STREET NETWORK CONNECTIVITY TOWARDS PEDESTRIAN
WAYFINDING IN TELUK INTAN PERAK

WAN SAIFUL NIZAM BIN WAN MOHAMAD

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Architecture)

Faculty of Built Environment
Universiti Teknologi Malaysia

APRIL 2017
In the name of Allah, the Most Gracious and Most Merciful God,
Praise to Allah SWT for the abundant and grace, the Lord of the universe.
Peace and blessings be upon Prophet Muhammad SAW.

I dedicate this thesis to,
My beloved parents and parents-in-law who always trust and pray for the success of
my career and continue to struggle in search of knowledge;
Wan Mohamad Wan Yusuf and Zakiah Husin
Pulli Pangiran and Sitti Kappeli

My beloved wife who always understand and give support and encouragement along
my journey in seeking knowledge;
Hafizah Pulli

Beloved siblings;
Nurliyana, Afzan, Syamimi, Irfan, Aiman and Adli

Siblings-in-law and ravels;
Firdaus, Sali, Rahmat, Norlinawati, Barizah, Namrah, and Faridah

Nephews;
Aisyah, Huzaifah, and Irdina

All the pleasure and hardship faced during the journey in seeking knowledge and
meaning of self as a servant to the God are the lesson from Allah SWT. Your
presence in this life is the provision of Him. The lesson learned become our
exemplary and memories together.

I could not express all your sacrifices and services with words, only Allah SWT can
reward all your contribution. Thank you for your sincerity and patience.
ACKNOWLEDGEMENT

All praises to Allah SWT, the Almighty with His mercy and guidance. Peace and blessing be upon Prophet Muhammad SAW, the beloved Messenger. Gratitude to the Almighty for enabling this thesis can be completed.

Heartfelt thanks and high appreciation to my respectful supervisor, Assoc. Prof. Dr. Ismail Said for providing me with abundance of useful and meaningful guidance and advice in order to complete this research. I will always cherish the valuable shared knowledge that had been given to me.

My deepest appreciation also goes to all lecturers in UTM, especially lecturers in Faculty of Built Environment who are willing to devote and share knowledge to me. Also, not to forget all colleagues who always support and help me during the journey of the study, especially Greenovation group members. Thank you for your guidance, support and encouragement.

Apart from that, my deepest appreciation also goes to the respondents who play major role in my study in order for me to complete my research as well as my assistants, Noor Ain and and Iza Syazwani. Not to forget, Jabatan Perancang Bandar dan Desa Semenanjung Malaysia (JPBD) in providing useful dataset for my research. Thank you for your cooperation, time and energy spend to get involved in my research study.

Lastly, high appreciation for my parents, wife, parents-in-law and siblings entrust me in choosing this valuable and meaningful life journey. Contributions that you had provided are very meaningful to me. May Allah SWT avenge all your virtues and kindness.
ABSTRACT

The connectivity within a street network is a major consideration in the planning and design of a town. The overall effectiveness of a town design by considering the human connection with urban space encourages street environments towards a smart and efficient urban lifestyle. However, the spatial connection of human behaviour in a street network is influenced by the design and planning of street designs, patterns, structures, and character of the town. Malaysian towns have experienced various developments of street network that were planned, not only by colonialist ideologies, but also by various governments that came after Malaysian independence 1957, as well as developers who include architects, landscape architects and urban planners. The mixed designs of a street network cause negative effects towards pedestrian wayfinding, attributable to poor urban design, confusion in streetscape identity, and new developments that lead to the change of familiar environments to become unfamiliar. Therefore, this research aims to develop a spatial evaluation of street network connectivity for effective wayfinding behaviour in a small town in Malaysia. The town of Teluk Intan, Perak was selected as the study site based on the street network structures, patterns, designs, and characters of a Malaysian small town. In developing the evaluation, a survey questionnaire was distributed to pedestrians (n = 200), and then analyzed using SPSS to determine the index of fifteen street features that influence pedestrian wayfinding in this predefined context. With the aid of ArcGIS, the index was applied to produce a spatial map. Following this, axial-line data, convex-space data, as well as solid and void data were elicited from land-use data and Google images. In identifying the impacts of spatial connection, the data were analyzed utilizing the space syntax analysis from Depthmap. Next, the spatial map of street features and the spatial connection map were overlapped and analyzed to determine the spatial connection for wayfinding. The results were validated by triangulation from behaviour mapping and interviews (n=30). It was thus found that the combination of familiar street features strongly improved pedestrians’ ability to identify their locations, positions, and routes to the destination better than from a feature. Furthermore, spaces with visualization, movement, and interaction assist pedestrians to identify street features, and lead to an effective wayfinding process. These findings provide more fine-grained insights on street network connectivity of small towns in Malaysia, especially those which help to improve wayfinding. As such, the findings suggest that for a small town in Malaysia to be systematic and organized, it is important to conduct a spatial evaluation of street connectivity prior to and during the planning stage.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xix</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Introduction 1
1.2 Research Background 3
1.3 Statement of Problem and Research Gap 7
1.4 Research Aim 10
1.5 Research Objectives 10
1.6 Research Hypotheses 10
1.7 Research Questions 11
1.8 Significance of Study 12
1.9 Scope of Study 12
1.10 Thesis Organization 13

2 LITERATURE REVIEW 17
2.1 Introduction 17
2.2 Urban Street Network 18
2.2.1 Hierarchy of Streets 20
2.2.2 Structure of Street Network 23
 2.2.2.1 Street Network Design 23
 2.2.2.2 Street Network Patterns 25

2.3 Connectivity of Street Network 30
 2.3.1 Pedestrian Visualization 35
 2.3.2 Pedestrian Interaction 36
 2.3.3 Pedestrian Movement 37

2.4 Wayfinding in Street Network 38
 2.4.1 Familiar Versus Unfamiliar 45
 2.4.1.1 Environment in Wayfinding 47
 2.4.1.2 Wayfinding Process and behavior 48

2.5 Theories Study on Street Connectivity and Wayfinding 49
 2.5.1 Theory of Space Syntax 50
 2.5.1.1 Visibility 50
 2.5.1.2 Convex Space 51
 2.5.1.3 Axial Line 51
 2.5.2 Dual Process Theory 52
 2.5.3 Theoretical Framework 53

2.6 Reviews on Methodological Approaches 54

2.7 Summary 59

3 STREET NETWORK OF MALAYSIAN SMALL TOWNS 60

3.1 Introduction 60

3.2 Types of Towns in Malaysia 60

3.3 Small Towns in Malaysia 63
 3.3.1 Street Network of Seven Selected Small Towns 64
 3.3.2 Structure of Urban Center 68
 3.3.3 Zone Characteristics of Malaysian Small Towns 72
 3.3.4 Street Network Design of Malaysian Small Towns 75
 3.3.5 Patterns of Street Network in Malaysian Small Towns 77
3.3.6	The Junction Types in Malaysian Small Towns	79
3.3.7	The Street Types in Malaysian Small Towns	83
3.4	Selection of the Study Site	86
3.5	The Study Site	90
3.6	Summary	105

4 **RESEARCH METHODOLOGY** 107

4.1 Introduction 107
4.2 Research Questions and Hypotheses 107
4.3 Research Design 109
 4.3.1 Scope of Study Design 109
 4.3.2 Research Parameters 111
 4.3.3 Pragmatism as the Research Paradigm 113
4.4 Procedures of Data Collection 114
 4.4.1 Survey Questionnaire 115
 4.4.2 Mapping 122
 4.4.3 Behavioral Observation and Mapping 129
 4.4.4 Interviews 131
4.5 Reliability, Validity and Triangulation 133
4.6 Data Analyses 135
 4.6.1 Statistics Analyses 136
 4.6.2 Space Syntax Analyses 139
 4.6.3 Spatial Evaluation Model Using Spatial Analysis 144
 4.6.4 Behavioral Observation and Mapping Analysis 148
 4.6.5 Content Analysis 149
4.7 Summary 150

5 **RESULTS, FINDINGS AND DISCUSSIONS** 151

5.1 Introduction 151
5.2 Quality of Street Features for Pedestrian Wayfinding Perception 151
 5.2.1 Perception on Street Features in Wayfinding
5.2.2 Gender Differences on Street Features in Wayfinding Process 155
5.2.3 Factors of Street Features in Influencing Wayfinding Process 159
5.2.4 Summary of Statistics Analyses 189
5.3 Spatial Connection of Street Network in Small Town 189
 5.3.1 Spatial Connection of Pedestrian Visualization 190
 5.3.2 Spatial Connection of Pedestrian Interaction 197
 5.3.3 Spatial Connection of Pedestrian Movement 204
 5.3.4 Summary of Space Syntax Analyses 211
5.4 Spatial Evaluation Model 212
 5.4.1 Street Features Index for Wayfinding 213
 5.4.2 Spatial Quality Maps 214
 5.4.3 Spatial Evaluation Model of Street Connectivity for Wayfinding 217
5.5 Verification of Spatial Evaluation Model Using Pedestrian Behavior Map 221
 5.5.1 The Good and Bad Wayfinding Routes 222
 5.5.2 Comparison of Wayfinding Routes with Spatial Evaluation Model 223
 5.5.3 Summary of the Verification of Spatial Evaluation Model 232
5.6 Summary 233

6 CONCLUSION AND RECOMMENDATIONS 235
6.1 Introduction 235
6.2 Conclusion of Findings 236
 6.2.1 Role of Street Features in Wayfinding 236
 6.2.2 Wayfinding in Street Network 239
 6.2.3 Quality of Good Wayfinding Behavior 243
 6.2.4 Spatial Evaluation Model for the Assessment of Street Network Connectivity for Wayfinding in
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Issues highlighted in street network connectivity and wayfinding studies</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>The models introduced in street connectivity and wayfinding studies</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Street types introduced for urban street network</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Types of street network design according to principles</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Typology of street network patterns</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Studies on street network connectivity</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Reviews of parameters used in measuring street network connectivity</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>Studies on wayfinding</td>
<td>41</td>
</tr>
<tr>
<td>2.7</td>
<td>Reviews of parameters used in measuring wayfinding</td>
<td>43</td>
</tr>
<tr>
<td>2.8</td>
<td>Summary of methodological approaches in four disciplines of studies</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Types of towns in peninsular Malaysia</td>
<td>62</td>
</tr>
<tr>
<td>3.2</td>
<td>Type of Urban Center in Malaysian Small Town</td>
<td>63</td>
</tr>
<tr>
<td>3.3</td>
<td>Types of collecting points in Malaysian small town</td>
<td>69</td>
</tr>
<tr>
<td>3.4</td>
<td>Types of street network design in Malaysian small town</td>
<td>76</td>
</tr>
<tr>
<td>3.5</td>
<td>Types of street network pattern in Malaysian small towns</td>
<td>77</td>
</tr>
<tr>
<td>3.6</td>
<td>The junction types in Malaysian small town (frequency)</td>
<td>81</td>
</tr>
<tr>
<td>3.7</td>
<td>The street types identified in Malaysian small town</td>
<td>84</td>
</tr>
<tr>
<td>3.8</td>
<td>The street types in Malaysian small town (frequency)</td>
<td>85</td>
</tr>
<tr>
<td>3.9</td>
<td>The criteria for street network of Malaysian small towns</td>
<td>87</td>
</tr>
<tr>
<td>3.10</td>
<td>The selection of the study site</td>
<td>88</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of parameters measured</td>
<td>112</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.2</td>
<td>The queue of pedestrian who became respondents</td>
<td>119</td>
</tr>
<tr>
<td>4.3</td>
<td>Types of analysis for the parameters measured</td>
<td>136</td>
</tr>
<tr>
<td>5.1</td>
<td>Result of statistic test for Friedman test</td>
<td>152</td>
</tr>
<tr>
<td>5.2</td>
<td>Result of statistics test for Mann-Whitney U test</td>
<td>156</td>
</tr>
<tr>
<td>5.3</td>
<td>Result of KMO and Bartlett's test for familiar and unfamiliar</td>
<td>161</td>
</tr>
<tr>
<td>5.4</td>
<td>Loadings for street features in factor analysis for familiar environment</td>
<td>162</td>
</tr>
<tr>
<td>5.5</td>
<td>Result of loadings for street feature in pattern matrix of factor analysis for unfamiliar environment</td>
<td>173</td>
</tr>
<tr>
<td>5.6</td>
<td>Result of street feature index for wayfinding in Teluk Intan, Perak</td>
<td>213</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Thesis organization framework</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>The form of street network design for ABCD typology principle</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>The types of street network pattern</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Behavior of pedestrian in space based on theory of space syntax</td>
<td>50</td>
</tr>
<tr>
<td>2.4</td>
<td>Theoretical framework</td>
<td>53</td>
</tr>
<tr>
<td>3.1</td>
<td>The location of seven selected small town in Malaysian peninsular</td>
<td>64</td>
</tr>
<tr>
<td>3.2</td>
<td>Layout of seven selected small towns</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>Urban center of four selected small town</td>
<td>71</td>
</tr>
<tr>
<td>3.4</td>
<td>Environment of Pontian, Johor as the eco-tourism town in Malaysia</td>
<td>74</td>
</tr>
<tr>
<td>3.5</td>
<td>The street network designs identified in Malaysia</td>
<td>76</td>
</tr>
<tr>
<td>3.6</td>
<td>The types of street network pattern identified in Malaysian</td>
<td>78</td>
</tr>
<tr>
<td>3.7</td>
<td>The junction types identified in Malaysian small town</td>
<td>80</td>
</tr>
<tr>
<td>3.8</td>
<td>The choice of directions created based on angle between streets and direction line</td>
<td>82</td>
</tr>
<tr>
<td>3.9</td>
<td>Walkway consideration in old and new façade of shophouses in Baling, Kedah</td>
<td>86</td>
</tr>
<tr>
<td>3.10</td>
<td>Location of Teluk Intan, Perak in Peninsular Malaysia</td>
<td>90</td>
</tr>
<tr>
<td>3.11</td>
<td>Zoning of town area in Teluk Intan, Perak</td>
<td>91</td>
</tr>
<tr>
<td>3.12</td>
<td>The inventory of the fifteen street features identified in Teluk Intan</td>
<td>93</td>
</tr>
</tbody>
</table>
3.13 The landmark of Teluk Intan, Perak known as Menara Condong
3.14 Design of stalls, bus stops and shelter provided by Teluk Intan Municipal Council
3.15 The naturalness of a park and colonial façade of special building in Teluk Intan, Perak
3.16 The ancillary street features that offer active activities and water recreations in Teluk Intan, Perak
3.17 The colonial town environment at square and the formation of water in Teluk Intan, Perak
3.18 The greenery features identified in Teluk Intan, Perak
3.19 The three intersections identified in Teluk Intan; (a) X-junction, (b) T-junction, and (c) Y-junction
3.20 The different characteristics of walkways in Teluk Intan, Perak
3.21 The main roads in Teluk Intan, Perak
3.22 The local roads and back lanes in Teluk Intan, Perak
3.23 Street network patterns at old and new zones in Teluk Intan, Perak
4.1 Interrelation of the parameters measured
4.2 The voting process for number of respondents according to genders
4.3 The voting result for points and number of respondents according to genders
4.4 Land use, Building footprints and satellite image datasets obtained from JPBD and MaCGDI
4.5 Solid and void data of Teluk Intan, Perak
4.6 Interaction spaces in street network
4.7 Convex space data of Teluk Intan, Perak
4.8 Axial lines in street network
4.9 Axial line data of Teluk Intan, Perak
4.10 Distribution map of street features of Teluk Intan, Perak
4.11 Nodes in urban space
4.12 The connection of nodes in urban space according to visibility
4.13 Connectivity of convex space in town
4.14 Connectivity of axial line in town 143
4.15 The integration process of spatial quality maps in third stage 147
5.1 Differences on familiarity perception on street features 153
5.2 Influence of street features on spatial quality in wayfinding process 154
5.3 Gender differences for familiar perception on fifteen street features 157
5.4 Gender differences for unfamiliar perception on fifteen street features 158
5.5 The scree plot of total variance explained of street features for familiar and unfamiliar environment from Principle Component Analysis 162
5.6 The prominent characteristic of street features influences pedestrian to increase familiarity with the street environment. 165
5.7 The attractiveness of street features influences pedestrian to be familiar with the street environment. 168
5.8 The interesting street features in influencing pedestrian to be familiar with the street environment 172
5.9 Design duplication of bus stops, stalls and shelter confused pedestrian to define route 174
5.10 Junction and walkways interrupt pedestrian wayfinding process. 176
5.11 Similarity of park and playground element design change familiar environment to become unfamiliar. 178
5.12 Routes in different position of perceived landmark 179
5.13 Routes in different position of perceived square 180
5.14 Routes in different position when encountered jetty 181
5.15 Routes in different position of perceiving special building (shopping mall) 182
5.16 The similarity in form of trees and shrubs confuses pedestrians in defining route 184
5.17 The similarity in form of grassed area and water features confuses pedestrians with their wayfinding 185
5.18 Process of recognition memory in wayfinding process 187
5.19 The involvement of familiar and unfamiliar process in cognitive process of thinking 188
5.20 Spatial connection from visibility of pedestrian in street network 191
5.21 Street network patterns of Malaysian small town 194
5.22 Spatial connection formation of interaction between pedestrians in street network 198
5.23 Street connectivity of axial line from pedestrian movement in street network of small town 206
5.24 Spatial quality maps generated from connectivity and wayfinding. 215
5.25 The spatial connection in street network of Teluk Intan that influences good wayfinding process 217
5.26 The spatial connection that affect pedestrian to be confused during travel in street network of Teluk Intan 219
5.27 Differences between spatial connection for good and bad wayfinding 220
5.28 Routes of pedestrian travel from points A_1 and A_2 to points B_1 and B_2 in old and new zones street network. 222
5.29 Relation of spatial quality graph with pedestrian behavior reflects from environment encounter for good wayfinding in old zone 224
5.30 Relation of spatial quality graph with pedestrian behavior for bad wayfinding that influenced by street environment in old zone 226
5.31 Influences of street environment to pedestrian behavior and spatial quality graph for good wayfinding in new zone 228
5.32 The encountered street environment that influences pedestrian behavior and spatial quality graph for bad wayfinding in new zone 230
6.1 Street Features Index that influence wayfinding in street network of a Malaysian small town 238
6.2 The value of street connectivity required in improving street network for good wayfinding in a Malaysian small town 242
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Spatial evaluation model of street network connectivity for wayfinding in a Malaysian small town</td>
<td>246</td>
</tr>
<tr>
<td>6.4</td>
<td>Concept of wayfinding process in the street network of a small town</td>
<td>248</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>A</td>
<td>Survey questionnaire – Street features for familiarity, familiar and unfamiliar</td>
<td>271</td>
</tr>
<tr>
<td>B</td>
<td>Permission letter for survey</td>
<td>274</td>
</tr>
<tr>
<td>C</td>
<td>Behavioral map from Point A₁ and A₂ to Point B₁ and B₂</td>
<td>275</td>
</tr>
<tr>
<td>D</td>
<td>Semi-structured interview questions</td>
<td>280</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Performing good wayfinding when walking along a route to a destination allows a pedestrian to experience a pleasant journey, travel in less distance, save energy, and reach the destination the right time. Wayfinding is the ability and process of finding the route from an origin point to a destination point in a street network (Chen et al., 2009; Courbois et al., 2013; Hund and Padgitt, 2010; Hund et al., 2012; Ishikawa et al., 2008; Lin et al., 2012; Sharlin et al., 2009; Xia et al., 2008). However, performing wayfinding is not always good. Pedestrians are exposed to an environment that encourages them to make mistakes or lose their way. Pedestrian familiarity with the street environment influences their perceptions of street features such as landmarks (Phillips et al., 2013). The information gained from perceiving street features reflects their familiarity. The pedestrian is familiar when the information is in their memory, while the pedestrian feels unfamiliar when their knowledge on the information is weak (Chebat et al., 2005; Gärling et al., 1983; Sommer and Aitkens, 1982). Therefore, the information they gain and how they gain the information influence pedestrian familiarity in wayfinding.

The structure of street network can affect how a pedestrian gains information during travel. Street network is a space created from the intersections of streets in a small town (Tomko et al., 2008; Wan Mohamad and Said, 2014). Hence, street network is used by pedestrians to move from one particular point to another. It works as a system in a town to achieve the functions of the town. The system consists of different types of streets according to their hierarchies, designs of street network, and
street patterns (Marshall et al., 2014). The composition of a street network structure provides a variety in how a pedestrian perceives street features and gains their information. The connection of one street with the others influence pedestrian to be familiar or unfamiliar with the street environment (Hölscher et al., 2009). Thus, the structure of the street network that provides better street connectivity influences pedestrian wayfinding process in a small town.

Connectivity of street network is generated according to the structure of the street network. The one that provides a space for pedestrians to visualize, interact or move influence the connectivity. Connectivity of street network refers to the number of links between nodes of street network that allow pedestrians to visualize, interact, and move from one point to another (Jiang et al., 2000; Wan Mohamad and Said, 2014). Hence, connectivity is the connection through pedestrian visualization, interaction, and movement (Van Der Hoeven and Van Nes, 2014). Street network that allows pedestrians to perceive street features encourages them to gain better information. Along with the interaction space, it provides pedestrians the opportunity to ask others about the route to the destination, while the street network that influences pedestrian to walk can shorten their travel distance. Hence, a pedestrian’s ability to define routes depends on the street connectivity of a small town in performing a good wayfinding process. Therefore, this research is conducted to explore street network connectivity and wayfinding of pedestrians in a small town. The purpose of this research is to develop a spatial evaluation model of street network connectivity for pedestrian wayfinding in Malaysian small towns.

This introduction chapter consists of ten parts. The first part introduces the chapter itself. The second part explores the background of this research, while the third part presents the research problem and its gap. The aim of this research is stated in the fourth part, followed by three research objectives. Then, the research hypotheses and questions are explained in the sixth and seventh parts respectively, in relation to the research aims and objectives. In the eighth part, the significance and the importance of this research in street network connectivity and wayfinding studies are described. It is followed by the ninth part of this research, which elaborates the scope of the study in the context of a street network and Malaysian small towns. Lastly, the structure of this thesis is presented in the part on thesis organization.
1.2 Research Background

In Malaysia, a small town is the center where people deal with their daily needs, with the total number of population size ranging from 10,001 to 100,000. A small town is structured with street network that allows the locals to perform their activities, including moving from one point to other points. In Malaysia, the total number of small towns is reported at 125, which is more than metropolitans and major towns at 99 and 17 respectively (JPBD, 2006; Mansor, 2011). Therefore, there is a need to develop well-connected street network for the use of pedestrian activities, specifically in moving from one point to another effectively.

A small town is structured with the design of street network associated to the experience of pedestrians using the town. A review on street network design suggests that the one with a gridiron pattern influences pedestrian to experience the town by either walking or biking and in turn reduces fatality (Marshall and Garrick, 2011; Rifaat et al., 2011), while the street network structured with streets and junctions significantly generates street connectivity. However, streets with heavy traffic create conflict between pedestrians and vehicles (Carmona, 2014), whereas dead-end roads that allow pedestrians to move in a direction results in the worst wayfinding performance (Hölscher et al., 2006). Meanwhile, pedestrians are motivated to reorient, look ahead, or make decisions for their wayfinding when stopping at a junction (Spiers and Maguire, 2008), especially at main ones (Lin et al., 2012). Compared to a virtual environment, pedestrians fail to define the route for shortcuts to the destination when at junctions (Courbois et al., 2013). This indicated that the structure of the street network that includes street patterns, street types, and junctions is associated to street connectivity. However, the studies have failed to define the usefulness of gridiron patterns for street connectivity in a small town. Moreover, the understanding on streets and junctions declines the relationship between typology of street and junction with street network connectivity.

Pedestrians experience a small town according to the connectivity of the street network. A high connection between main roads is found in pedestrian memory that is useful to process information on turns and route choices (Hölscher et al., 2011). Meanwhile, low street connectivity is useful in avoiding barriers that
prevent direct routes and provide a few route choices (Koohsari et al., 2014). Street connectivity allows pedestrians to visualize, interact, and move within the town. A high number of viewpoints allow broader views in defining route and recognizing the orientation (Sulpizio et al., 2013), while low viewpoints lead to the negative effects of intervisibility in a small town (Van Der Hoeven and Van Nes, 2014). The visibility improves when pedestrians at junctions have the least angle between streets and direction line (Hochmair, 2005). Meanwhile, streets are also connected when the pedestrians are able to interact among themselves in the street. Communication and body language can solve spatial conflicts (Kataoka, 2013). Two-way communication between information providers and information receivers assists pedestrians in an unfamiliar street environment (Hund et al., 2012). Studies indicated that spaces in a street network that allows pedestrians to interact can improve street connectivity for wayfinding. Besides visualization and interaction, street network is connected when pedestrians can walk in the town. The patterns of land use in street network can increase the density of pedestrian movement (Sheikh Mohammad Zadeh and Rajabi, 2013). Pedestrians are influenced to move in a street network with a design that connects land activities (Maleki et al., 2012). Past literatures suggested that pedestrian visualization, interaction, and movement are significantly associated to street connectivity in creating engagement of the pedestrian with the town. However, studies have failed to explain the implication of street connectivity to pedestrian wayfinding. Moreover, the comprehension on pedestrian visualization, interaction, and movement declines the functions of street connectivity to wayfinding performance in a street environment.

Wayfinding performance is influenced by the familiarity of the pedestrians with the street environment (Phillips et al., 2013). Street environment involves the composition and quality of street features such as landmarks, green spaces, and buildings. The significance of the features reflects its quality to pedestrian wayfinding: playfield or padang expresses important dimensions of social significance (Harun et al., 2013); the facades of historic buildings and foods served at stalls give meaning to the locals (Carmona, 2014); landmarks represent the attraction of the places (Ferretti et al., 2013); and open spaces and playgrounds allow children and teenagers to engage in outdoor activities in town (Mansor et al., 2012). However, the investigation on the quality of street features that influences pedestrian
wayfinding perception is still missing. In addition, the literatures did not address the topic of how the quality of street features influences pedestrian wayfinding in small towns.

Familiarity, whether one is familiar or unfamiliar with the street features, influences pedestrians’ perception towards the street environment. As a result, the street features reflect wayfinding behavior in a street network. In a virtual environment of the street network, pedestrians perceive street features differently (Iachini et al., 2005; Lin et al., 2012), which may be similar to a real-world environment. In a street environment, landmarks are more familiar than special buildings to pedestrians, even when both street features are useful in helping them become familiar with the street environment (Phillips et al., 2013). Familiarity with facilities in buildings such as airport terminals, shopping malls, or metro stations influences wayfinding of the users differently according to its visibility (Chebat et al., 2005; Tam, 2011; Van Der Hoeven and Van Nes, 2014). The route selection is different according to the individual, whereby each pedestrian decides the route based on the street features that are always perceived at well-known streets (Hölscher et al., 2011). Studies indicated that the perception of pedestrian towards each street features is different, however the understanding towards wayfinding perception among pedestrians when perceiving street features in a familiar or unfamiliar environment is still obscured in the literature. Besides landmarks and special buildings, the literatures did not address the usefulness of street features to pedestrians in a familiar or unfamiliar environment.

Pedestrians who perform wayfinding in a small town could be male and female pedestrians from various age groups. However, the discussion on the differences between males and females in wayfinding is still a controversial subject, in which the argument on males and females travelling differently or similarly is still in debate. For instance, Chebat et al. (2005) and Paydar (2013) indicated that males and females feel similarly in an unfamiliar environment when perceiving unrecognizable features, whereas Iachini et al. (2009) described that males are better than females in defining routes. Hence, the debate in literature between genders in wayfinding requires further investigation.
Street features are found to influence pedestrian wayfinding in small towns (Lin et al., 2012). Pedestrians are attracted to the physical appearance of street features, either from their designs or their colors. The attraction of a street feature gives impact to pedestrian attention (Borst et al., 2009; Helvacioğlu and Olguntürk, 2011; Kato and Takeuchi, 2003), but the similarity in design, either from the architectural form or physical form of the street features in different locations, confuses pedestrians with regards to the identity of the streets (Carmona, 2014; Hölscher et al., 2006; Phillips et al., 2013; Woollett and Maguire, 2010). Moreover, changes in viewpoints when perceiving a street feature decline pedestrian memory to the street environment (Sulpizio et al., 2013). Studies indicated that street features are associated to pedestrian familiarity in wayfinding, but the reason of the street features in influencing pedestrian to become familiar or unfamiliar with the street environment is still questionable.

The composition of street features in a street network generates familiarity with spatial quality, either familiar or unfamiliar. Living quality conditions for the user of an area is improved with the composition of street features such as shophouses, parks, and common meeting places (Maleki et al., 2012). Wayfinding involves the ability to refer, recognize, judge, define, and decide (Bryden et al., 2013; Hidayetoglu et al., 2012; Hund et al., 2012). Hence, pedestrians perform better when perceiving a set of street features in 0º, 90º, and 180º in a familiar environment, while 0º or 45º in an unfamiliar environment (Iachini et al., 2009). The review described that the composition of the street features generates the spatial quality that influence pedestrian wayfinding. However, the literatures did not present the spatial quality that is required for the pedestrians to perform good wayfinding or to avoid bad wayfinding. Besides that, the index for the street features is still unavailable. The visibility index suggested by Lam et al. (2003) in evaluating facilities in an airport terminal for wayfinding seemed fitting, but it requires further exploration for application in the street network of a small town.

In wayfinding, pedestrians behave according to the street connectivity and street features found in a street network. In connecting with the street environment, pedestrians are influenced to visualize, interact, and move (Jiang et al., 2000). Travelling alone is associated to the difficulty in finding directions or location of
destinations (Antonakos, 2004). Wayfinding requires pedestrians to gain information, interpret them, and react accordingly (Xia et al., 2008). Hence, pedestrians tend to learn and observe new information in an unfamiliar environment, which may be useful for their next visit (Chebat et al., 2005). Past studies indicated that street connectivity and the familiarity of street features is associated to pedestrian wayfinding behavior. However, no evidence has been found to describe the relation of street connectivity and familiarity of street features with pedestrian wayfinding behavior. Therefore, the gap of the knowledge in the studies of street connectivity and wayfinding is stated in Section 1.3.

1.3 Statement of Problem and Research Gap

The development of street network involves the consideration of the pedestrians’ daily needs. The street network of small towns, which are the highest number of towns in Malaysia, needs to serve 10,001 to 100,000 people (JPBD, 2006; Mansor, 2011). Hence, the structure of a street network necessitates the provision of a conducive environment that can connect pedestrians from one point to another in the town. However, issues arose from the literature in terms of limited knowledge in the well-connected street network for wayfinding. Table 1.1 presents eight issues between street connectivity and wayfinding studies relating to the types of patterns, streets, and junctions of street network, the behaviors of pedestrians related to street connectivity, quality of street features, pedestrians’ familiarity, gender differences, spatial quality of wayfinding, as well as pedestrian wayfinding behaviors. According to these issues, this research suggests that the specific and exact problem is that the knowledge requires a model that can be used to evaluate street network connectivity for pedestrian wayfinding in a small town.

Table 1.2 presents the models that introduced the study of street network connectivity and wayfinding in six disciplines from 2000 to 2014: (i) transportation and health; (ii) computing, environment, and urban systems; (iii) environmental psychology; (iv) tourism management; (v) earth observation and geoinformation; and (vi) environment and planning.
Table 1.1: Issues highlighted in street network connectivity and wayfinding studies

<table>
<thead>
<tr>
<th>Authors (Year)</th>
<th>Issues on street connectivity and wayfinding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmona, 2014; Courbois et al., 2013; Hölscher et al., 2006; Lin et al., 2012; Marshall and Garrick, 2011; Rifaat et al., 2011; Spiers and Maguire, 2008</td>
<td>The missing knowledge on the types of street patterns, streets, and junctions that can generate street connectivity for good wayfinding.</td>
</tr>
<tr>
<td>Hochmair, 2005; Hölscher et al., 2011; Hund et al., 2012; Kataoka, 2013; Koohsari et al., 2014; Maleki et al., 2012; Sheikh Mohammad Zadeh and Rajabi, 2013; Sulpizio et al., 2013; Van Der Hoeven and Van Nes, 2014</td>
<td>The explanations on effects of pedestrian visualization, interaction, and movement functioning to wayfinding.</td>
</tr>
<tr>
<td>Carmona, 2014; Ferretti et al., 2013; Harun et al., 2013; Mansor et al., 2012; Phillips et al., 2013</td>
<td>The limited investigation of quality of street features that can influence pedestrian wayfinding perception.</td>
</tr>
<tr>
<td>Chebat et al., 2005; Hölscher et al., 2011; Iachini et al., 2005; Lin et al., 2012; Phillips et al., 2013; Tam, 2011; Van Der Hoeven and Van Nes, 2014</td>
<td>The restricted understanding on wayfinding perception of pedestrian when perceiving street features in familiar or unfamiliar environment.</td>
</tr>
<tr>
<td>Chebat et al., 2005; Iachini et al., 2009</td>
<td>The unfirm directions on relation between genders and wayfinding.</td>
</tr>
<tr>
<td>Borst et al., 2009; Carmona, 2014; Helvacioğlu and Olguntürk, 2011; Hölscher et al., 2006; Kato and Takeuchi, 2003; Lin et al., 2012; Phillips et al., 2013; Sulpizio et al., 2013; Woollett and Maguire, 2010</td>
<td>Insufficient exploration on the reasons of how the street features influence pedestrian familiarity.</td>
</tr>
<tr>
<td>Bryden et al., 2013; Hidayetoglu et al., 2012; Hund et al., 2012; Iachini et al., 2009; Lam et al., 2003; Maleki et al., 2012</td>
<td>Limited investigation on the required spatial quality for good or bad wayfinding or to avoid bad wayfinding.</td>
</tr>
<tr>
<td>Antonakos, 2004; Chebat et al., 2005; Jiang et al., 2000; Xia et al., 2008</td>
<td>The missing investigation in describing the relation of street connectivity and familiarity of street features with pedestrian wayfinding behavior.</td>
</tr>
</tbody>
</table>
Accordingly, five models were introduced in Table 1.2 related to street network connectivity, namely agent-based modeling, hierarchical statistical model, linear marginal model, least-angle strategy, and the space syntax approach. Even though the models are able to measure street connectivity comprehensively, they fail to measure street connectivity for wayfinding. Meanwhile, the five models that were introduced in Table 1.2 are used to measure pedestrian wayfinding in a street network. They are: hybrid multi-scale model, eco-friendly walk score, landmark-route-survey, route choice model, and four wayfinding model. Similarly, the models
were successful in measuring pedestrian wayfinding, but failed to relate with street connectivity. Therefore, the motivation for this study is to fill the gap in the knowledge by conducting a research to develop a model that evaluates street connectivity for pedestrian wayfinding. In addition, the evaluation model will be able to access the structure of street network, pedestrian familiarity on street features, and spatial connection that influence good wayfinding behavior.

1.4 Research Aim

The aim of this research is to develop a spatial evaluation of street network connectivity for pedestrian wayfinding in Malaysian small towns.

1.5 Research Objectives

There are three objectives formulated in this research in order to achieve the aim. They are as follows:

i. To investigate the quality of street features that influence pedestrian wayfinding perception in the street network of a small town;

ii. To identify the impact of spatial connection of street network on wayfinding in a small town; and

iii. To verify the spatial connection for wayfinding with pedestrian wayfinding behavior in the street network of a small town.

1.6 Research Hypotheses

This research started with the following three hypotheses to support the research aim and objectives: