>Simplified View of Henesey's Agent-based Model Interaction</td>
<td>46</td>
</tr>
<tr>
<td>2.11</td>
<td>Sustainable Port Framework for Stakeholder Involvement</td>
<td>51</td>
</tr>
<tr>
<td>2.12</td>
<td>Research Gap Highlight</td>
<td>54</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Methodology Flow Chart</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Proposed Research Framework for Sustainable Agent-based Model</td>
<td>58</td>
</tr>
<tr>
<td>3.3</td>
<td>Fitting of Research Variables in Proposed ABM</td>
<td>62</td>
</tr>
<tr>
<td>3.4</td>
<td>Modular Flow of Agent-based Architecture (Model) and Algorithm</td>
<td>63</td>
</tr>
<tr>
<td>3.5</td>
<td>Model Linkage of ABM Architecture</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>Carbon-reducing Expansion Flow Chart</td>
<td>65</td>
</tr>
<tr>
<td>3.7</td>
<td>Markov Chain of Port Institution Transition (Submodule 1)</td>
<td>70</td>
</tr>
<tr>
<td>3.8</td>
<td>Markov Chain of Design Approach Transition (Submodule 2)</td>
<td>72</td>
</tr>
<tr>
<td>3.9</td>
<td>Electrification Logic by Emission Benchmark</td>
<td>87</td>
</tr>
</tbody>
</table>
3.10 Data Components for ABM
3.11 Structural & Empirical Validation of ABM Architecture
3.12 Illustration of Replicative and Predictive Validation of Results
4.1 ARIMA Monthly PTP Throughput Forecast (2014-2053)
4.2 Auto-Correlation Function (Throughput)
4.3 Partial Auto-Correlation Function (Throughput)
4.4 ARIMA Ship Call Forecast (2014-2053)
4.5 Auto-Correlation Function (Ship Call)
4.6 Partial Auto-Correlation Function (Ship Call)
4.7 Extrapolation of Congestion Factor of E₂/E₂/n
4.8 Berthing Time (Service Rate, etc) against Average Ship Throughput (Qsc)
4.9 Average RTG and E-RTG Route
4.10 PM Travel Point between Quay Crane and Loading Point
4.11 Scheduling of Submodules in Agent-based Architecture
4.12 Theoretical Principles of Proposed Model
4.13 Emergence of Emission Reduction Standard
4.14 Collectives for Model Simulation
5.1 Agent-based Model Data Flow
5.2 Finalized Algorithm Flow of ABM
5.3 Illustration of Sustainable Port Equipment Expansion Encompassing Cost-effectiveness
5.4 Graphical Illustration of Berth Expansion (2014-2053)
5.5 Graphical Illustration of Equipment (QC, RTG, PM) Primary Expansion (2014-2053)
5.6 Graphical Illustration of Preliminary Equipment Expansion
5.7 Graphical Illustration E-RTG Electrification
5.8 Graphical Illustration of E-PM Electrification
5.9 Graphical Illustration of Total Cost of Expansion
5.10 Graphical Illustration of Emission Profile
5.11 User Interface of NETLOGO Simulation for ABM
5.12 ABM Verification Process
5.13 PTP Expansion Plan Through 2045
5.14 Verification of Total Emission Profile
5.15 Case 1 Secondary Unit Expansion (ERS start Phase 3)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.16</td>
<td>Case 2 Secondary Unit Expansion (ERS start Phase 4)</td>
<td>181</td>
</tr>
<tr>
<td>5.17</td>
<td>Case 3 Secondary Unit Expansion (ERS start Phase 5)</td>
<td>181</td>
</tr>
<tr>
<td>5.18</td>
<td>Total Emission vs ERS Implementation Period</td>
<td>184</td>
</tr>
<tr>
<td>5.19</td>
<td>Case 1 Zero-emission Unit Expansion (ERS at 4.5%)</td>
<td>187</td>
</tr>
<tr>
<td>5.20</td>
<td>Case 2 Zero-emission Unit Expansion (ERS at 6%)</td>
<td>187</td>
</tr>
<tr>
<td>5.21</td>
<td>Case 3 Zero-emission Unit Expansion (ERS at 7.5%)</td>
<td>187</td>
</tr>
<tr>
<td>5.22</td>
<td>Total Emission vs ERS Percentage</td>
<td>190</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

AAPA - America Association of Port Authorities
ABM - Agent-based Model
ABS - Agent-based Simulation
ACF - Autocorrelation Function
ADF - Augmented Dickey-Fuller Test
ARIMA - Integrated Autoregression Moving Average
CA - Conventional Approach
CC - Cultural Cognitive Institution
CO₂ - Carbon Dioxide
DA - Design Approach for Port Equipment
DES - Discrete-Event Simulation
EEDI - Energy-Efficiency Design Index
EMS - Environment Management System
E-PM - Electric Prime Mover
EPRI - Electric Power Research Institute
EPSO - European Seaport Organisation
ERS - Emission Reduction Standard
E-RTG - Electric Rubber-tired Gantry
GDP - Gross Domestic Product
GHG - Green House Gases
GIS - Geographical Information System
GPS - Global Positioning System
IMO - International Maritime Organisation
IRF - Impulse Response Function
IRR - Internal Rate of Return
JPA - Johor Port Authority
LA - Low Awareness
LE - Limited Engagement
MA - Moderate Approach
MAE - Mean Absolute Error
MAPE - Mean Absolute Percentage Error
MPE - Mean Percentage Error
NE - No Engagement
NI - Normative Institution
NPV - Net Present Value
ODD - Overview, Description and Details of ABM
PA - Port Authority
PACF - Partial Autocorrelation Function
PC - Progressive Communication
PI - Port Institution
PM - Prime Mover
PP - Port Planner
PS - Port Stakeholders
PTP - Port of Tanjung Pelepas
QC - Quay Crane
RI - Regulative Institution
RTG - Rubber-tired Gantry
SA - Sustainable Approach
SE - Significant Engagement
SHE - Safety, Health and Environment
SME - Subject Matter Expert
STS - Ship-to-shore
TC - Trained and Competent
UNCTAD - United Nation Conference on Trade and Development
UNFCCC - United Nations Framework Convention on Climate Change
ZEE - Zero-emission Equipment Expansion
LIST OF SYMBOLS

- E_Q_i - Price of per unit equipment type i
- I_NF_i - Price of per unit infrastructure for equipment type i
- \varnothing_i - ARIMA Non-seasonal autoregression matrix at lag i
- $\Theta_{k,j}$ - PACF Sample autocorrelation matrix coefficient
- Φ_i - ARIMA Seasonal autoregression matrix at lag j
- $A1$ - State-variable Combination in Submodel 1 Scenario A1
- $A2$ - State-variable Combination in Submodel 1 Scenario A2
- $A3$ - State-variable Combination in Submodel 1 Scenario A3
- $A4$ - State-variable Combination in Submodel 1 Scenario A4
- $A5$ - State-variable Combination in Submodel 1 Scenario A5
- $A6$ - State-variable Combination in Submodel 1 Scenario A6
- α - ADF intercept constant
- B^s - ARIMA Seasonal difference with seasonal lag of s
- B - ARIMA Non-seasonal difference
- β - ADF Time trend coefficient
- $B1$ - State-variable Combination in Submodel 2 Scenario B1
- $B2$ - State-variable Combination in Submodel 2 Scenario B2
- $B3$ - State-variable Combination in Submodel 2 Scenario B3
- $B4$ - State-variable Combination in Submodel 2 Scenario B4
- C_o - Initial investment cost
- c_{ef} - Carbon Emission factor
- C_{F_t} - Cashflow of project at time, t
- c_f - Congestion Factor
- CL_{PM} - Cost of labor for entire prime mover labor
- CL_{QC} - Cost of labor for entire quay crane labor
- CL_{RTG} - Cost of labor for entire rubber-tire gantry labor
- CO_2_t - Total emission from equipment at time t
- ΔCO_2 - Marginal amount of CO2 reduction
- DA_t - State of Design Approach Set
\(da \) - Design Approach State
\(da' \) - Transition (t+1) of Design Approach
\(\bar{E}C_{ei} \) - Average electricity consumption per move
\(\epsilon_t \) - ARIMA Error Correction coefficient at series count t
\(\bar{E}C \) - Total electricity consumption
\(ers\% \) - Percentage of emission reduction standard a year
\(E_t \) - Expenditure at time t
\(Et \) - Electricity tariff
\(ets \) - Estimated Ship Service Rate
\(f \) - TEU factor
\(fcc \) - Fuel consumption coefficient
\(FC0h \) - Fixed Cost of Overhead
\(fp \) - Fuel oil price
\(GProfit_t \) - Gross Profit at time t
\(H. MCr \) - Subsequent marine charges after 6 hours of docking
\(hav(\theta) \) - Haversine function
\(ir \) - Discount rate
\(k \) - ACF designated lag interval
\(\lambda_{ship} \) - Ship arrival Rate
\(l \) - ADF lag order
\(m \) - Order of Minkowsky Distance
\(MAE \) - Mean Absolute Error
\(MAPE \) - Mean Absolute Percentage Error
\(MCr \) - Marine charges for the first 6 hours of docking
\(MPE \) - Mean Percentage Error
\(MPH_i \) - Move per hour of equipment type i
\(MSE \) - Mean Square Error
\(n_i' \) - Number of allowable conventional equipment type i
\(n_b \) - Number of berth
\(n_{ei} \) - Number of electrical equipment type ei
\(n_i \) - Number unit of equipment type i
\(NPV_{ce} \) - Net Present Value by Conventional Expansion
\(NPV_{ge} \) - Net Present Value by Green Expansion
\(NPV_t \) - Net present value of project at time, t
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{shift}</td>
<td>Number of shifts</td>
</tr>
<tr>
<td>P_{AKAM}</td>
<td>Akam's Transition Coefficient</td>
</tr>
<tr>
<td>ρ</td>
<td>Berth occupancy factor</td>
</tr>
<tr>
<td>$P(\mu)$</td>
<td>Probability of ship arrival rate</td>
</tr>
<tr>
<td>P</td>
<td>Probability Transition from state-variable in a scenario to another state-variable of another scenario</td>
</tr>
<tr>
<td>pa</td>
<td>Port Authority State-Variable</td>
</tr>
<tr>
<td>pa'</td>
<td>Transition (t+1) of Port Authority State-Variable</td>
</tr>
<tr>
<td>PA_{s1}</td>
<td>State-variable Set of Port Authority in submodel 1</td>
</tr>
<tr>
<td>pi</td>
<td>Port Institution State</td>
</tr>
<tr>
<td>pi'</td>
<td>Transition (t+1) of Port Institution</td>
</tr>
<tr>
<td>Pl_t</td>
<td>State of Port Institution Set</td>
</tr>
<tr>
<td>$PoC'\lambda_i$</td>
<td>Longitude of placement coordinate for equipment type i</td>
</tr>
<tr>
<td>$PoC'\varphi_i$</td>
<td>Latitude of placement coordinate for equipment type i</td>
</tr>
<tr>
<td>PoC_i</td>
<td>Point of coordinate for container placement</td>
</tr>
<tr>
<td>$PoC\lambda_i$</td>
<td>Longitude of pick up coordinate for equipment type i</td>
</tr>
<tr>
<td>$PoC\varphi_i$</td>
<td>Latitude of pick up coordinate for equipment type i</td>
</tr>
<tr>
<td>pp</td>
<td>Port Planner State-Variable</td>
</tr>
<tr>
<td>pp'</td>
<td>Transition (t+1) of Port Planner State-Variable</td>
</tr>
<tr>
<td>PP_{s1}</td>
<td>State-variable Set of Port Planner in submodel 1</td>
</tr>
<tr>
<td>PP_{s2}</td>
<td>State-variable Set Port Planner in submodel 2</td>
</tr>
<tr>
<td>pr</td>
<td>Power rating of equipments</td>
</tr>
<tr>
<td>ps</td>
<td>Port Stakeholder State-Variable</td>
</tr>
<tr>
<td>ps'</td>
<td>Transition (t+1) of Port Stakeholder State-Variable</td>
</tr>
<tr>
<td>PS_{s1}</td>
<td>State-variable Set of Port Stakeholder in submodel 1</td>
</tr>
<tr>
<td>PS_{s2}</td>
<td>State-variable Set of Port Stakeholder in submodel 2</td>
</tr>
<tr>
<td>P_{svc}</td>
<td>Probability Set of State-variable Transition</td>
</tr>
<tr>
<td>pth</td>
<td>Planning time horizon</td>
</tr>
<tr>
<td>\bar{q}_{berth}</td>
<td>Average container handled per berth</td>
</tr>
<tr>
<td>\bar{Q}_{day}</td>
<td>Average throughput handled a day</td>
</tr>
<tr>
<td>\bar{Q}_{ship}</td>
<td>Average throughput handled per ship</td>
</tr>
<tr>
<td>Q_{year}</td>
<td>Annual container throughput</td>
</tr>
<tr>
<td>r_{kj}</td>
<td>PACF Sample autocorrelation value</td>
</tr>
</tbody>
</table>
- Handling ratio coefficient

R_{earth} - Earth's radius

R_{t} - Revenue at time t

rd - Radian conversion

η_i - Handling ratio coefficient of equipment type i

r_k - ACF Sample autocorrelation value

$SCALL$ - Total number of ship call

s_{vc} - State-variable Combination

s_{vc} - Transition (t+1) of State-variable Combination

SV_{C_1} - State-variable Combination Set of submodel 1

SV_{C_2} - State-variable Combination Set of submodel 2

tb - Total berth operation time

TCL_t - Total labor cost

$TCOh_t$ - Total overhead cost

TCO_t - Total operating cost

$TEUCr$ - Container charges

t_{op} - Time of operation

t_s - Time of operation service

μ_{ship} - Service rate of ship per day

μ_{berth} - Service rate of ship per berth

wt_{std} - Standardised Ship Waiting Time

wt - Ship Waiting Time

$\bar{X}_{i,j}$ - Average distance for equipment type i, route j

\bar{x} - ACF average of sample data

x - ACF sample data at count i

\bar{y}_t - Average of sample data at count t

γ - ADF Root coefficient

y_t - Sample data at count t
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Subject Matter Expert Consultation and Data Collection Request</td>
<td>233</td>
</tr>
<tr>
<td>B</td>
<td>Verification of ABM Submodule 1</td>
<td>234</td>
</tr>
<tr>
<td>C</td>
<td>Verification of ABM Submodule 2</td>
<td>238</td>
</tr>
<tr>
<td>D</td>
<td>Subject Matter Expert Endorsement on Agent-based Model</td>
<td>241</td>
</tr>
<tr>
<td>E</td>
<td>Delphi Survey for Emission Reduction Standard</td>
<td>242</td>
</tr>
<tr>
<td>F</td>
<td>E2/E2/n Queue Chart</td>
<td>243</td>
</tr>
<tr>
<td>G</td>
<td>Port of Tanjung Pelepas GIS Map (Block 1 – 16)</td>
<td>244</td>
</tr>
<tr>
<td>H</td>
<td>Prime Mover Minkowsky Distance by GIS</td>
<td>246</td>
</tr>
</tbody>
</table>
1.1 Introduction

Port expansion theory primarily centers on expanding basic components such as container park area, container freight station, berth-day requirement and container handling system to meet port transportation demand. UNCTAD (1985) laid the groundwork for port expansion with a general application of graphical extrapolation. However, it only accounts for port size of only within 400,000 TEU throughput a year, and considers limited equipment dynamics of only straddle carrier and prime mover combination. Yet, this well documented literature is still a document of referral for researchers as it expounds on the thorough process of port development management from market forecasting to project appraisal.

Researchers built on UNCTAD framework to capture specific needs of different port. Instead of conventional UNCTAD approach, extended researches manipulate quantifiable port parameters to propose superior expansion profile. Tsinker (2004) studied future port expansion in relation to port connectivity with hinterland transportation while Gaur (2005) proposes a strategic port planning tool considering local institutional framework. Other researches on specifically enhancing the scheduling of crane-truck handling was done by Chen (2013), Gharehgozli (2014), Bierwirth (2010), among others. Decision to expand against strong
competition (Ferrari & Basta, 2009; Yap, 2011) from regional ports and acquiring additional equipments via marginal approach (Loke, 2012) or Black-Scholes option for an economic berth expansion (Novaes et al., 2012) are also researched upon. Above mentioned research are done in order to ensure port performance and ensure stakeholders interest to invest in port expansion. With information technology, computer simulation in expert fuzzy system (Zamani, 2006), operation and logistics optimization (Vacca, 2008; Yamada, 2003; Measo et al., 2012) and complex port queuing modeling (Shabayek, 2007; Radmilovic, 1996; Mohammead, 2013) have served as tools to enhance informed decision-making. In short, research is pushing new ground in port planning and Woo (2011) has tabulated a concise record of all genres of port research in chronological order.

![Figure 1.1](source: Woo (2011) & Meredith et al. (1989))

Figure 1.1: Frameworks for port research methods

(source: Woo (2011) & Meredith et al. (1989))

Also, Figure 1.1 shows the evolvement of port planning framework and research methods. Woo (2011) pointed out that interest are drawn in to researching port community behavior in areas of actor-oriented decision-making, choice of expansion and policy-making rather than on a port level analysis. On top of that,
environmental studies are increasing largely due to port reforms undertaken to address environmental concerns. Currently, knowledge creation in port research is in context of industrial practical, privatized terminals, and agent interaction over multidisciplinarity. The context yields a more natural and existential model.

Research surge also can be seen in the area of port sustainability. This overarching framework demands comprehensive integration of three aspects of sustainability namely social, economical and environment indicator as described in Figure 1.2.

Figure 1.2: Sustainable Port and Main Indicators
(source: Denktas-Sakar, 2012)

With the paraphrasing quote of the Bruntland Commission, port sustainability is defined as "business strategies and activities that meet the current and future needs of the port and its stakeholders, while protecting and sustaining human and natural resources (AAPA, 2007).” The following sections will explore the topic of port expansion in context of port sustainability, then to establish the objectives of the research from research background, scope and flow of the research.

1.2 Research Background

Green port concept, has been widely studied by action research and case studies, involves multiple port actors interaction, mainly port authority, port operator and port stakeholders (internal and external), together they make-up port community actors. Many techno-socio researches on green port not only review and propose integrated green strategies but also report on technological breakthrough that radically mitigates environmental impact. Under the case study on the European Sea Port Organization (EPSO) and ECOPORT membership, Darbra, (2004 & 2009) identifies environmental aspects to setup effective environmental monitoring system for the European ports. So, ports adopting the established environmental management system (EMS) are awarded certificates of compliance and accepted as member of ECOPORT. Puig (2014) proposes an environmental indicator selection methodology to enhance the practice of green port development throughout the region. Other green port management literatures are available (Lun, 2011; Grigalunas et al., 2001; Lam, 2012; Chang, 2001), and some even suggest possible alternatives to achieve sustainability (Dekker, 2010; Joan, 2011)

Sustainable management tools have paved the foundation for quantitative mitigation of environmental impact. In emission inventory, Geerling (2011) and Yang (2013) have proposed methodologies to account for CO\textsubscript{2} emission and are able to model quantified emission mitigation by electrification of port equipment. Nevertheless, achieving the call of zero-emission port is still a far-fetch idea. Port of Rotterdam is at the forefront of combating climate change and has agreed on a multilateral collaboration to reduce 50\% of CO\textsubscript{2} emission by 2025 compared to base emission year of 1990 (Lam, 2014). Port of Los Angeles also responded to California's Carbon Warming Solution Act in 2006 to cut its greenhouse gas (GHG) emissions to pre-1990 levels by 2020 and 80\% below pre-1990 levels by the year 2050 (Kim et al., 2012). These commitments to lower CO\textsubscript{2} emission will integrate economical benefit, conserve climate change and spur global cooperation towards zero-emission port. These carbon-reducing initiatives will be implemented via 'green-fleet' program within the port and is proposed to be enforced via licensing inked in future port concession agreement. Even so, Denktas-Sakar (2012) implies
that such enforcement calls for the involvement of higher authority such as the Ministry of transport, state government environmental department and progressive communication with local port authorities.

On a more technical basis, Europe has developed a systematic action plan to phase-out regulation to dispose of old heavy emission trucks or prime-movers in series of EURO I, EURO 2, EURO 3, EURO 4, EURO 5 and EURO 6 (Dedinec et al., 2013). These new replacement light-duty vehicle tiers will soon reduce GHG emission to levels of 0.005 g/km particle matter, 0.5g/km CO, 0.08 g/km NOX, while SOx level are regulated based on after-filtration system (Nylund, 2007). Morawska (2010) reports that Singapore, the world second largest port after Shanghai, will embrace EURO 6 standards for trucks entering port area by 2016 while Japan enacted their EURO 6 equivalent Post-Post New Long-Term (PPNLT) emission regulation to limit GHG emission from trucks.

Previous cost-effective approach to port expansion has now meet with a paradigm shift of green port concept. Moglia (2003) mentions the need for new concepts when new concepts arise. Yet, he reinstates that port expansion theory remains and can be categorized into project-based, short-term and long-term. Dooms (2003) affirms that new approaches should not remain as short-term project, ports master plan (long-term) should be incorporated such as green port concept and theory of stakeholder management in to ensure the realization of the intended cause.

It can be said that, long-term port expansion sets performance standards which quantifies the required expansion profile; long-term green port expansion at the discretion of port community will also set emission reduction performance and quantify the required carbon-reducing equipment profile.

To-date, with technological breakthrough in battery technology, it is technically feasible to achieve zero-emission green port. State-of-the-art battery thrives in battery life and short charging intervals that would not disturb normal
operation or require huge redundancy in case of breakdown. Furthermore, as lithium-ion batteries commercialise with economics-of-scale, the application of batteries will be extensive (CALSTART, 2013). EPRI (2008) piloted the project to explore electrification option in port handling equipment and found a solution in electrifying RTG by setting up latch-on bus bar and battery set for driving across lanes. With success, APM terminal announced the program to retrofit and electrify worldwide RTG fleet and predicted to reduced CO$_2$ significantly by 60% (APM, 2011). Pelabuhan Tanjung Pelepas, a member of APM global terminals, recorded 40% reduction in diesel consumption after retrofitting 90 conventional RTG units.

Another major contribution of CO$_2$ emission is the prime-mover fleet. In 2007, the Baqon electric truck initiative from the Port of Long Beach and Port of Los Angeles, under the commitment to San Pedro Bay Ports Clean Air Action Plan (CAAP), has piloted a project on electrical prime-mover - model MX30. With minimal additional infrastructure of charging stations which can replace existing diesel refilling stations, CO$_2$ emission can be mitigated within the governance of port community (EPRI, 2011).

The emergence of technical feasibility of installing green equipment has not compel most ports community to participate in deploying 'green fleet' program. Neither has the most port authorities implemented quantified emission reduction standard (ERS) as had Port of Rotterdam and Port of Los Angeles agreed to its local governments initiative. Besides financial constraints and lacking technical support made available, Notteboom (2012) argues that a maturity corresponding to the collective port community interaction is key to the successful implementation of emission reduction standard. Notteboom states that port community interaction in sustainability context can be divided into (1) cultural cognitive institution, (2) normative institution and (3) regulative institution, of which the last is the peak of institution maturity enabling port authority to execute coercive rule such as emission reduction standard. This regulative mechanism will be legally sanctioned instead of morally governed; with environmental indicators to abide by law instead of social obligation. In effect, it will grant continuation of licence to complying port operators instead of awarding certificate of recognition for environmental compliance.
However, pre-mature implementation of any regulation on environment may not only fail to yield desired outcome as intended but also create a step-back in institution evolvement. Tews (2003) who studies environmental policies list countries such as USA Norway, Taiwan, South Korea, India, South Africa, New Zealand, Switzerland and Japan to have implemented carbon tax as means to radically mitigate CO\textsubscript{2} emission and channel the collected due tax to reinvest in cleaner energies and green technologies. Australia and state of Maryland (USA) also saw Carbon Tax implementation of A$23 and USD$5 per ton carbon dioxide in 2012 and 2010 respectively. However, Australia was the first to repeal the legislation and Maryland in 2011 citing that the tax was a punitive fee rather than a tax (Taylor, 2014). Lam & Van (2012) elaborate that for sustainable growth of green port strategy, the key framework is in structured stakeholder involvement, green market development and cost-effective green policy as well as sustainable port operations (Figure 2.11). Without the evolvement in stakeholder involvement in strategic green development, pre-mature policies will cripple the system. Norsworthy (2013) reports also that voluntary clean truck programs has lower achievement of 1-4\% of emission reduction compared to the potential reduction 12-15\% reduction for particulate matter and 31-34\% for nitrogen oxides by compulsion.

In respect to the three stages of port community interaction, individual port community are path depended in the maturity time-frame to implement 'green-fleet' program. So time to evolve into a regulative institution over time is a factor to the reduction of CO\textsubscript{2} emission. Nevertheless, as all elements to evolve institutionally happens, port community will be able to adopt sustainable approach to devise port expansion. Institutional change do not necessarily diverge port expansion from its fundamental approach but rather adds value (Peter, 2007). In green port context, it adds environmental conservation to port expansion theory.

In brief, the reform of port expansion facing the green port paradigm shift has called for the framework of port expansion with emission reduction standard. The decision to implement emission reduction standard is subjected to the port sustainability transition in reaching regulative institution. With emission reduction
standard to guide long-term port expansion, a quantified cargo handling equipment in long term expansion will yield objective performance in reducing CO$_2$ emission.

1.3 Problem Statement

Research background points towards future environmental requirement of enforcing port emission reduction. Current green port practice to reduce emission via voluntary basis may not be able to effectively reduce emission to desired level (Norsworthy, 2013). Even strict light-duty vehicle phase-out regulation will still leave clean diesel engine emitting GHG emission. Though such environmental management efforts serves to strengthen and realize green port concept, implementing emission reduction is the key to effectively reduce GHG emission. However, it requires the evolvement of port institution to enforce emission reduction standard so that it will steer ports to adjust long-term planning approach (Moglia, F. et al., 2003) to operate within a inventoried sustainable emission level.

As long-term port equipment expansion is to provide quantified amount of equipment to increase operation performance (Novaes et al., 2012); long-term sustainable equipment expansion is also to provide quantified amount of green equipment to meet designated emission standard performance. There has not been quantified environmental reduction that requires planning of carbon-reducing equipments by long-term until emergence of pledges by ports such as the Port of Rotterdam and Port of Los Angeles, though on a city level. Hence, a method to estimate quantified carbon-reducing equipment in order to reduce CO$_2$ emission to a desired level is needed.

On the other hand, Lam (2012) argues that planning for green expansion with the assumption that all port community approves of carbon-reducing equipment would prove unrealistic and premature. Sustainable port expansion approach can only conform to port community interaction framework of Notteboom (2012) as it
evolves over time from cultural cognitive institution to normative institution; from normative institution to regulative institution. When necessary elements of green incentive, tariff adjustment, available technical support and competency in green management is in practice, port institution can be regulative-ready. Only then, by port concession, port institution of regulative institution can execute carbon-reducing equipment planning upon agreement by the consensus of port agents. Therefore, an agent-based model is needed to simulate port institution evolvement that determines adopted design approach for equipment expansion.

In short, the research gap requires an agent-based model to simulate long-term carbon-reducing equipment not only to reduce emission to designated levels but also in an expansion approach that conforms to the institution state of port agents interaction.

1.4 Research Objective

To build on the port expansion theory, this research will address the above mentioned problem by combining green port concept into the long-term planning of port expansion to yield quantified equipment expansion approach that meets the emission reduction standard. This research problem can be solved by accomplishing the following objectives:

i. To propose an expansion approach to quantify carbon-reducing container handling equipment complying to emission reduction standard
ii. To simulate equipment expansion with CO₂ reduction according to the port institution and design approach.
iii. To validate the agent-based model for carbon-reducing equipment expansion
1.5 Scope of Research

As port research is dynamic and complex, this research set the study boundaries as follows:

i. Equipment expansion considers only container port type with parallel layout that utilizes equipment types of quay crane, rubber-tire gantry and prime-mover. This terminal type accounts for 90% of Asian ports. (Brinkmann, 2011)

ii. Only direct CO\(_2\) emission will be modeled. Indirect emission from electricity usage generated in power stations are beyond the boundaries and governance of port community. Other air pollutant such as NO\(_x\), SO\(_x\) and PM are not studied.

iii. Agents in the port community will consist of three main actors namely, port authority (land-owner), port operator and port stakeholders. Port Stakeholders are seen as one, regardless of external stakeholders (Port Authority, Freight Forwarders, Industrial support) or internal stakeholders (Executive Planners, Port Investors,)

iv. Tactical and strategical method of planning port equipment expansion is used, rather than on a operational time-frame

v. Future container throughput are forecasted by univariate method with no economic assumption and market-driven competition.

vi. Emission from lesser equipments such as forklifts and tugboat, though under the ownership of port operator will not be considered due to insufficient data and the negligible percentage it accounts for the overall emission.

vii. Due to insufficient and confidentiality of data from port operator, any available data given at the discretion from port authority will be extrapolated for modeling use.

viii. Cost optimization is not exercised except constraints of NPV and IRR are set as project criterion parameters to the carbon-reducing equipment expansion
1.6 Theoretical Framework

The development of green agent-based expansion model is combination of three components of port expansion, green port concept and port community interaction. Without each component, the end-goal realization of quantifiable carbon-reducing port cannot be attained as depicted in Figure 1.3.

Port expansion theory have been extended by many researchers. This research will follow the model developed by Novaes et al. (2012) and Sharif (2011) to expand berth length and equipment profile complying to operation standard and minimum net present value. Loke (2012) and Chu and Huang (2005) provided detail expansion methods to expand smaller equipments in port such as RTG and PM which accounts more than 90% of port total emission.

![Figure 1.3: Discrepancy of Port Model Combination](image)

Green port concept criteria is derived from Lam & Notteboom (2014) who highlights the emission reduction trend by setting up tangible CO$_2$ reduction percentage. The work of Geerling & Duin (2011) and Yang & Chang (2013) contributed the methodology to model quantifiable emission mitigation and Hartman
& Clott (2012) established method to replace clean engine truck to reduce CO₂ emission level.

Finally, port agent interaction framework was developed extensively by Henesey (2006) to enhance container terminal performance. Though his work did not include agents interaction on green port concept, Lam & Van (2012) defined the behavior and rule-based interaction of port in reaching sustainability in port management. While, Notteboom (2012) developed a framework to theorize three port institution as a result from the evolvement from port agent interaction. Those three pillars are "cultural cognitive institution", "normative institution" and "regulative institution". Together these three component will be combine to develop the agent-based model for sustainable equipment expansion of a container port.

1.7 Significance of study

Upon accomplished the research objectives, the model quantifying long-term carbon-reducing equipment expansion according to agent interaction will serve as a reference tool for future decision-making to reduce CO₂ emission. The model will allow for manipulation of variables to aide decision-making process or negotiation session with other port agents, specially for tariff adjustment during port concession.

The model will project the effects of port community interaction to emission performance based on port institution path. This foresight will aide port environmental management adjust with urgency along the depended path to facilitate sustainable expansion by carbon-reducing equipment at required expansion phase.

On top of that, the yield quantified green equipment expansion projected over the long planning-time-horizon will give opportunity for port planners to explore alternatives to maximize port performance financially or operation wise. Whether to
purchase carbon-reducing equipment by acquisition option or facilitate the additional spatial requirement, the foresight of long-term carbon-reducing equipment will be essential.

Planning is bringing the future into the present so that something can be done about it.

1.8 Organisation of Thesis

The remaining of this thesis will present the research details in the following structure: **Chapter 2** includes extensive literature review covering aspects of port planning philosophies in the context of container terminal. It further elaborates on green port concepts in altering container port expansion approach but yet maintains the fundamental philosophies. Port Agent interaction impact on port expansion and individual agent behavior rule is delineated. Mathematical algorithms on forecasting throughput, expanding equipment profile, calculating equipment emission and financial analysis are also reviewed.

Chapter 3 presents the integrated methodology for the proposal of an agent-based model (ABM) to simulate long-term carbon-reducing equipment. Procedure for the development of ABM architecture and the key component of emission reduction standard (ERS) by Delphi Survey are explained. Then, it shows the development of the agent-based model sustainability transition and the port expansion mathematical algorithm incorporated into the ABM. The mathematical algorithm encompasses throughput forecasting, equipment profiling, emission calculation and financial analysis. Method of data collection is also stated and analysis of data collected is also performed. Finally, the chapter ends with the verification and validation of agent-based model.
Chapter 4 presents the 7 packages of results of agent-based model. The packages are the integrated ABM, sustainable equipment expansion profile, database reference, the NETLOGO source code, the verification and validation results and the sensitivity analysis results. The final results will be discussed in great detail with remarks and inferences drawn from the results observation.

Chapter 5 presents conclusion of the whole thesis, highlighting the fulfillment of research objectives and remarks for future research recommendation.
REFERENCES

Abdul-Mageed, Loay (2012), An Agent-based Approach for Improving the Performance of Distributed Business Processes in Maritime Port Community. Research Theses, Faculty of Science and Technology, University of Plymouth. https://pearl.plymouth.ac.uk/handle/10026.1/1239

CALSTART (2013), I-710 Project Zero-Emission Truck Commercialization Study Final Report, prepared for Gateway Cities Council of Governments, Los Angeles County Metropolitan Transportation Authority

Dekker S. (2010), "Sustainable Port Development In The Netherlands – Framework For A Comprehensive Approach Applied To Amsterdam Port" , 12th Wctr Lisbon, Portugal. (Strategic Consultant Transport & Economics, Grontmij Nederland Bv)

Franziska Klugl (2008), A Validation Methodology for Agent Based Simulations, (Unknown Publisher) Department for Artificial Intelligence, University of Würzburg Am Hubland, 97074 Würzburg Copyright 2008 ACM 9781595937537/08/0003

Moss, S., Downing, T., & Rouchier, J. (2000). Demonstrating the role of stakeholder participation: An agent based social simulation model of water demand policy
and response. CPM Report No. 00-76, Centre for Policy Modelling, The Business School, Manchester Metropolitan University, Manchester, UK, 29, 39.

POLA (2011), The Port Of Los Angeles Inventory Of Air Emissions For Calendar Year 2011, Starcrest Consulting Group, Long Beach, California.

