NATURAL RADIOACTIVITY LEVELS OF SELECTED AREAS IN JUBAN DISTRICT YEMEN

WEDAD ALI ABDURABU AL-QADHI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Physics)

Faculty of Science
Universiti Teknologi Malaysia

MARCH 2017
Dedicated to:

My inspiring father, my wonderful mother, and the memory of my beloved brother Yasir.

أهدي ثمرة سنوات من الدراسة والغربة

إلى من ادين له بكل ما انجزت في حياتي ومنه تعلمت إن أصبو إلى العلياء بإيمان وعزيزة وصبرًا
والدي: علي عبدربه القاضي

إلى من علمتني أن أكون الأفضل ولا اقارن نفسني بالآخرين
والدتي: سعادة البحري

إلى روح أخي ياسر رفيق الطفولة والدراسة (شهيد الحرم الجامعي- صنعاء 29 مارس 1997) الذي أغالتته أيادي الغدر والجهل وقضت على أحلامه وطموحاته العلمية.

وداد علي عبدربه القاضي

1 مارس 2017
ACKNOWLEDGEMENT

First and foremost, my unlimited and sincere thanks and praises goes to the ALLAH (SWT) for His endless mercies, blessings and guidance through all my life.

My sincere appreciation goes to my supervisor Dr. Muneer Aziz Mohammed Saleh for his continued guidance, support of my research and my life during my stay in Malaysia. My earnest appreciation also goes to my co-supervisors Assco. Prof. DR. Wan Muhamad Saridan and Prof. Dr. Ahmad Termizi Ramli and Dr. Arien Heryansyah for their invaluable contributions to the success and quality of the research.

I would like to acknowledge Ministry of Higher Education Yemen, Ministry of Higher Education Malaysia, and American Institute for Yemeni Studies (AIYS) for financial support. I would like to thank Mr. Ali Alsuremi, President of National Water Resources Authority, for his great assistance. My sincere appreciation also goes to the people of Juban who made the field work a wonderful experience, especially Ahmed Alsuremi’s family, Abdulmogheni Alsuremi, Saif Adubishi, and Saleh Aloqri. I also acknowledge, with thanks, technical support of the National Atomic Energy Commission, and Yemeni Geological Survey and Mineral Resources Board (GSMRB), Yemen, especially, Eng. Abduljalil Alsalahi and Ms. Fateen Almiri

I shall forever be grateful to my parents, my sisters, my brothers my friends and my mother in- law and my sister in law for their unending support, financially, spiritually and emotionally. Many thanks to Mr Abuallah Saoad for his unlimited help. To them I am highly indebted and words alone cannot describe my gratitude. Jazakum Allau Khyran. Finally, I am more than grateful for having an amazing family my husband and my lovely son Kahlan who stand by me throughout the good and bad that life threw at us and make my life effortless and full of joy.
ABSTRACT

The present study aims to determine the levels of natural radioactivity and to assess the corresponding health risk in the region of elevated background radiation in Juban District, Yemen. The relationship between radionuclides concentrations and physicochemical properties in each geological formation of aquifers were estimated to determine the distributions of the radionuclides in groundwater. The mean external gamma dose rate was measured using portable survey meters, which was 374 ± 32 nGy h$^{-1}$. Rock samples from different geological formations were measured to identify their crystal structures and quantitative determination of radionuclides using X-ray diffraction (XRD) and hyper pure germanium gamma spectrometer, respectively. The XRD results showed that monazite was the dominant radioactive mineral in all geological formations in Juban District. The mean activity concentrations of 232Th, 226Ra, and 40K were 1768 ± 918 Bq kg$^{-1}$, 484 ± 230 Bq kg$^{-1}$ and 1203 ± 186 Bq kg$^{-1}$, respectively. The mean specific activity of 232Th and 226Ra were twenty one and six times higher than the world average, thus Juban district may be characterized as an elevated background radiation area. Natural radionuclides in groundwater were estimated using different methods depending on the chemical behaviour of each radionuclides and its kind of radiation. Inductively coupled plasma mass spectrometer, inductively coupled plasma-optical emission spectrometer, and atomic absorption spectrometer were used to analyse the concentration of uranium, thorium, iron and potassium, while the activity concentrations of 226Ra, 228Ra, 40K, 238U, 235U, 234U and 222Rn were measured using gamma spectrometer, alpha spectrometer and Rad 7, respectively. The measured concentration of uranium, thorium, iron, and potassium were 11.25 ± 2.65 µg L$^{-1}$, 0.15 ± 0.04 µg L$^{-1}$, 3.20 ± 0.37 mg L$^{-1}$ and 17.02 ± 0.61 mg L$^{-1}$ respectively. The mean activity concentrations of 226Ra, 228Ra, 40K, 222Rn, 238U, 234U and 235U were 94 ± 21 mBq L$^{-1}$, 216 ± 32 mBq L$^{-1}$, 3306 ± 356 mBq L$^{-1}$, 226.4 ± 62.4 Bq L$^{-1}$, 138.2 ± 26.9 mBq L$^{-1}$, 234.0 ± 41.4 mBq L$^{-1}$, and 7.2 ± 0.5 mBq L$^{-1}$, respectively. The highest and lowest concentration of all radionuclides was found to be in the basement and sandstone aquifer, respectively. The mean value of 234U/238U activity ratios was 1.8. The relatively low 238U concentrations and high ratios of 234U/238U in the groundwater indicated the presence of younger waters with a stronger leaching of 234U from aquifer materials to the groundwater. The potential factors for high activity concentration of 222Rn 226Ra and 226Ra appear to be the presence of fault and shear. In contrast, the dominant factors affecting U concentrations were salinity of water and water table flow. The annual effective dose was 2.30 mSv, which was five times the world average. The external hazard index was ten times higher than recommended value, which further epidemiological studies of health effects relative to environmental radiation in Juban District need to be conducted.
Kajian ini bertujuan untuk menentukan aras radioktiviti semula jadi dan untuk menilai risiko kesihatan yang sepadan di kawasan sinaran latar belakang yang tinggi di Daerah Juban, Yemen. Hubungan antara kepekatan radionuklid dan sifat-fizikokimia dalam setiap pembentukan geologi akuifer telah dianggarkan untuk menentukan taburan radionuklid dalam air bawah tanah. Kadar dos min gama luaran diukur menggunakan meter kajian mudah alih, dengan nilai 374 ± 32 nGy h\(^{-1}\). Sampel batuan dari pembentukan geologi yang berbeza telah diukur untuk mengenal pasti struktur kristal dan penentuan kuantitatif radionuklid masing- masing dengan menggunakan pembelauan sinar-X (XRD) dan spektrometer germanium gama lampau tulen. Keputusan XRD menunjukkan bahawa monazit adalah mineral radioaktif yang dominan dalam semua formasi geologi di Daerah Juban. Kepekatatan aktiviti min \(^{232}\)Th, \(^{226}\)Ra dan \(^{40}\)K masing- masing ialah 1768 ± 918 Bq kg\(^{-1}\), 484 ± 230 Bq kg\(^{-1}\) dan 1203 ± 186 Bq kg\(^{-1}\). Aktiviti khusus min \(^{226}\)Ra dan \(^{232}\)Th ialah dua puluh satu dan enam kali lebih tinggi daripada purata dunia, maka daerah Juban boleh dicirikan sebagai kawasan sinaran latar belakang yang tinggi. Radionuklid semula jadi dalam air bawah tanah telah dianggarkan dengan menggunakan kaedah yang berbeza bergantung kepada sifat kimia setiap radionuklid dan jenis sinaran. Spektrometer jisim gandingan plasma teraruh, spektrometer pemancaran optik gandingan plasma teraruh, dan spektrometer serapan atom telah digunakan untuk menganalisis kepekatatan uraniu, torium, besi dan kaliau, manakala kepekatatan aktiviti \(^{226}\)Ra, \(^{228}\)Ra, \(^{40}\)K, \(^{235}\)U, \(^{234}\)U dan \(^{222}\)Rn diukur dengan menggunakan spektrometer gama, spektrometer alfa dan Rad 7, masing-masing. Kepekatatan yang diukur untuk uraniu, torium, besi, dan kaliau masing-masing ialah 11.25 ± 2.65 μg L\(^{-1}\), 0.15 ± 0.04 μg L\(^{-1}\), 3.20 ± 0.37 mg L\(^{-1}\) dan 17.02 ± 0.61 mg L\(^{-1}\). Kepekatatan aktiviti min \(^{226}\)Ra, \(^{228}\)Ra, \(^{40}\)K, \(^{232}\)Rn, \(^{235}\)U, \(^{234}\)U dan \(^{222}\)Rn diukur dengan menggunakan spektrometer gama, spektrometer alfa dan Rad 7, masing-masing. Kepekatatan yang diukur untuk uraniu, torium, besi, dan kaliau masing-masing ialah 11.25 ± 2.65 μg L\(^{-1}\), 0.15 ± 0.04 μg L\(^{-1}\), 3.20 ± 0.37 mg L\(^{-1}\) dan 17.02 ± 0.61 mg L\(^{-1}\). Kepekatatan tertinggi dan terendah untuk semua radionuklid masing- masing ditemui dalam ruangan bawah tanah dan batu pasir akuifer. Nilai min nisbah aktiviti \(^{234}\)U/\(^{238}\)U ialah 1.8. Kepekatatan \(^{238}\)U yang relatif rendah dan nisbah \(^{234}\)U/\(^{238}\)U yang tinggi dalam air bawah tanah menunjukkan kehadiran air yang lebih muda dengan larut lesapan \(^{234}\)U yang lebih tinggi dari bahan akuifer ke dalam air bawah tanah. Faktor-faktor yang berpotensi untuk kepekatatan aktiviti \(^{222}\)Rn \(^{226}\)Ra dan \(^{228}\)Ra yang tinggi kelihatannya adalah kehadiran gelinciran dan ricuh. Sebaliknya, faktor-faktor dominan yang mempengaruhi kepekatatan U adalah kemasanin air dan aliran air permukaan tanah. Dos berkesan tahunan ialah 2.30 mSv, iaitu lima kali ganda purata dunia. Indeks bahaya luaran ialah sepuluh kali lebih tinggi daripada nilai yang disyorkan, maka adalah perlu dijalankan kajian epidemiologi lanjut bagi kesan kesihatan yang berkaitan dengan sinaran alam sekitar di Daerah Juban.
TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOLEDGMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES xvii
LIST OF FIGURES xxi
LIST OF ABBREVIATION xxv
LIST OF SYMBOLS xxvii
LIST OF APPENICES xxviii

1 INTRODUCTION 1
1.1 Background of study 1
1.2 Problem statement 2
1.3 Objectives 4
1.4 Scope of study 4
1.5 Significance of study 6
1.6 Outline of thesis 7

2 LITERATURE REVIEW 8
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Nuclear radiation</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Basic concepts and terminology</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1.1</td>
<td>Activity</td>
<td>9</td>
</tr>
<tr>
<td>2.2.1.2</td>
<td>Natural decay chains</td>
<td>10</td>
</tr>
<tr>
<td>2.2.1.3</td>
<td>Secular equilibrium</td>
<td>11</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Absorbed dose</td>
<td>12</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Types of radiation</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Natural radioactivity</td>
<td>14</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Natural radioactivity in rocks</td>
<td>14</td>
</tr>
<tr>
<td>2.3.1.1</td>
<td>Natural radioactivity in igeous rocks</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1.2</td>
<td>Natural radioactivity in sedimentary rocks</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1.3</td>
<td>Natural radioactivity in metamorphic rocks</td>
<td>16</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Natural radioactivity in soil</td>
<td>16</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Natural radioactivity in groundwater</td>
<td>16</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>K in groundwater</td>
<td>18</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Th in groundwater</td>
<td>18</td>
</tr>
<tr>
<td>2.3.3.3</td>
<td>U in groundwater</td>
<td>19</td>
</tr>
<tr>
<td>2.3.3.4</td>
<td>Ra in groundwater</td>
<td>19</td>
</tr>
<tr>
<td>2.3.3.5</td>
<td>Rn in groundwater</td>
<td>20</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Disequilibrium in 238U series</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Physicochemical parameters of water controlling radionuclides levels in water</td>
<td>23</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Temperature effect (T) on the concentration of radionuclides in</td>
<td>23</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>2.4.2</td>
<td>pH effect on the concentration of radionuclides in water</td>
<td>23</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Total Dissolved Solids (TDS) effect on the concentration of radionuclides in water</td>
<td>24</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Electrical conductivity (EC) effect on the concentration of radionuclides in water</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Radiological health effects</td>
<td>25</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Health standards and criteria for radionuclides in water</td>
<td>26</td>
</tr>
<tr>
<td>2.5.1.1</td>
<td>Health standards and criteria for U in water</td>
<td>27</td>
</tr>
<tr>
<td>2.5.1.2</td>
<td>Health standards and criteria for radionuclides for Ra in water</td>
<td>27</td>
</tr>
<tr>
<td>2.5.1.3</td>
<td>Health standards and criteria for radionuclides for Rn in water</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Natural radiation and radioactivity studies in different countries</td>
<td>28</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Natural radiation studies in different countries</td>
<td>28</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Natural radioactivity in rocks of different countries</td>
<td>30</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Natural radioactivity in soil of different countries</td>
<td>31</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Natural radioactivity in water of different countries</td>
<td>32</td>
</tr>
<tr>
<td>2.7</td>
<td>Radiation studies in Yemen</td>
<td>34</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Radioactive mineral exploration and airborne surveys in Yemen</td>
<td>34</td>
</tr>
</tbody>
</table>
2.7.2 Natural radiation and radioactivity studies in Yemen

2.7.2.1 Natural radiation in Yemen

2.7.2.2 Natural radioactivity in rocks in Yemen

2.7.2.3 Natural radioactivity in soil in Yemen

2.7.2.4 Natural radioactivity in groundwater in Yemen

3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Study area

3.3 Geological setting

3.3.1 Precambrian Basement

3.3.2 Al-Tawilah Cretaceous (sandstone)

3.3.3 Tertiary (volcanic)

3.4 Hydrologic setting

3.4.1 Basement aquifer

3.4.2 Sandstone Aquifer

3.5 Airborne, in situ measurement and sampling

3.5.1 Airborne survey
3.5.2 Measurements of gamma dose rate

3.5.3 In situ measurement of physicochemical parameters (pH and EC and temperature)

3.5.4 Rocks Sampling

3.5.5 Soil sampling

3.5.6 Water sampling for gamma spectrometer

3.5.7 Water sampling for coupled plasma mass spectrometer (ICP-MS)

3.5.8 Water sampling atomic absorption spectrometer (AAS)

3.5.9 Water sampling for ICP-OES measurement of Fe concentrations

3.5.10 Water sampling for Rad7 (radon measurement)

3.5.11 Water sampling for alpha spectrometry

3.5.12 Water sampling for Physicochemical (TDS)

3.6 Samples preparation

3.6.1 Preparation of rock samples for gamma spectrometer measurements

3.6.2 Preparation of rock samples x-ray diffraction (XRD) measurement

3.6.3 Preparation of rock and soil samples EDXRF measurement

3.6.4 Preparation of soil samples for gamma spectrometer
3.6.5 Preparation of water samples for gamma spectrometer

3.6.6 Preparation of water sample for coupled plasma mass spectrometer (ICP-MS)

3.6.7 Preparation of water sample for atomic absorption spectrometer (AAS)

3.6.8 Preparation of water sample for ICP-OES measurement

3.6.9 Preparation of water sample for alpha spectrometer

3.6.10 Preparation of water sample for physicochemical (TDS) measurement

3.7 Experimental set up

3.7.1 Set up of high purity germanium (HPGe)

3.7.2 Set up of XRD

3.7.3 Set up of energy dispersive x-ray fluorescence (EDXRF) spectrometer

3.7.4 Set up of induced coupled plasma mass spectrometer (ICP-MS)

3.7.5 Set up of atomic absorption spectrometer (AAS)

3.7.6 Set up of ICP-OES measurement of Fe concentrations

3.7.7 Set up of Rad7 (radon measurement)

3.7.8 Set up of Alpha spectrometer

3.8 Analysis of data
3.8.1 Analysis of gamma ray spectrum
3.8.2 Analysis of x-ray diffraction measurement
3.8.3 Analysis of energy dispersive x-ray fluorescence (EDXRF) measurements
3.8.4 The concentration of U and Th using (ICP-MS)
3.8.5 The concentration of K using (AAS)
3.8.6 Analysis of ICP-OES measurement of Fe concentrations
3.8.7 Analysis of Rad7
3.8.8 Analysis of alpha spectrum

3.9 Statistical analysis of calibrated data
3.9.1 Descriptive statistics
3.9.2 Analysis of variance (ANOVA)
3.9.3 Spearman correlation

3.10 Assessment of radiological health effects
3.10.1 Assessment of annual effective dose equivalent
3.10.2 Assessment of excess lifetime cancer risk (ELCR)
3.10.3 Radium equivalent activity (Ra\textsubscript{eq})
3.10.4 External hazard index (H\textsubscript{ex})
3.10.5 Annual effective dose equivalent in water
3.10.5.1 Annual effective doses due to 40K, 226Ra, and 228Ra
3.10.5.2 Annual effective doses from ^{222}Rn in the groundwater

3.11 Spatial distribution of natural radiation

4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Measurement of gamma dose rate

4.3 Measurements of rock samples

4.3.1 Specific Activities of ^{226}Ra, ^{232}Th and ^{40}K in rock samples

4.3.2 X-ray diffraction measurements of rocks samples

4.3.3 EDXRF measurement of rock samples

4.4 Concentration of Th, U and K from the airborne radiometric survey data of Juban District

4.5 Measurements of soil samples

4.5.1 Specific Activity of ^{226}Ra, ^{232}Th and ^{40}K in soil samples

4.5.2 Chemical compositions of soil samples

4.6 Water samples measurements results

4.6.1 Physicochemical analysis

4.6.2 Concentrations of U, Th, K, and Fe

4.6.2.1 Concentrations of U and Th

4.6.2.2 Concentrations of K
4.6.2.3 Iron concentrations

4.6.3 Activity concentrations of 40K, 226Ra, and 228Ra

4.6.4 222Rn Activity concentrations

4.6.5 Alpha measurement of U isotopes in groundwater of Juban District

4.6.5.1 238U, 234U, and 235U activity concentrations

4.6.5.2 Disequilibrium in U series

4.7 Correlations between radionuclides concentration in the groundwater of Juban District with physicochemical properties of water

4.7.1 Correlations between U concentrations in the groundwater of Juban District with physicochemical properties of water

4.7.2 Correlations between Ra isotopes concentrations in the groundwater of Juban District with physicochemical properties of water

4.7.2 Correlations between 222Rn concentrations in the groundwater of Juban District with physicochemical properties of water

4.8 Assessment of radiological health effects

4.8.1 Radiation hazard indices due to gamma dose rate

4.8.2 Radiation hazard indices due to rocks

4.8.2.1 Radium equivalent activity (Ra_{eq})
4.8.2.2 External Hazard Index (H_{ex})

4.8.3 Radiation hazard indices due to radionuclides in groundwater

4.8.3.1 Annual effective doses due to 40K, 226Ra, and 228Ra in the groundwater

4.8.3.2 Annual effective doses due 222Rn in the groundwater

4.8.4 Total Annual effective dose in Juban District

4.9 Spatial distribution of Natural radiation in Juban’s environment

4.9.1 Isodose of gamma dose rate

4.9.2 222Rn distribution in groundwater

4.9.3 U concentrations distribution in groundwater

4.9.4 Ra isotopes concentrations distribution in the groundwater

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

5.2 Recommendations

REFERENCES

Appendices A- S
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Gamma dose rate in different countries</td>
<td>29</td>
</tr>
<tr>
<td>2.2</td>
<td>Activity concentrations of 226Ra, 238U, 232Th and 40K in different types of rocks.</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Activity concentrations of 226Ra, 238U, 232Th and 40K in soil from different countries.</td>
<td>31</td>
</tr>
<tr>
<td>2.4</td>
<td>Activity concentration of 226Ra, 228Ra, and 40K in groundwater from different countries.</td>
<td>32</td>
</tr>
<tr>
<td>2.5</td>
<td>Activity concentrations of 222Rn in groundwater from different countries.</td>
<td>33</td>
</tr>
<tr>
<td>2.6</td>
<td>Activity concentrations of 238U and 234U in water in different countries</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>Calculated gamma dose rate in air in some areas of Yemen</td>
<td>38</td>
</tr>
<tr>
<td>2.8</td>
<td>The activity concentrations of 40K, 226Ra, 232Th and 40K in different rock types in Yemen.</td>
<td>39</td>
</tr>
<tr>
<td>2.9</td>
<td>The activity concentrations of 40K, 226Ra, and 232Th in soil in different areas in Yemen.</td>
<td>40</td>
</tr>
<tr>
<td>2.10</td>
<td>The activity concentrations of 226Ra, 232Th, and 40K in water in some areas of Yemen.</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Climatological averages of Juban District, Yemen.</td>
<td>48</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>The formulas to estimate the descriptive statistics parameters.</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Gamma dose measurements in Juban District, Yemen.</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>The gamma dose rate (nGy h(^{-1})) in different areas of the world with high natural background.</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>The specific activities of radionuclides in rock samples in Juban District.</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Specific activities of (^{226})Ra, (^{232})Th and (^{40})K in rock samples at different areas in Yemen.</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>XRD measurements of granite rocks.</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>XRD measurements of migmatite rocks.</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>XRD measurements of Sandstone rocks.</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Chemical composition of granite rocks in Juban District.</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Chemical composition of migmatite rocks in Juban District.</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Chemical composition of sandstone rocks in Juban District.</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Statistical characteristics of K from the radiometric airborne survey data of Juban District.</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Statistical characteristics of eTh concentrations from the radiometric airborne survey data of Juban District.</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Statistical characteristics of eU concentrations from the radiometric airborne survey data of Juban District.</td>
<td></td>
</tr>
</tbody>
</table>
4.14 The mean concentrations of Th, U and K in Juban District

4.15 Output of SPSS ANOVA of K%, eTh, and eU concentration in the geological formations of Juban District.

4.16 Specific Activity concentrations of ^{226}Ra, ^{232}Th and ^{40}K in soil samples.

4.17 The pH values in the basement and sandstone aquifers in Juban District

4.18 The TDS values in the basement and sandstone aquifers in Juban District.

4.19 K concentrations in the basement and sandstone aquifers, Juban District

4.20 Fe concentrations in the basement and sandstone aquifers, Juban District

4.21 Activity concentrations of ^{226}Ra in Juban District’s aquifers measured by gamma spectroscopy.

4.22 Activity concentrations of ^{228}Ra in Juban District’s aquifers measured by gamma spectroscopy.

4.23 Activity concentrations of ^{40}K in Juban District’s aquifers measured by gamma spectroscopy.

4.24 Activity concentration of natural radionuclides in water from different countries.
4.25	Activity concentrations of U isotopes measured by alpha spectroscopy and the activity ratio of U in groundwater of Juban District.
4.26	Spearman correlation coefficient of U concentrations with physicochemical parameters of the groundwater in Juban District.
4.27	Spearman rank correlation for 226Ra and 228Ra concentrations with physicochemical parameters of the groundwater in Juban District.
4.28	Spearman rank correlation for 222Rn concentrations with physicochemical parameters of the groundwater.
4.29	Annual effective dose equivalent and excess lifetime cancer risk due to gamma dose in Juban District.
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Radioactive Decay in 232Th and 238U Series</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Worldwide average annual effective dose from all natural sources</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>A conceptual model of physical and chemical events when 238U decays to 234U</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Magnetic and Radiometric Airborne Survey</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Chart flow of the experimental work</td>
<td>43</td>
</tr>
<tr>
<td>3.2</td>
<td>Location of Juban District, Ad ‘Dali Governorate, Yemen</td>
<td>44</td>
</tr>
<tr>
<td>3.3</td>
<td>Superficial geological formations around Juban District</td>
<td>47</td>
</tr>
<tr>
<td>3.4</td>
<td>Aquifer types in Juban District</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Measurement locations for gamma dose rate around Juban District.</td>
<td>53</td>
</tr>
<tr>
<td>3.6</td>
<td>Locations of rock samples in Juban District</td>
<td>55</td>
</tr>
<tr>
<td>3.7</td>
<td>Locations of soil samples in Juban District</td>
<td>56</td>
</tr>
<tr>
<td>3.8</td>
<td>Locations of groundwater samples in Juban District for 226Ra, 228Ra, 40K, U, Th, and K concentrations measurements</td>
<td>58</td>
</tr>
</tbody>
</table>
3.9 Locations of groundwater samples in Juban District for Fe concentrations measurements.

3.10 Locations of groundwater samples in Juban District for 222Rn concentrations measurements.

3.11 Locations of groundwater samples in Juban District for alpha spectrometer measurements.

3.12 The procedure for analysing U isotopes by using alpha spectrometer.

3.13 A schematic electronic system for gamma spectrometer

3.14 Calibration line for of Fe analysed by ICP-OES.

3.15 Schematic diagram of Rad7 H$_2$O.

3.16 XRD pattern matched with standard pattern of quartz mineral

4.1 The mean concentrations of K%, eTh, and eU from the airborne data of Juban District.

4.2 Chemical composition of soil in Juban District

4.3 The mean electrical conductivity in the groundwater of Juban District

4.4 TDS values in the groundwater of Juban District

4.5 The mean concentrations of U in the groundwater of Juban District

4.6 The mean concentrations of Th in the groundwater of Juban District
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7</td>
<td>The activity concentrations of 228Ra in groundwater of Juban District</td>
</tr>
<tr>
<td>4.8</td>
<td>Combined activity concentrations of 226Ra and 228Ra in groundwater of Juban District.</td>
</tr>
<tr>
<td>4.9</td>
<td>The mean concentrations of 222Rn in the groundwater of Juban District</td>
</tr>
<tr>
<td>4.10</td>
<td>Correlation between U concentrations (μg L$^{-1}$) measured by ICP-MS with total activity concentration of U measured by alpha spectroscopy</td>
</tr>
<tr>
<td>4.11</td>
<td>234U/238U activity ratio as a function of U concentration.</td>
</tr>
<tr>
<td>4.12</td>
<td>234U excess as a function of U concentration (μg L$^{-1}$).</td>
</tr>
<tr>
<td>4.13</td>
<td>Mean values of Ra$_{eq}$ in rocks types of Juban District</td>
</tr>
<tr>
<td>4.14</td>
<td>The mean Values of H$_{eq}$ in Juban District’s rocks</td>
</tr>
<tr>
<td>4.15</td>
<td>The mean annual effective doses of 40K, 228Ra, and 226Ra due to ingestion of groundwater in Juban District</td>
</tr>
<tr>
<td>4.16</td>
<td>Nuclide-specific dose proportions related to ingestion doses due to public drinking water consumption in Juban District</td>
</tr>
<tr>
<td>4.17</td>
<td>The mean annual effective doses for ingestion and inhalation due to 222Rn the groundwater of Juban District</td>
</tr>
<tr>
<td>4.18</td>
<td>Isodose of gamma dose rate in Juban District</td>
</tr>
</tbody>
</table>
4.19 The contour map of Rn concentration distribution in the groundwater samples in Juban District.

4.20 Contour map of U distribution in groundwater of Juban District

4.21 228Ra distribution in Juban District groundwater.

4.22 226Ra distribution in Juban District groundwater.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Atomic absorption spectrometer</td>
</tr>
<tr>
<td>AED</td>
<td>Annual effective dose</td>
</tr>
<tr>
<td>AR</td>
<td>The activity ratios of uranium isotopes</td>
</tr>
<tr>
<td>EC</td>
<td>Electrical conductivity</td>
</tr>
<tr>
<td>EDXRF</td>
<td>Energy dispersive x-ray fluorescence</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width at half maximum</td>
</tr>
<tr>
<td>GDR</td>
<td>Gamma dose rate</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical information system</td>
</tr>
<tr>
<td>GPS</td>
<td>Global positioning system</td>
</tr>
<tr>
<td>GSMRB</td>
<td>Yemeni Geological Survey and Mineral Resources Board</td>
</tr>
<tr>
<td>HPGe</td>
<td>High purity germanium</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively coupled plasma-mass spectrometer</td>
</tr>
<tr>
<td>ICP-OES</td>
<td>Inductively coupled plasma-optical emission spectrometer</td>
</tr>
<tr>
<td>ICRP</td>
<td>International commission on radiological protection</td>
</tr>
<tr>
<td>ICRU</td>
<td>International commission on radiation units and measurements</td>
</tr>
<tr>
<td>MPD</td>
<td>Ministry of Planning and Development.</td>
</tr>
<tr>
<td>NRP</td>
<td>Natural resources project</td>
</tr>
<tr>
<td>TAED</td>
<td>Total annual effective dose</td>
</tr>
<tr>
<td>TDS</td>
<td>Total dissolved solids</td>
</tr>
<tr>
<td>US-EPA</td>
<td>United States - Environmental Protection Agency</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction fluorescence</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>A</td>
<td>Activity</td>
</tr>
<tr>
<td>K</td>
<td>Potassium</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>Ra</td>
<td>Radium</td>
</tr>
<tr>
<td>Rn</td>
<td>Radon</td>
</tr>
<tr>
<td>SiO₂</td>
<td>Silicon Oxide</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Aluminum Oxide</td>
</tr>
<tr>
<td>CaO</td>
<td>Calcium Oxide</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>Phosphate Oxide</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Titanium Oxide</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>Zirconium Oxide</td>
</tr>
<tr>
<td>MnO</td>
<td>Magnesium Oxide</td>
</tr>
<tr>
<td>Th</td>
<td>Thorium</td>
</tr>
<tr>
<td>U</td>
<td>Uranium</td>
</tr>
<tr>
<td>α</td>
<td>Alpha particles</td>
</tr>
<tr>
<td>β</td>
<td>Beta particles</td>
</tr>
<tr>
<td>γ</td>
<td>Gamma radiation</td>
</tr>
<tr>
<td>λ</td>
<td>Decay Constant</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Publications</td>
<td>180</td>
</tr>
<tr>
<td>B</td>
<td>The experimental work</td>
<td>181</td>
</tr>
<tr>
<td>C</td>
<td>The procedure for analysing U isotopes using alpha spectrometer</td>
<td>185</td>
</tr>
<tr>
<td>D</td>
<td>Energy and efficiency calibrations of HPGe</td>
<td>188</td>
</tr>
<tr>
<td>E</td>
<td>Principles of the measurements techniques</td>
<td>191</td>
</tr>
<tr>
<td>F</td>
<td>GDR measurement’s locations and co-ordinates at the Juban District</td>
<td>196</td>
</tr>
<tr>
<td>G</td>
<td>XRD Spectra</td>
<td>199</td>
</tr>
<tr>
<td>H</td>
<td>Chemical composition of soil in Juban District</td>
<td>201</td>
</tr>
<tr>
<td>I</td>
<td>Physicochemical parameters of water samples.</td>
<td>202</td>
</tr>
<tr>
<td>J</td>
<td>The EC values in the basement and sandstone aquifers in Juban District</td>
<td>204</td>
</tr>
<tr>
<td>K</td>
<td>Concentrations of U, Th, K, and Fe in groundwater samples from Juban District.</td>
<td>205</td>
</tr>
<tr>
<td>L</td>
<td>U concentrations in the basement and sandstone aquifers, in Juban District</td>
<td>208</td>
</tr>
<tr>
<td></td>
<td>Th concentrations in the basement and sandstone aquifers, Juban District.</td>
<td>209</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>M</td>
<td>Activity concentrations of 40K, 226Ra, and 228Ra in water samples measured by gamma spectroscopy.</td>
<td>210</td>
</tr>
<tr>
<td>N</td>
<td>Activity concentration of 222Rn in groundwater samples</td>
<td>212</td>
</tr>
<tr>
<td>O</td>
<td>The radiation indices due to natural radioactivity in different rock types in Juban District</td>
<td>214</td>
</tr>
<tr>
<td>P</td>
<td>The annual effective doses for the population due to 40K, 28Ra, and 226Ra concentrations in Juban District’s groundwater</td>
<td>215</td>
</tr>
<tr>
<td>Q</td>
<td>The annual effective doses for ingestion and inhalation due to 222Rn the groundwater of Juban District</td>
<td>216</td>
</tr>
<tr>
<td>R</td>
<td>Images of results reports</td>
<td>217</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Natural radioactive material primarily involves materials containing 40K and isotopes produced from the decay of primordial series. There are three predominant radioactive series in nature, 238U series, 232Th series and 235U series. Each of the three series has many radionuclides in its decay chain ending with a stable isotope of lead (UNSCEAR, 2000).

Natural radioactivity in the environment and associated radiation exposure are related to the geological formations of the area and appear at different levels across the world. The specific activity concentrations of radionuclides in the environment of any area depend on its lithology, and to the 238U, 232Th and 40K content in the rock in each area (Ramli, 2005; UNSCEAR, 2008; Shabana and Kinsara, 2014; Ravisankar et al., 2014).

There many areas with elevated background radiation across the world such as Yangjiang, in China, and Ramsar in Iran (UNSCEAR, 2000; Mohanty et al., 2004). Radiological risk assessment resulting from radionuclides present in rocks and soil has become necessary to limit exposure to ionizing radiation.
In areas that have high radioactivity in their geological formations, elevated concentrations of Th, U and their decay products might be found in the groundwater. As a result of water-rock interaction, radioactive elements could be transferred into the groundwater from the deposits of radioactive minerals in the aquifer’s rocks (Kraemer and Genereux, 1998; Porcelli, 2008; Osman et al., 2008). In the elevated background areas, wells drilled in the bedrock have high concentrations of natural radionuclides in water quality tests (Isam et al., 2002).

Investigation of the concentrations and behaviour of natural radionuclides in groundwater is given baseline data for environmental and epidemiological studies (Ahmed et al, 2004). Groundwater may have high concentration of natural radionuclides, especially U, 228Ra, 226Ra and 222Rn. Due to the chemical toxicity of U for kidney, and the radiological effects of Ra isotopes on bones, their occurrence in drinking water and associated health hazards require comprehensive monitoring. Ra is chemically similar to calcium, so grown bone takes up Ra and may cause bone cancer. (De Oliveira et al, 2001; ICRP, 1993; EPA, 1991). According to experimental studies, the ingestion of 222Rn from water may cause the same fatal cancer as the fatal lung cancers due to inhalation of indoor 222Rn (Correia et al., 1987). Due to their hazards, many countries have adopted standards for natural radionuclides concentrations in water (Bonotto and Bueno, 2008; Hadad et al., 2008; WHO, 2008; El-Mageed et al, 2013; Shabana and Kinsara., 2014).

1.2 Problem statement

Surveys and studies of distribution of natural radionuclides in the environment are of great importance for both the assessment of public health risks and the performance of epidemiological studies (El-mageed et al., 2011). Airborne radiometric measurements were carried out for some parts of Yemen (NRP, 1990; IAEA, 2010; Abdul-Had et al, 2011). The airborne survey identified some locations with elevated count rates (exceeding 3000 cps) in the west of Juban City and south part of Nawah Village in Juban District, compared to other locations in the survey.
area (Alzeiteri, 1997; Abdurabu et al., 2016a). Juban district is one of areas with high-count rates and high population density (151.41 per km2) (CSO, 2004). The natural radionuclids could reach high levels in the anomalies rocks, as well as in the groundwater that interacts with the rocks. Consequently, the number of the population could be negatively affected by these radioactive anomalous (Pereira and Neves, 2012). As a result, an extensive survey for the district of Juban should be conducted to determine whether this area could be registered as an elevated area comparable to other areas worldwide.

Most natural radionuclides are from uranium (U) and thorium (Th) series. Natural radioactivity in groundwater is produced from rock water interactions. Groundwater may contain naturally occurring radionuclides from the 238U, 235U, and 232Th series and 40K. There are many factors controlling the concentrations of these radionuclides in groundwater, such as the concentration of radioelements in the bedrock, and the chemical and physical conditions of groundwater that affect the water-rock interaction (Wanty and Schoen 1993, Kraemer and Genereux, 1998, Chau et al. 2011). The high natural radioactivity levels in groundwater are often associated with elevated concentrations of U and Th series radionuclides in rocks due to water rock interaction. Since the groundwater is the dominant of water sources at Juban District, study about radionuclides transport into groundwater is necessary.

It is very important to assess the corresponding health risk due to natural radionuclides in Juban’s environment, to give a baseline for further epidemiological studies of health effects relative to exposure to natural radioactivity. Therefore, the current study being the first of its kind in Yemen, aims to evaluate natural radiation and radioactivity in the groundwater, rock, and soil for areas with high population density in Juban District and to assess the corresponding health risk in the region of an expected elevated background radiation.
1.3 Objectives

The main objectives of this study were to investigate the natural radioactivity in Juban District’s environment and to describe the distribution and determine the primary factors controlling the occurrence of natural radionuclides in groundwater of Juban District, Yemen. In addition, assessment of the corresponding health risk due to natural radionuclide in Juban District’s environment to provide baseline data that can be beneficial to enlighten the local radiation regulation making. To achieve this, the objectives of the study are:

i. To measure the external gamma dose rate and the activity concentrations of 226Ra, 232Th and 40K in the rock, and soil samples from Juban District.

ii. To estimate the occurrence and distribution of natural radionuclides in groundwater of Juban District.

iii. To investigate the relation between radionuclides concentration in water with geological formation of aquifers and physicochemical properties of water.

iv. To evaluate the corresponding radiological health risk in the study area due to natural radioactivity occurrence in water, rock and soil samples.

v. To produce an isodose mapping for terrestrial gamma dose rates and activity concentrations of 228Ra, 226Ra 222Rn and U concentrations in groundwater using Surfer 13 software.

1.4 Scope of study

Juban District is situated at 14° 30’ to 13° 55’ N latitude and 44° 48’ to 44° 56’ E longitude with an average altitude of 2070 m above sea level. It covers a total land of 178 km2 and has a population of 26,938 inhabitants (Abdurabu et al., 2016a).
In this study, the natural radiation background of Juban District was obtained by measuring the gamma dose rate directly using Ludlum Model 3 (Model 44-88 Cylindrical (Pancake) detector operated with Ludlum Model 3 USA).

Natural radionuclides in groundwater of Juban District were estimated by different methods depending on the chemical behaviour of each radionuclide in water and its kind of radiation and energy. The physicochemical parameters of water were measured such as pH, temperature, electrical conductivity (EC) and total dissolved solids (TDS). The pH and the temperature of water were measured in the field using a 3150 pH meter (manufactured by Jenway). The electrical conductivity (EC) of water was measured in the field by HI8733 Conductivity meter (manufactured by Hanna instruments).

The concentration of U, Th, K, and Fe concentrations in water samples were measured using different methods depending on the type of element. Inductively coupled plasma mass spectrometry (ICP-MS, Elan 600) was used to determine the concentrations of U and Th in water samples, while K was measured using a flame atomic absorption spectrophotometer (AAS Analyst 800) in the analytical chemistry laboratory at Malaysian Nuclear Agency. Fe concentration was measured using Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES, Agilent 700 Series) at Unit Pengurusan Makmal Universiti (UPMU), UTM.

The activity concentrations of 226Ra, 228Ra, 40K, 238U, 235U, 234U and 222Rn were measured using different methods depending on the type of radiation and energy. Rad 7 detector (silicon-based semi-conductor detector), manufactured by Durridge Company, was used to determine the concentration of 222Rn since it is the best way to determine its concentration with careful sampling.

The activity concentrations of 238U, 235U and 234U were measured using alpha spectrometry at Radiochemistry and Environment Laboratory (RAS), Malaysian Nuclear Agency, while 226Ra, 228Ra, and 40K were analysed using hyper pure germanium (HPGe) in Nuclear Laboratory at Universiti Teknologi Malaysia.
The data of the radiometric, hydrological and geological maps of Juban were analysed to help to understand the distribution of radionuclide in Juban District’s groundwater and environment.

To investigate the distribution of the natural radioactive in Juban’s environment, contour maps of gamma dose rate, 222Rn, 226Ra, 228Ra, and U concentration in groundwater were drawn by using Surfer 13 program and the Kriging method for gridding the data.

1.5 Significance of study

Natural radioactivity is everywhere on the earth. The assessment of gamma dose rate, and natural radioactivity due to 232Th, 226Ra and 40K in environment media has become essential to identify hot spots or areas with elevated background, and to monitor the public exposure. In addition, it is important to establish a baseline data that can serve as useful information in assessing any future changes in the environment due to human activities or any other artificial activities (Othman and Yassine, 1995; Rajesh et al., 2013; Ramasamy et al., 2015; Idriss et al., 2016).

The airborne radiometric survey of Yemen is the only indicator of the occurrence of radioactive anomalies. Juban District is a populated area among areas that have elevated radiation. It is exposed to high radiation because of gamma radiation, and consumption of groundwater containing high concentrations of radionuclides. The distribution of natural radionuclides among different media of the environment such as groundwater, soil and rock were investigated. In addition, the corresponding health risk due to natural radionuclides in Juban’s environment was assessed. This study will be applied in other areas in Yemen that the airborne gamma-ray surveys show are good candidates as radioactive anomalies resources. Finally, this study would add to the knowledge about behaviour and distribution of radionuclides in groundwater from highland areas in semi-arid environment.
1.6 Outline of thesis

This thesis was divided into five chapters. Chapter One explains the introduction to the research. It includes the background of study, problem statement, objectives, scope of research and thesis outline.

Chapter two consists of the literature review of the research. It contains an introduction to radioactivity, basic concepts and terminology of radiation, related health hazards, radioactivity in environment and in water, behavior of natural radionuclides in water, disequilibrium in uranium series, health standards and criteria for radionuclides in water, natural radioactivity studies in different countries, and radiation studies in Yemen.

Chapter Three presents the description of geological and hydrological settings of Juban District and the methodology used in this study to meet the objectives of the thesis. This includes measurement of gamma dose rate, sample collection, rock and soil samples collection, water samples collection, sample preparation, experimental set-up and equipment, rock samples measurement, gamma spectrometer measurement, X-Ray Diffraction measurement, Energy Dispersive X-Ray Fluorescence (EDXRF) measurement, measurement of 232Th, 226Ra, and 40K activity concentrations in soil samples, measurement of natural radionuclides in water samples, measurement of the physicochemical parameters of water, measurements of the total concentration of U, Th, K, and Fe in water samples, ICP-MS measurement for U and Th concentrations, Atomic Absorption Spectrometer (AAS), Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES), measurement of 222Rn concentrations, measurement of U isotopes by alpha spectrometer, statistical analysis of calibrated data, assessment of radiological health effects and spatial distribution of natural radiation.

Chapter Four presents the experimental results, analysis of data and discussion of research results and estimation of radiological health effects in Juban District. Chapter Five presents conclusions and recommendations.
REFERENCES

Beyermann, M., Bunger, T., Schmidt, K., and Obrikat, D. (2010). Occurrence of natural radioactivity in public water supplies in Germany: ^{238}U, ^{234}U, ^{235}U, ^{228}Ra, ^{226}Ra, ^{222}Rn, ^{210}Pb, ^{210}Po and gross Alpha activity concentration. Radiat Prot Dosim 141 (1), 72–81

Cho, B.W., Choo, C.O., Kim, M.S., and Hwang, J. (2015). Spatial relationships between radon and topographical, geological, and geochemical factors and their relevance in all of South Korea. Environ Earth Sci. 74, peg 5155–5168

IAEA (2013). Advances In Airborne and ground Geophysical Methods For Uranium Exploration. IAEA Nuclear Energy Series No. NF-T-1.5. IAEA, Vienna.

Compilation of ingestion and inhalation dose coefficients. ICRP Publication 72.1996.

Jia, G., Torri, G., and Magro, L. (2009). Concentrations of 238U, 234U, 235U, 232Th, 230Th, 228Th, 226Ra, 228Ra, 224Ra, 210Po, 210Pb and 212Pb in drinking water in Italy: reconciling safety standards based on measurements of gross α and β. Journal of Environmental Radioactivity. 100(11), peg 942-949.

