Universiti Teknologi Malaysia Institutional Repository

Operational flexibility for increasing renewable energy penetration level by modified enhanced priority list method

Abujarad, Saleh Y. I. (2018) Operational flexibility for increasing renewable energy penetration level by modified enhanced priority list method. PhD thesis, Universiti Teknologi Malaysia, Faculty of Electrical Engineering.

[img]
Preview
PDF
539kB

Abstract

The increasing concerns on climate change and the need for a more sustainable grid, recently has seen a fast expansion of renewable energy sources (RES). This leads to complexities in system balancing between the load and the integrated RES generation, as a result of increased levels of system variability and uncertainty. The concept of flexibility describes the capability of the power system to maintain a balance between generation and the load under uncertainty. Therefore, system operators need to develop flexibility measuring technique to manage the sudden intermittency of net-load. Current flexibility metrics are not exhaustive enough to capture the different aspects of the flexibility requirement assessment of the power systems. Furthermore, one of their demerits is that the start-up cost is not considered together with the other technical parameters. Hence, this thesis proposes a method that improves the assessment accuracy of individual thermal units and overall generation system. Additionally, a new flexibility metric for effective planning of system operations is proposed. The proposed metric considers technoeconomic flexibility indicators possessed by generation units. A new ranking for Flexibility Ranked Enhanced Priority List (FREPL) method for increasing share of renewable energy is proposed as well. The assessment is conducted using technical and economic flexibility indicators characteristics of the generating units. An analytical hierarchy process is utilized to assign weights to these indicators in order to measure their relative significance. Next, a normalization process is executed and then followed by a linear aggregation to produce the proposed flexibility metric. Flexibility and cost ranking are coupled in order to improve the FREPL. The proposed technique has been tested using both IEEE RTS-96 test system and IEEE 10-units generating system. The developed method is integrated with the conventional unit commitment problem in order to assist the system operators for optimal use of the generation portfolios of their power system networks. The results demonstrate that the developed metric is robust and superior to the existing metrics, while the proposed Enhanced Priority List characterizes the system’s planned resources that could be operated in a sufficiently flexible manner. The net-load profile has been enhanced and the penetration level of wind power has been upgraded from 28.9% up to 37.2% while the penetration level of solar power has been upgraded from 14.5% up to 15.1%.

Item Type:Thesis (PhD)
Additional Information:Thesis (Doktor Falsafah (Kejuruteraan Elektrik)) - Universiti Teknologi Malaysia, 2018; Supervisors : Prof. Ir. Dr. Mohd. Wazir Mustafa, Dr. Jasrul Jamani Jamian
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions:Electrical Engineering
ID Code:79561
Deposited By: Widya Wahid
Deposited On:31 Oct 2018 12:58
Last Modified:31 Oct 2018 12:58

Repository Staff Only: item control page