PERFORMANCE OF FLOATING PILED RAFT WITH VARYING LENGTHS IN SOFT COMPRESSIBLE SUBSOIL

TAN YEAN CHIN

UNIVERSITI TEKNOLOGI MALAYSIA
PERFORMANCE OF FLOATING PILED RAFT WITH VARYING LENGTHS IN SOFT COMPRESSIBLE SUBSOIL

TAN YEAN CHIN

A dissertation submitted in fulfilment of the requirements for the award of the degree of Engineering Doctorate (Technology and Construction Management)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JULY 2017
To my beloved parents and family
ACKNOWLEDGEMENT

The author wishes to express his profound gratitude to his advisor Prof. Ir. Dr. Ramli bin Nazir for his enthusiastic guidance, constructive suggestions and constant encouragement throughout the course of this study and preparation of the thesis. The author is also indebted to co-advisor Prof. Ir. Dr. Khairul Anuar Kassim and industry advisor Dato’ Ir. Dr. Gue See Sew, CEO of G&P Professionals Sdn Bhd for their helpful comments and guidance.

The author wishes to convey his sincere gratitude and love to his wife Mdm Lian Poh Hoon for her continuous encouragement to the author to complete his Doctorate of Engineering study which was a promise made by the author more than 15 years ago when persuading his wife to give up working to be full time house maker to take care of their two lovely sons, Tan Jun-Yan and Tan Jun-You, so that the author can focus on his work and study. Without the sacrifices and persistence of his wife to ensure the author fulfill his promise, this work would not have been possible.

Finally the author would like to express his gratitude and love to his parents, late Mr. Tan Eng Hean and Mdm Ch’ng Phaik Heoh for their good upbringing and they always have confidence in their son to achieve highest education possible. It is to them that this effort is humbly dedicated. The author owes his success in life to both of them.
ABSTRACT

Conventional piled foundation usually provides adequate load carrying capacity to limit the settlement within allowable limits. However, in deep layer of soft compressible subsoil with settling platform, this foundation system faces numerous problems namely requiring very long piles, lower pile capacity due to downdrag forces, and hollow gap formed beneath the slab of piled structures when the earth platform settled causing services to break and poses health hazard. This research proposed an analysis and design methodology for an alternative foundation system of ‘floating’ piled raft (FPR) with same or varying pile lengths to resolve the problems stated above. The design objectives are to control differential settlement, angular distortion and bending moment rather than only limiting total settlement. The proposed analysis and design methodology bridges the research gaps of using piled raft in soft compressible subsoil. This incorporate long term settlement in the analysis to cater for piles of varying lengths and can be used by practicing engineers for design works. Parametric studies were carried out to verify the proposed analysis and design methodology through modelling of ‘floating’ piled raft with different numbers of piles, lengths configurations, spacing of piles and also different raft thickness. The vertically loaded pile rafts analysed are 3x3, 6x6 and 9x9 number of piles respectively with total combination of 108 cases that cover different pile lengths of same and varying lengths, different pile spacing and different raft thickness. The research findings showed that piled raft with combination of varying pile lengths is generally more effective in reducing differential settlement, ratio of \((\Delta p/p_{\text{max}})\), bending moment of the raft and angular distortion \((\beta)\) compared to pile raft with similar pile length (even with longest piles). The findings from the parametric studies contributed to a better understanding on the performance and behaviour of ‘floating’ piled raft in soft compressible subsoil especially on the piled raft of varying piled lengths. The proposed analysis and design methodology in this research has also been successfully used to design ‘floating’ piled raft foundation system in deep and soft compressible subsoil to support low rise buildings of 2-storey to 5-storey that have been constructed and occupied for more than 10 years. This confirmed the benefits obtained from this research to have a reliable and efficient analysis and design methodology through better understanding of the performance and behaviour of ‘floating’ piled raft foundation with same or varying pile lengths.
ABSTRAK

Asas cerucuk konvensional biasanya mempunyai keupayaan menanggung beban untuk menghadkan enapan pada had yang dibenarkan. Walabagaimanapun, di dalam lapisan lembut yang dalam dengan pelantar yang mengenap, sistem asas ini menghadapi pelbagai masalah seperti memerlukan cerucuk yang panjang. Keupayaan cerucuk yang rendah akibat daya seret ke bawah dan ruang kosong terbentuk di bawah papak disokong oleh cerucuk apabila pelantar tanah mengenap menyebabkan laluan perkhidmatan pecah dan mengancam kesihatan. Hasil kajian mencadangkan analisis dan metodologi rekabentuk untuk sistem asas alternatif menggunakan asas rakit bercerucuk ‘terapung’ (FPR) samada dengan panjang cerucuk yang sama atau panjang cerucuk yang pelbagai bagi menyelesaikan masalah ini. Objektif rekabentuk adalah untuk mengawal perbezaan enapan, sudut herotan dan momen lentur berbanding hanya menghadkan jumlah enapan. Analisis dan metodologi rekabentuk ini menjadi hubungan bagi jurang dalam kajian penggunaan asas rakit bercerucuk dalam lapisan tanah lembut boleh mampat. Ini menggabungkan enapan jangka masa panjang di dalam analisis, mengambilkira cerucuk dengan panjang yang pelbagai dan boleh digunakan pengamal juruter dalam kerja rekabentuk. Kajian parametrik bagi menyesuaikan analisis dan rekabentuk ini melalui permodelan asas rakit bercerucuk ‘terapung’ dengan bilangan cerucuk, konfigurasi panjang, jarak antara cerucuk dan ketebalan rakit yang berbeza-beza telah dilaksanakan. Asas rakit bercerucuk dengan beban pugak yang dianalisis adalah 3x3, 6x6 dan 9x9 bilangan cerucuk dengan 108 jumlah kombinasi kes; merangkumi panjang cerucuk yang berbeza-beza samada dengan panjang cerucuk yang pelbagai atau sama, jarak antara cerucuk yang berbeza dan ketebalan rakit yang berbeza. Penemuan kajian menunjukkan asas rakit bercerucuk dengan kombinasi panjang cerucuk yang pelbagai secara amnya lebih efektif dalam mengurangkan bezaan enapan, nisbah ($\Delta p/p_{\text{max}}$), momen lentur rakit dan sudut herotan (β) berbanding dengan rakit bercerucuk yang mempunyai panjang cerucuk yang sama walaupun dengan cerucuk yang paling panjang. Penemuan daripada kajian parametrik ini menyumbang kepada pemahaman lebih jelas tentang prestasi dan sifat rakit bercerucuk ‘terapung’ dalam tanah lembut terutamanya untuk rakit bercerucuk dengan pelbagai panjang. Cadangan analisis dan metodologi rekabentuk di dalam kajian ini telah digunakan dengan jayanya untuk merekabentuk sistem asas rakit bercerucuk dalam lapisan tanah lembut dan dalam bagi menampung beban bangunan setinggi 2 hingga 5 tingkat yang telah dibina dan diduduki lebih daripada 10 tahun. Ini telah mengesahkan manfaat yang diperolehi hasil daripada kajian ini iaitu untuk menambah baik metodologi analisis dan rekabentuk yang boleh dipercayai dan efisien melalui pemahaman terhadap prestasi serta sifat asas rakit bercerucuk ‘terapung’ dengan sama panjang atau pelbagai.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxv</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION
1.1 Introduction | 1 |
1.2 Problem Statement | 3 |
1.3 Research Objectives | 4 |
1.4 Scope of Works | 5 |
1.5 Significant of Study | 5 |

2 LITERATURE REVIEW
2.1 Introduction | 7 |
2.2 Analysis of Vertically Loaded Single Pile | 8 |
2.3 Vertically Loaded Pile Groups | 10 |
2.3.1 Equivalent Raft Method and Equivalent Pier Method | 13 |
2.3.1.1 The Equivalent Raft Method | 13 |
2.3.1.2 The Equivalent Pier Method | 15 |
2.3.1.3 Comparisons of Two Methods and Limitations 17
2.3.2 Interaction Factor in Pile Group Analysis 18
2.3.3 Non-Linearity in Pile Group Analysis 22
2.3.4 Time-Dependent Settlement in Pile Group Analysis 23
2.3.5 Computer Programmes for Pile Groups Analysis 24

2.4 Piled Raft 26
2.4.1 Proportions of Load on Raft and Piles 29
2.4.2 Design Philosophies for Piled Raft 30
2.4.3 Method of Analysis for Piled Raft 34
2.4.4 Piled Raft with Dissimilar Piles 36

2.5 Bearing Capacity of The Raft 36
2.6 Bearing Capacity of The Floating Piles 38
2.7 Soil Element Deformation from Raft Contact Pressure 40

2.8 Limiting Deformation for Framed Buildings and Reinforced Load Bearing Wall 41

2.9 Concluding Comments on Literature Survey and Bridging the Research Gap 43

3 RESEARCH METHODOLOGY 45
3.1 Introduction 45
3.2 Selection of Soil Parameters and Groundwater Conditions 45
3.2.1 Subsurface Investigation and Laboratory Tests 45
3.2.2 Subsoil Conditions and Modelling Parameters 49

3.3 Methodology for Analysis and Design of ‘Floating’ Piled Raft (FPR) Foundation System 53
3.3.1 Methodology for Pile Group Analysis 54
3.3.2 Derivation of Stiffness Matrix Solution for Pile Group Analysis for Piles of Same or Varying Length 55
3.3.3 Methodology for Analysis of Raft Settlement 57
3.3.4 Methodology for Combining the Pile Group Analysis with Raft Settlement Analysis 57
3.3.5 Proposed Design Methodology for ‘Floating’ Piled Raft (FPR) Foundation System in Soft Compressible Subsoil 59

4 MODELLING OF ‘FLOATING’ PILED RAFT 63
4.1 Introduction 63
4.2 Modelling of ‘Floating’ Piled Raft with same and Varying Pile Lengths 63
4.3 Modelling of ‘Floating’ Piled Raft of Same Pile Lengths for 2-storey Terrace Houses 72
 4.3.1 Loadings and Design Methodology for ‘Floating’ Piled Raft Foundation of same Pile Lengths for 2-Storey Houses 73
 4.3.2 Analyses of 2-Storey Houses 75
4.4 Modelling of ‘Floating’ Piled Raft of Varying Pile Lengths for 5-storey Apartment 76
 4.4.1 Loadings and Design Methodology for ‘Floating’ Piled Raft Foundation of Varying Pile Lengths 77
 4.4.2 Analyses of 5-Storey Apartments 79

5 RESULTS INTERPRETATION AND DISCUSSION 81
5.1 Introduction 81
 5.1.1 Results of Differential Settlement 82
 5.1.2 Ratio of Differential Settlement over Largest Differential Settlement 89
 5.1.3 Maximum Settlement 91
5.1.4 Ratio of Differential Settlement over Maximum Settlement 98
5.1.5 Load on Piles 107
5.1.6 Bending Moment of the Piled Raft 110
5.1.7 Settlement Profile and Angular Distortion of the Piled Raft 119
5.2 Discussion on the Case History of ‘Floating’ Piled Raft of Same Pile Lengths for 2-storey Terrace Houses 137
5.2.1 Settlement Monitoring Results and Discussions 138
5.3 Discussion on the Case History of ‘Floating’ Piled Raft of Varying Pile Lengths for 5-storey Apartment 141
5.4 Summary of Results Interpretation and Discussion 145

6 CONCLUSIONS AND RECOMMENDATIONS 146
6.1 Introduction 146
6.2 Use of ‘Floating’ Piled Raft Foundation System in Soft Compressible Subsoil for Low Rise Buildings 146
6.3 Developed on Analysis and Design Methodology for the ‘Floating’ Piled Raft Foundation System 147
6.4 Performance and Behaviour of ‘Floating’ Piled Raft from 108 Cases Analysed 148
6.5 Conclusions 151
6.6 Recommendations for Future Research 152

REFERENCES 154
APPENDICES A - C 165-242
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of limiting values of angular distortion (β) for framed buildings and reinforced loadbearing walls</td>
<td>42</td>
</tr>
<tr>
<td>2.2</td>
<td>Bridging Research Gaps</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Laboratory Tests</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Subsoil parameters used in this research</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>Matrix showing the cases of analyses for 3x3, 6x6 and 9x9 piled raft</td>
<td>65</td>
</tr>
<tr>
<td>5.1</td>
<td>Differential settlement and percentage to the largest differential settlement value of same raft thickness and spacing of piles for 3x3 piled raft</td>
<td>84</td>
</tr>
<tr>
<td>5.2</td>
<td>Differential settlement and percentage to the largest differential settlement value of same raft thickness and spacing of piles for 6x6 piled raft</td>
<td>85</td>
</tr>
<tr>
<td>5.3</td>
<td>Differential settlement and percentage to the largest differential settlement value of same raft thickness and spacing of piles for 9x9 piled raft</td>
<td>86</td>
</tr>
<tr>
<td>5.4</td>
<td>Maximum settlement and percentage to the largest Maximum settlement value of same raft thickness and spacing of piles for 3x3 piled raft</td>
<td>95</td>
</tr>
<tr>
<td>5.5</td>
<td>Maximum settlement and percentage to the largest Maximum settlement value of same raft thickness and spacing of piles for 6x6 piled raft</td>
<td>96</td>
</tr>
</tbody>
</table>
5.6 Maximum settlement and percentage to the largest
Maximum settlement value of same raft thickness and
spacing of piles for 9x9 piled raft 97

5.7 Ratio of ($\Delta \rho/\rho_{\text{max}}$) and percentage to the largest
($\Delta \rho/\rho_{\text{max}}$) of same raft thickness and spacing of piles
for 3x3 piled raft 99

5.8 Ratio of ($\Delta \rho/\rho_{\text{max}}$) and percentage to the largest
($\Delta \rho/\rho_{\text{max}}$) of same raft thickness and spacing of piles
for 6x6 piled raft 100

5.9 Ratio of ($\Delta \rho/\rho_{\text{max}}$) and percentage to the largest
($\Delta \rho/\rho_{\text{max}}$) of same raft thickness and spacing of piles
for 9x9 piled raft 101

5.10 Maximum bending moment and percentage to the
largest maximum bending moment value of same
raft thickness and spacing of piles for 3x3 piled raft 113

5.11 Maximum bending moment and percentage to the
largest maximum bending moment value of same
raft thickness and spacing of piles for 6x6 piled raft 114

5.12 Maximum bending moment and percentage to the
largest maximum bending moment value of same
raft thickness and spacing of piles for 9x9 piled raft 115

5.13 Angular distortion perpendicular across 3x3 piled
raft and percentage to the largest angular distortion
value of same raft thickness and spacing of piles 123

5.14 Angular distortion diagonally across 3x3 piled raft
and percentage to the largest angular distortion value
of same raft thickness and spacing of piles 124

5.15 Angular distortion perpendicular across 6x6 piled raft
and percentage to the largest angular distortion value
of same raft thickness and spacing of piles 129

5.16 Angular distortion diagonally across 6x6 piled raft
and percentage to the largest angular distortion value
of same raft thickness and spacing of piles 130
<table>
<thead>
<tr>
<th>5.17</th>
<th>Angular distortion perpendicular across 9x9 piled raft and percentage to the largest angular distortion value of same raft thickness and spacing of piles</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.18</td>
<td>Angular distortion diagonally across 9x9 piled raft and percentage to the largest angular distortion value of same raft thickness and spacing of piles</td>
<td>136</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Problems for buildings with piled to ‘set’ foundation on soft ground</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Central piles to reduce differential settlement (from Randolph, 1994)</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Load transfer to soil from pile groups (Tomlinson, 1986). (a) Group of piles supported mainly by skin friction. (b) Group of piles driven through weak clay to combined skin friction and end-bearing in stratum of dense granular soil. (c) Group of piles supported in end bearing on hard incompressible stratum</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Concept of Equivalent Pier Method (from Randolph, 1994)</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Piled Raft Foundation as a Composite Construction (Katzenbach, et al., 2000)</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Foundation settlement as a function of piled raft coefficient (Katzenbach, et al., 2000)</td>
<td>28</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic Design Approach for Settlement Reducing Piles (from Randolph, 1994)</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>Load-settlement curves for piled rafts according to various design philosophies (from Poulos, 2001)</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>Numerical representation of piled raft foundation: (1) one dimensional pile element; (2) lumped soil response at each pile node - load-transfer spring; (3) two-dimensional plate-bending finite element raft mesh; (4) lumped soil response at each raft node – Giroud solution; (5) pile-soil-pile interaction effects calculated</td>
<td></td>
</tr>
</tbody>
</table>
between pairs of nodes – Mindlin’s equation; (6)
raft-soil-raft interaction; (7) pile-soil-raft interaction

2.9 Schematic showing the symbol used in Meyerhof bearing capacity equation

2.10 Adhesion factor (α) with undrained shear strength (s_u)

2.11 Angular distortion (β) and tilt (ω)

3.1 Location of Klang Clay (after Tan et. Al., 2004)

3.2 Geological map of the Site (after Tan et.al., 2004)

3.3 Basic Soil Properties of Klang Clay (after Tan et. al., 2004)

3.4 Compressibility Parameters for Klang Clay (after Tan et. al., 2004)

3.5 Undrained Shear Strength and Sensitivity for Klang Clay (after Tan et. al., 2004)

3.6 Flow Chart for Analysis and Design of ‘Floating’ Piled Raft

4.1a 3x3 piled raft

4.1b 3x3 piled raft

4.2a 6x6 piled raft

4.2b 6x6 piled raft

4.2c 6x6 piled raft

4.3a 9x9 piled raft

4.3b 9x9 piled raft

4.3c 9x9 piled raft

4.4 Typical 2-storey terrace houses constructed and occupied since year 2004

4.5 2-storey terrace houses foundation layout

4.6 Typical cross-section of strip-raft of 2-storey terrace houses

4.7 Effect of adjacent houses stress bulb influencing the settlement of terrace house analysed

4.8 Typical 5-storey apartment constructed and occupied

4.9 Typical cross-section of strip-raft of 5-storey apartment

4.10 Typical cross-section of strip-raft of 5-storey apartment

4.11 Site layout plan of the 5-storey apartment analysed and designed
4.12 Layout plan showing piles of varying lengths for 5-storey apartment and the locations of settlement markers 80

5.1 Differential settlement ($\Delta \rho$) vs. spacing of piles (s) and thickness of raft (t) for 3x3 piled raft 82

5.2 Differential settlement($\Delta \rho$) vs. spacing of piles (s) and thickness of raft (t) for 6x6 piled raft 83

5.3 Differential settlement ($\Delta \rho$) vs. spacing of piles (s) and thickness of raft (t) for 9x9 piled raft 83

5.4 Ratio of differential settlement ($\Delta \rho$) over maximum differential settlement ($\Delta \rho_{\text{max}}$) obtained from all the 3x3 piled raft analysed vs. ratio of pile spacing over raft thickness (s/t) for 3x3 piled raft 90

5.5 Ratio of differential settlement ($\Delta \rho$) over maximum differential settlement ($\Delta \rho_{\text{max}}$) obtained from all the 6x6 piled raft analysed vs. ratio of pile spacing over raft thickness (s/t) for 6x6 piled raft 90

5.6 Ratio of differential settlement ($\Delta \rho$) over maximum differential settlement ($\Delta \rho_{\text{max}}$) obtained from all the 9x9 piled raft analysed vs. ratio of pile spacing over raft thickness (s/t) for 9x9 piled raft 91

5.7 Maximum settlement (ρ_{max}) vs. spacing of piles (s) and thickness of raft (t) for 3x3 piled raft 93

5.8 Maximum settlement (ρ_{max}) vs. spacing of piles (s) and thickness of raft (t) for 6x6 piled raft 93

5.9 Maximum settlement (ρ_{max}) vs. spacing of piles (s) and thickness of raft (t) for 9x9 piled raft 94

5.10 Ratio of differential settlement ($\Delta \rho$) over maximum settlement (ρ_{max}) for each case vs. spacing of piles (s) and thickness of raft (t) for 3x3 piled raft 103

5.11 Ratio of differential settlement ($\Delta \rho$) over maximum settlement (ρ_{max}) for each case vs. spacing of piles (s) and thickness of raft (t) for 6x6 piled raft 104
5.12 Ratio of differential settlement ($\Delta \rho$) over maximum settlement (ρ_{max}) for each case vs. spacing of piles (s) and thickness of raft (t) for 9x9 piled raft 104

5.13 Ratio of ($\Delta \rho/\rho_{\text{max}}$) vs. ratio of pile spacing over raft thickness (s/t) for 3x3 piled raft 105

5.14 Ratio of ($\Delta \rho/\rho_{\text{max}}$) vs. ratio of pile spacing over raft thickness (s/t) for 6x6 piled raft 106

5.15 Ratio of ($\Delta \rho/\rho_{\text{max}}$) vs. ratio of pile spacing over raft thickness (s/t) for 9x9 piled raft 106

5.16 Pile raft coefficient (α_p) vs. spacing of piles (s) and thickness of raft (t) for 3x3 piled raft 108

5.17 Pile raft coefficient (α_p) vs. spacing of piles (s) and thickness of raft (t) for 6x6 piled raft 108

5.18 Pile raft coefficient (α_p) vs. spacing of piles (s) and thickness of raft (t) for 9x9 piled raft 109

5.19 Maximum bending moment (BM_{max}) of the raft vs. spacing of piles (s) and thickness of raft (t) for 3x3 piled raft 110

5.20 Maximum bending moment (BM_{max}) of the raft vs. spacing of piles (s) and thickness of raft (t) for 6x6 piled raft 111

5.21 Maximum bending moment (BM_{max}) of the raft vs. spacing of piles (s) and thickness of raft (t) for 9x9 piled raft 111

5.22 Ratio of ($BM_{\text{max}}/\rho_{\text{max}}$) vs. spacing of piles (s) and thickness of raft (t) for 3x3 piled raft 117

5.23 Ratio of ($BM_{\text{max}}/\rho_{\text{max}}$) vs. spacing of piles (s) and thickness of raft (t) for 6x6 piled raft 117

5.24 Ratio of ($BM_{\text{max}}/\rho_{\text{max}}$) vs. spacing of piles (s) and thickness of raft (t) for 9x9 piled raft 118

5.25 Settlement profile of the pile points for raft thickness of 0.2m on 3x3 piled raft 119

5.26 Settlement profile of the pile points for raft thickness of 0.4m on 3x3 piled raft 120
5.27 Settlement profile of the pile points for raft thickness of 0.8m on 3x3 piled raft

5.28 Angular distortion (β in %) perpendicular across the 3x3 piled raft centre vs spacing of piles (s) and thickness of raft (t)

5.29 Angular distortion (β in %) diagonally across the 3x3 piled raft centre vs spacing of piles (s) and thickness of raft (t)

5.30 Settlement profile of the pile points for raft thickness of 0.2m on 6x6 piled raft

5.31 Settlement profile of the pile points for raft thickness of 0.4m on 6x6 piled raft

5.32 Settlement profile of the pile points for raft thickness of 0.8m on 6x6 piled raft

5.33 Angular distortion (β in %) perpendicular across the 6x6 piled raft centre vs. spacing of piles (s) and thickness of raft (t)

5.34 Angular distortion (β in %) diagonally across the 6x6 piled raft centre vs. spacing of piles (s) and thickness of raft (t)

5.35 Settlement profile of the pile points for raft thickness of 0.2m on 9x9 piled raft

5.36 Settlement profile of the pile points for raft thickness of 0.4m on 9x9 piled raft

5.37 Settlement profile of the pile points for raft thickness of 0.8m on 9x9 piled raft

5.38 Angular distortion (β in %) perpendicular across the 9x9 piled raft centre vs. spacing of piles (s) and thickness of raft (t)

5.39 Angular distortion (β in %) diagonally across the 9x9 piled raft centre vs. spacing of piles (s) and thickness of raft (t)
5.40 Designed settlement profile of the platform supporting the row of terrace houses analysed (after Tan et al., 2005b) 138
5.41 Locations of settlement markers installed and monitored (after Tan et al., 2005b) 139
5.42 Settlement monitoring results of Block 2 (after Tan et al., 2005b) 140
5.43 Settlement monitoring results of Block 3 (after Tan et al., 2005b) 140
5.44 Layout plan showing piles of varying lengths for 5-storey apartment and the locations of settlement markers (after Tan et al., 2006) 142
5.45 Settlement monitoring results (after Tan et al., 2006) 143
5.46 Plot of average total settlement and maximum differential Settlement monitored (after Tan et al., 2006) 143
5.47 Profile of Measured Settlement vs Predicted Settlement (after Tan et al., 2006) 144
5.48 Measured Settlement Contour (in mm) at Day 391 (after Tan et al., 2006) 144
LIST OF SYMBOLS

- \(\omega_s \): Pile displacement
- \(\tau_0 \): Shear stress
- \(r_0 \): Radius of the pile
- \(G \): Soil shear modulus
- \(r_m \): Maximum radius of influence of the pile
- \(\rho \): Measure of the vertical homogeneity
- \(\eta = r_b / r_0 \): Ratio of under-ream for under-reamed piles
- \(\xi = G_f / G_b \): Ratio of end-bearing for end-bearing piles
- \(\rho = G_{mv} / G_f \): Variation of soil modulus with depth
- \(\lambda = E_p / G_f \): Pile-soil stiffness ratio
- \(\zeta = \ln (r_m / r_b) \): Measure of radius of influence of pile
- \(\mu L_p = \sqrt{2(\xi \lambda)} (L_p / r_0) \): Measure of pile compressibility
- \(I \): Obtained from the product of a number of other Coefficients which reflects features
- \(q \): Average pressure applied to the raft
- \(I_\varepsilon \): An influence factor of vertical strain
- \(h_i \): Thickness of \(i^{th} \) layer of subsoil
- \(E_i \): Young’s modulus of \(i^{th} \) layer of subsoil
- \(F_D \): Correction factor from Fox (1948)
- \(d_{eq} \): Diameter of equivalent pier (m)
- \(A_g \): Plan area of the piled raft (m\(^2\))
- \(E_{eq} \): Young’s modulus of equivalent pier (kN/m\(^2\))
- \(E_s \): Young’s modulus of subsoil (kN/m\(^2\))
- \(E_p \): Young’s modulus of piles (kN/m\(^2\))
\(A_{tp} \) - Total cross-sectional area of the piles in the group (m²)
\(A_g \) - Plan area of the piled raft (m²)
\(R \) - If smaller than 4, equivalent pier method is suitable.
 It is even better if the value is less than 2
\(n \) - Number of piles
\(s \) - Pile spacing (m)
\(L_p \) - Pile length (m)
\(w_i \) - Settlement of pile \(i \) within a group of \(n \) piles
\(P_{av} \) - Average load on a pile within the group
\(S_i \) - Settlement of a single pile under unit load (i.e., the pile flexibility)
\(\alpha_{ij} \) - Interaction factor for pile \(i \) due to other pile \(j \) within the group.
\(S_{1e} \) - Elastic flexibility of the pile
\(R_f \) - Hyperbolic factor (taken as unity)
\(P \) - Load on pile \(i \)
\(P_u \) - Ultimate load capacity of pile \(i \)
\(q \) - Analysis exponent
 - 2 for incremental non-linear analysis
 - 1 for equivalent linear analysis
\(s \) - Centre to centre spacing between pile \(i \) and \(j \)
\(\rho \) - Ratio of soil modulus at mid-length of pile to that at the level of the pile tip (1 for constant modulus and 0.5 for “Gibson” soil which has Young’s modulus linearly increasing with depth)
\(\gamma \) - \(\ln(2r_m/d) \)
\(\Gamma \) - \(\ln(2r_{m2}/ds) \)
\(r_m \) - \(2.5(1-\nu)pL \)
\(L \) - Pile length
\(d \) - Pile diameter
Λ - L/d

k_1 to k_4 - Fitting parameters

E_{sL} - Soil modulus at mid-length of the pile

E_b - Modulus of bearing stratum below pile tip

r_g - A group distance defined by Randolph & Wroth (1979)

w - Vertical deflection

r_m - Limiting radius of influence of the pile

l - Pile length

ν - Poisson ratio of the soil

P_b - Load acting on the pile base

c - $2/\pi$

$G_L/2$ - Shear modulus of soil at pile mid-depth

G_i - Shear modulus of soil at pile base

P_s - Load acting on the pile shaft

α_i - Interaction factor

$(\mu l)^2$ - $(2/\zeta \lambda)(1/r_0)^2$

λ - E_p/G_i

A_p - Cross Section Area of the Pile

σ'_{0} - In-situ effective vertical stress

σ'_{c} - Pre-consolidation Pressure /Yield Stress

CR - Compression ratio $= \frac{C_c}{1+e_0}$

RR - Recompression ratio $= \frac{C_r}{1+e_0}$

C_c - Compression Index

C_r - Recompression Index

H_i - Initial thickness of incremental soil layer, i of n layers

σ_o - Foundation contact pressure

I_q - Factor of intensity of pressure
L - Length of area loaded
B - Width of area loaded
Z - Depth of soil layer of interest
m - L/B
n - z/B

$K_{pile\text{-}total,q,i=0}$ - Stiffness of pile support (unit in kN/m)
$P_{pile,q,i=0}$ - Axial point load acting pile (unit in kN)
$\delta_{pile\text{-}total,q,i=0}$ - Total combined settlement of the pile raft at each pile point location (unit in m)

q - Pile point reference number
i - Iteration number
$K_{soil\text{-}total,r,i=0}$ - Stiffness of soil support beneath each section of raft (unit in kPa/m)
$P_{raft,r,i=0}$ - Uniform load acting on each section of raft (unit in kPa)
$\delta_{raft\text{-}total,r,i=0}$ - Total combined settlement of the pile raft at the midpoint of each section of raft (unit in m)
r - Reference number for each section of raft
E - Young modulus of soil. $E \approx 200s_u$ to $400s_u$ for soft clay

N_q - $e^{\tan^2(45+\phi'/2)}$
N_c - $(N_q-1)cot\phi'$
N_γ - $(N_q-1)tan(1.4\phi')$
s_c - $1 + 0.2K_p(B/L)$; for any ϕ'
$s_q = s_\gamma$ - $1 + 0.1K_p(B/L)$; for $\phi'>10^\circ$
$s_q = s_\gamma$ - 1; for $\phi'=0^\circ$
α - Adhesion factor
s_u - Undrained shear strength (in kPa)
N_c - Bearing capacity factor = 9
Q_{ag} - Allowable geotechnical capacity
Q_{su} - Ultimate shaft capacity = $\sum_i (f_{su} \times A_S)$

i - Number of soil layers
\(Q_{bu} \) - Ultimate base capacity = \(f_{bu} A_b \)

\(f_s \) - Unit shaft resistance for each layer of embedded soil

\(f_b \) - Unit base resistance for the bearing layer of soil

\(A_s \) - Pile shaft area

\(A_b \) - Pile base area

\(F_s \) - Partial Factor of Safety for Shaft Resistance of ‘floating’ pile as settlement reducer = 1.1 to 1.2

\(F_b \) - Partial Factor of Safety for Base Resistance of ‘floating’ pile as settlement reducer = 1.5 to 2.0

\(F_g \) - Global Factor of Safety for Total Resistance of ‘floating’ pile as settlement reducer = 1.2 to 1.5

\(\alpha_{pr} \) - Pile raft coefficient

\(\sum R_{piles} \) - Sum of piles resistance

\(R_{total} \) - Total imposed load
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pile Group Analysis</td>
<td>165</td>
</tr>
<tr>
<td>B</td>
<td>Computer Coding for Pile Group Analysis</td>
<td>177</td>
</tr>
<tr>
<td>C</td>
<td>Ir. Tan Yean Chin Publications</td>
<td>242</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Conventional piled foundation, commonly designed and constructed in Malaysia, is usually designed for buildings/structures to provide adequate load carrying capacity, to limit the overall settlement and hence indirectly control differential settlement to within tolerable limits. Piles are often installed into competent stratum or to ‘set’ (terminate) in hard layer. Therefore to date, design methods commonly used by practicing engineers in Malaysia still concentrate on providing adequate axial capacity from the piles to carry all the structural loads without detailed evaluation of pile settlement. Usually, the estimation of settlement is considered as a secondary issue and sometimes ignored because of the nature of load transfer between pile and soil, particularly where shaft resistance provides a major component of the total pile capacity which will automatically lead to small acceptable settlement. However, this conventional design methodology faces numerous problems over the years when adopted in deep layer of soft compressible subsoil of alluvial and marine deposits. This type of geological formation is commonly found in majority of the areas along the coast of Peninsular Malaysia and also East Malaysia namely the infamous clay at Klang, Muar and Sibu. Neighbouring countries such as Thailand, Indonesia and Singapore also have similar alluvial or marine deposits.

As the country develops, good competent ground (e.g. hard residual soils) are becoming scarce and development especially for housing (especially for low and
medium cost houses and flats) and also for industrial usage (e.g. tanks farm, factory and plants) have to be constructed in the low lying or swampy areas with deep soft compressible subsoil. In these areas, hard competent stratum is sometime as deep as 40m to 60m therefore making conventional method requiring long slender piles. To make things worse, at these low lying areas (sometimes water logged) the earthworks platform for the buildings has to be raised by earth filling above the flood level. The weight of the earth fill on top of the soft compressible subsoil induces both primary and secondary consolidation settlement with time.

The conventional piled to ‘set’ design methodology only addresses the short-term problem associated with soft clay as the allowable pile capacity (allowable load to be imposed on the piles from the building) will be significantly reduced because the allowable geotechnical capacity has to be downgraded to cater for negative skin friction (down drag) induced by the settling soft compressible subsoil. This often reduces the cost-effectiveness of such ‘conventional solution’ as the pile capacity (both allowable geotechnical and structural capacity) has to be downgraded (reduced) thus requiring more piles or larger pile sizes for same loading compared to piles that are not experiencing down drag. Other than being uneconomical, conventional method of piled to ‘set’ also causes long term serviceability problems such as large abrupt differential settlement between the piled buildings/structures and the surrounding earth platform on compressible subsoil that is still undergoing settlement with time. The abrupt differential settlement with large enough magnitude causes problem such as breakages of water and sewerage pipes. The hollow gap formed beneath the building, due to larger settlement of the earth platform compared to the buildings supported by piles installed into competent stratum, becomes a health and safety hazard to the public as mosquitoes, rats, snakes and other animals can make this area their habitat as shown in Figure 1.1.
1.2 Problem Statement

Being aware of all the problems associated with conventional method of piled to ‘set’ in deep layer of soft compressible subsoil, it is important to propose an alternative foundation method of ‘floating’ piled raft (FPR) foundation system that would eliminate all the problems stated above. In summary, the proposed foundation method shall be economical, technically suitable, safe and satisfy both ultimate and serviceability limit states of the buildings to be supported. This foundation system would benefit the construction industry in particular and the development of the country as a whole. However, in order to achieve this, the proposed foundation system shall have practical analysis and design methodology that practicing engineers in Malaysia would find it user friendly and not too difficult so that it can be widely used to carry out day-to-day analysis and design.

Therefore, when developing the analysis and design methodology for the proposed foundation system, it is necessary to make some practical simplifications
and realistic assumptions, but the proposed methodology shall not lose the correctness of the proposed method that can be calibrated by actual site measurements of the buildings constructed and performance of the actual buildings such as no architectural, structural or services damage. This is like carrying out very costly full-scale actual test to prove the usefulness and appropriateness of the proposed analysis and design methodology. Many researches may not have this luxury and opportunity as it would be very costly and time consuming. Fortunately, this is possible for this research as the researcher through his consulting firm was involved in the actual projects in Malaysia and Indonesia that adopted the researcher’s proposed analysis and design methodology.

1.3 Research Objectives

Although extensive research in piled raft has been carried out and published as presented in literature review, however, the following issues have not been fully addressed which will form the research objectives:-

i. To look into the possibility and suitability of using ‘floating’ piled raft (FPR) foundation system in soft compressible subsoil for low rise buildings.

ii. To develop an analysis and design methodology for an alternative foundation system of ‘floating’ piled raft foundation system of same or varying pile lengths that take into consideration of the long term settlement of the subsoil. The proposed analysis and design methodology should be able to be used by practicing engineers for day to day design works.

iii. To solve long term serviceability problems of conventional piled to set foundation system in soft compressible subsoil by allowing ‘floating’ piled raft to settle together with the platform.

iv. To understand the performance and behaviour of ‘floating’ piled raft in soft compressible subsoil especially on the piled raft with combination of varying piled lengths.
1.4 **Scope of Works**

The scope of works for this research are as follows:-

i. For vertically loaded piled raft in soft compressible subsoil only.

ii. Proposed analysis and design methodology can cater for piles of varying sizes, lengths and loads.

iii. The piles shall be ‘floating’ piles which means the piles are not installed into hard stratum.

iv. Terzaghi’s consolidation theory is used for the evaluation of the magnitude of consolidation settlement.

v. For parametric studies, the vertically loaded piled rafts analysed are 3x3, 6x6 and 9x9 number of piles respectively with total combination of 108 cases that cover different pile lengths, different pile spacing and different raft thickness.

vi. Case studies on two completed projects designed using the proposed methodology and constructed:-

 a) 2-storey terrace houses at Bandar Botanic, Klang
 b) 5-storey medium rise apartment at Bandar Botanic, Klang

1.5 **Significant of Study**

This research was carried out to focus on the development of analysis and design methodology for the proposed alternative foundation system of ‘floating’ piled raft (FPR) foundation system of same or varying pile lengths. The design objectives are to control differential settlement, angular distortion and bending moment rather than only limiting total settlement. The estimations of differential settlement and angular distortion are the most critical issues in the design of large sized pile raft which the raft behaves as flexible raft, these movements are the main culprits causing a building to crack and lose its function and even collapse. Piles of varying lengths can be provided under the raft in order to limit settlements (both total and differential) to an acceptable level thus achieving the required angular distortion.
Based on the analysis and design methodology developed in this research, parametric studies were carried out to model the ‘floating’ pile raft (FPR) of different numbers of piles, lengths configurations, spacing of piles and also different raft thickness. The results obtained from these modelling will be presented and discussed in detailed to show the application of the proposed analysis and design methodology. The results also provide a better understanding on the performance and behaviour of ‘floating’ piled raft in soft compressible subsoil especially on the effectiveness of piled raft with combination of varying piled lengths to control differential settlement, angular distortion and bending moment. Finally, the analysis and design methodology developed can be used by practicing engineers for day to day design of piled raft in soft compressible subsoil which will help the development of the engineering practice in Malaysia.
REFERENCES

