CONSTRUCTION BID MODEL FOR RESIDENTIAL BUILDING PROJECTS
IN DUBAI

TAMADHUR H. F. AL JANABI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

APRIL 2018
Dedicated to

My Parents, Husband and my Children
ACKNOWLEDGEMENT

First and foremost, I would like to express my thanks to Almighty ALLAH on the successful completion of this research work.

I also express my sincere and profound gratitude to my supervisor Professor Dr. Muhd Zaimi Abd Majid for his continuous assistance, support, guidance, and understanding throughout my graduate studies. His trust, patience, knowledge, great insight, modesty and friendly personality have always been an inspiration for me and will deeply influence my career and future life.

I am also grateful to the Faculty of Civil Engineering; UTM for support, assistance and friendly treatment that did not only facilitated the work, but also made it pleasant. Furthermore, I am thankful to all the contracting companies in Dubai for the support provided to carry out the work.

Moreover, I wish to express my deep gratitude to my friends in Malaysia and Dubai for their invaluable support and encouragement through the years. Likewise, my heartiest appreciation and special thanks to my parents, husband and children for their endless patience and understanding.
ABSTRACT

Many construction firms face hardships during the economic crisis due to inaccurate bidding and difficulty in obtaining new projects because of cost fluctuation. The best option for construction firms during an economic crisis is to control their construction bid costs that fit the situation. The bidding cost during the economic crisis has led to losses in the execution of projects. The study investigated how the construction sector of Dubai, United Arab Emirate, experienced poor bidding performance during the economic crisis. This is evident when material cost was fluctuating and the construction companies had a tough time getting new projects due to inaccurate bidding. This research looked into the details of construction bidding management during the bidding stage by developing a construction bid mathematical model to assist construction firms avoid bidding problems during the economic crisis. Using the data gathered from the year 2009 and 2010 economic crash, a construction bid mathematical model and bidding plan methodology were developed to better prepare construction companies during economic crisis. The chronology of this study was divided into two phases. Phase one involved conducting an extensive literature review and collecting secondary data. Phase two focused on primary data gathering and analysis of the data collected. Documentary analysis and questionnaire surveys were engaged as a source and tool to gather the data. Data were analyzed using coefficient of variation and severity index. From the available data, the bid mathematical model for bidding was successfully developed. Then, ten experts validated this model and the data were analyzed whereby the results showed that the model has successfully reduced the estimation inaccuracy as well as predicted the problem faced especially bidding during the economic crisis. The findings have shown that it is very important to have a crisis-response plan in place to eradicate risks, secure the market and provide solutions to problems faced during the crisis. In conclusion, the model can be used to minimize the adverse effects on the construction companies, including the projects and stakeholders in the construction industry.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Background of the Research 1
1.2 Problem Statements 3
1.3 Research Questions 5
1.4 Aim and Objective 5
1.5 Scope of the Research 6
1.6 Research Methodology 6
1.7 Significance of the Research 8
1.8 Thesis Organization 8

2 LITERATURE REVIEW 10
2.1 Introduction 10
2.2 Economic Crisis 11
2.3	Previous Works on Cost Bid	16
2.4	Construction Cost Biding	17
2.5	Residential Bidding Projects Competition in Dubai	20
2.6	Building Cost process for Construction Projects	21
2.7	Consultant and the Construction Firms	24
2.7.1	Construction Firm	24
2.7.2	Consultant	25
2.8	Factors Influencing the Success of Tender Bidding	26
2.9	Residential Building Bidding Plan	27
2.10	Problems of Construction Bidding Cost During the Economic Economic Crisis	28
2.11	Bidding Cost Risk	32
2.12	Construction bidding Cost Risk During the Economic Crises	34
2.13	Dubai’s Construction Economic Crises	37
2.14	Bidding Cost for Residential Building	39
2.15	Bidding Cost for Residential Building During Crisis	40
2.16	Factors Influencing Bidding Cost for Residential Building During Crisis	41
2.16.1	Project Characteristics	42
2.16.2	Contractor Characteristics	43
2.16.3	Tendering condition, Consultant and Design Characterisitics	44
2.16.4	External Factors and Market Conditions	45
2.16.5	Inaccuracy of Cost Estimation	45
2.17	Construction Bidding Cost High Level Component (Bill of Quantities Cost Item)	47
2.18	Construction Bidding Cost Low Level Components Unit Cost	50
2.18.1	Direct Cost	52
2.18.2	Material Cost	52
2.18.3	Labour Cost	54
2.18.4	Equipment Costs	56
2.18.5	Subcontractor Works	57
2.18.6 Overhead Cost
2.18.7 Markup
2.18.8 Profit
2.19 Construction Bidding Cost Component During Economic Crisis
2.20 Construction Bidding Cost Strategy and Objectives
2.20.1 Cost-based Bidding Cost Strategy
2.20.2 Market-based Bidding Cost Policy
2.20.3 Standard Rate Table Based Bidding Cost Strategy
2.20.4 Historical Based Price Bidding Cost Strategy
2.20.5 Subcontractors’ Bids based Bidding Cost Strategy
2.20.6 Cover Price
2.21 Importance of Bidding Cost Strategy
2.22 Construction Bidding Cost Techniques
2.23 Construction Bidding Cost Methods
2.23.1 Conference Estimate
2.23.2 Financial Method
2.23.3 Superficial Area Method
2.23.4 The Cube Method
2.23.5 Single Price Rate Method
2.23.6 Aproximate Quantities
2.23.7 Element Estimating (Work Item Estimating)
2.24 Accuracy of Bidding Cost Method
2.25 Factors Affecting the Accuracy of Construction Bidding Cost
2.26 Construction Bid Cost Model
2.27 Summary

3 METHODOLOGY
3.1 Introduction
3.2 Research Philosophy
3.2.1 Epistemology 89
 3.2.1.1 Positivism 89
 3.2.1.2 Interpretivism 90
3.2.2 Ontological Consideration 90
 3.2.2.1 Realist Position 91
 3.2.2.2 Relativist Position 91
3.2.3 Cognition and Neuroscience 92
3.2.4 Philosophical Stance of Research 93

3.3 Research Approach 94
3.4 Research Design 96
3.5 Method 97
3.6 Data Collection 101
 3.6.1 Documentary Analysis 101
 3.6.1.1 Documentary Analysis Grouping 103
 3.6.1.2 Data Analysis 105
3.7 Methodology of the Survey 106
 3.7.1 Area of the Research 106
 3.7.2 Survey Within Documentary Analysis 106
 3.7.3 Sampling Method of Data Collection 106
 3.7.4 Data Collection (Documentary Analysis) 107
3.8 Survey 107
 3.8.1 Questionnaire Survey 108
 3.8.2 Questionnaire Survey Phase 2 111
 3.8.2.1 On Questionnaire Phase 1 and 2 (Data analysis) 112
 3.8.3 Measuring Respondents’ Level of Agreement for Questionnaire Phase 2 113
 3.8.4 Sampling of Respondents 114
3.9 Construction Bid Cost Mathematical Model 114
 3.9.1 Model Design 115
 3.9.2 Testing and Validation of the Model 116
 3.9.2.1 Confidentiality 116
 3.9.2.2 Reliability 116
 3.9.2.3 Validity 116
4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Documentary Data for Residential Building Projects in Dubai

4.3 Documentary Analysis Group A for Construction Bidding Cost During the Economic Crisis

4.4 Documentary Analysis Group B for Bidding Cost Component during the Economic Crisis With Respect to Item of Project Prices

4.4.1 Preliminaries

4.4.2 Site Work

4.4.3 Concrete Work

4.4.4 Masonry Work

4.4.5 Thermal and Moisture Protection Work

4.4.6 Masonry Works and Thermal and Moisture Protection Work

4.4.7 Door and Windows

4.4.8 Metal Works

4.4.9 Carpentry Work

4.4.10 Metal Works and Carpentry Works

4.4.11 Finishes

4.4.12 Mechanical/Electrical and Plumbing Works

4.4.13 Conveying System

4.4.14 Accessories

4.4.15 External Works

4.4.16 Provisional Sum

4.5 Factors Influencing Bidding Cost of Residential Building During Economic Crisis.
4.5.1 Project Characteristics

4.5.2 Client Characteristics

4.5.3 Contractor Characteristics

4.5.4 Bidding Conditions for Consultants and Design

4.5.5 External Factors and Market Condition

4.5.6 Inaccuracy in Cost Estimations

4.6 Construction Bidding Plan for Cost Component During the Economic Crisis

4.6.1 Main Construction Bidding Cost Components During the Economic Crisis

4.6.2 Construction Bidding Plan

4.7 Summary

5 DEVELOPMENT OF CONSTRUCTION BID MODEL

5.1 Introduction

5.2 Model Design

5.2.1 Item Price Constraint

5.2.2 Maximum and Minimum Price Item Constraints

5.2.3 Maximum and Minimum Price Item Percentage Constraint

5.2.4 Maximum and Minimum Price Rate Constraint

5.3 Tender Price Constraint

5.4 Selection of Variables

5.5 Construction Bid Mathematical Model Development

5.5.1 Regression Model of the Collected Data

5.5.2 Item Wise Regression Modeling

5.5.3 Item Percentage Wise Regression Modelling

5.6 Questionnaire Regression Modelling

5.6.1 Variable Regression Modelling
6 CONCLUSIONS AND RECOMMENDATIONS 222

6.1 Introduction 222

6.2 Conclusions 221

6.2.1 Identification and Establishment of Factors that Influence Bidding Cost for Residential Buildings During Economic Crisis. 224

6.2.2 Establishment of the Components of Bid Model Necessary to be Considered in Bidding Cost Model During the Economic Crisis 224

6.2.3 Development of Construction Bid Mathematical Model of a Residential Building Project in Dubai During the Economic Crisis 225

6.2.4 Validation of the Model Using Statistics and Experts Opinion 227

6.3 Contribution of the Research 227

6.4 Limitation of the Research 229

6.5 Recommendation for Future Research 230

REFERENCES 232

Appendices A - D 267 – 294
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Bidding Cost Problems during the economic crisis</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Factors influencing the residential buildings’ bidding cost</td>
<td>46</td>
</tr>
<tr>
<td>2.3</td>
<td>Classification of construction labor source</td>
<td>55</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparison of Costs</td>
<td>59</td>
</tr>
<tr>
<td>2.5</td>
<td>Methods of Construction Bidding Cost</td>
<td>73</td>
</tr>
<tr>
<td>2.6</td>
<td>Factors affecting construction bidding cost for residential building project</td>
<td>76</td>
</tr>
<tr>
<td>2.7</td>
<td>The details of the mathematical model for the construction bid cost</td>
<td>83</td>
</tr>
<tr>
<td>3.1</td>
<td>Summary of philosophical considerations</td>
<td>92</td>
</tr>
<tr>
<td>3.2</td>
<td>Strengths and weaknesses of mixed methods research</td>
<td>97</td>
</tr>
<tr>
<td>3.3</td>
<td>Design of questionnaire phase 1</td>
<td>110</td>
</tr>
<tr>
<td>3.4</td>
<td>Design of questionnaire phase 2</td>
<td>112</td>
</tr>
<tr>
<td>3.5</td>
<td>The respondent sampling</td>
<td>114</td>
</tr>
<tr>
<td>4.1</td>
<td>Project A</td>
<td>124</td>
</tr>
<tr>
<td>4.2</td>
<td>Project B</td>
<td>125</td>
</tr>
<tr>
<td>4.3</td>
<td>Project C</td>
<td>126</td>
</tr>
<tr>
<td>4.4</td>
<td>Project D</td>
<td>127</td>
</tr>
<tr>
<td>4.5</td>
<td>Project E</td>
<td>128</td>
</tr>
<tr>
<td>4.6</td>
<td>Project F</td>
<td>129</td>
</tr>
<tr>
<td>4.7:</td>
<td>Project G</td>
<td>130</td>
</tr>
<tr>
<td>4.8</td>
<td>Project H</td>
<td>131</td>
</tr>
<tr>
<td>4.9</td>
<td>Project I</td>
<td>132</td>
</tr>
<tr>
<td>4.10</td>
<td>Project J</td>
<td>133</td>
</tr>
</tbody>
</table>
4.11: Project K
4.12: Project L
4.13: Dubai Construction Bidding Cost Analysis
4.14: Preliminaries bidding cost analysis
4.15: Site work bidding cost analysis
4.16: Concrete works bidding cost analysis
4.17: Masonry bidding cost analysis
4.18: Thermal and Moisture Protection bidding cost analysis
4.19: Doors and windows bidding cost analysis
4.20: Metal Works bidding cost analysis
4.21: Carpentry work bidding cost analysis
4.22: Finishes bidding cost analysis
4.23: MEP bidding cost analysis
4.24: Conveying System bidding cost analysis
4.25: Accessories bidding cost analysis
4.26: External works bidding cost analysis
4.27: Provision sums bidding cost analysis
4.28: Residential buildings influence cost factors
4.29: Residential buildings cost factor related to project characteristics
4.30: Cost factors relating to client characteristics
4.31: Cost factors related to contractor characteristics
4.32: Cost factors relating to tendering situations, consultants and design
4.33: Cost factors external environment and market conditions
4.34: Cost factors associated with cost estimating inaccuracies.
4.35: Questionnaire Survey 1 Analysis
5.1: Regression Modeling for Preliminaries
5.2: Site Work Regression Modeling
5.3: Concrete Work Regression Modelling
5.4: Masonry Work Regression Modelling
5.5: Thermal and Moisture Protection Regression Modelling
5.6: Doors and Windows Regression Modelling
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7</td>
<td>Metal Work Regression Modeling</td>
</tr>
<tr>
<td>5.8</td>
<td>Carpentry Work Regression Modelling</td>
</tr>
<tr>
<td>5.9</td>
<td>Finishes Work Regression Modelling</td>
</tr>
<tr>
<td>5.10</td>
<td>MEP Work Regression Modelling</td>
</tr>
<tr>
<td>5.11</td>
<td>Conveying System Regression Modelling</td>
</tr>
<tr>
<td>5.12</td>
<td>Regression Modelling for Preliminary Percentage.</td>
</tr>
<tr>
<td>5.13</td>
<td>Site Work Percentage Regression Modelling</td>
</tr>
<tr>
<td>5.14</td>
<td>Concrete Work Percentage Regression Modelling</td>
</tr>
<tr>
<td>5.15</td>
<td>Masonry Work Percentage Modelling</td>
</tr>
<tr>
<td>5.16</td>
<td>Thermal and Moisture Protection Percentage Modelling</td>
</tr>
<tr>
<td>5.17</td>
<td>Door and Windows Percentage Regression Modelling</td>
</tr>
<tr>
<td>5.18</td>
<td>Metal Work Percentage Regression Modelling</td>
</tr>
<tr>
<td>5.19</td>
<td>Carpentry Work Percentage Regression Modelling</td>
</tr>
<tr>
<td>5.20</td>
<td>Finishes Work Percentage Regression Modelling</td>
</tr>
<tr>
<td>5.21</td>
<td>MEP Work Percentage Regression Modelling</td>
</tr>
<tr>
<td>5.22</td>
<td>Conveying System Percentage Regression Modelling</td>
</tr>
<tr>
<td>5.23</td>
<td>Project Total Price Regression Modelling</td>
</tr>
<tr>
<td>5.24</td>
<td>Calculation for independent variable (A_1 and A_1% to A_6 and A_6%) for each project</td>
</tr>
<tr>
<td>5.25</td>
<td>Calculation for average independent variables (A_1 and A_1% to A_4 and A_4%)</td>
</tr>
<tr>
<td>5.26</td>
<td>Calculation for independent variables (A_1 and A_1% to A_4 and A_4%)</td>
</tr>
<tr>
<td>5.27</td>
<td>Calculation for the average of independent variables (A_5 and A_5% to A_8 and A_8%)</td>
</tr>
<tr>
<td>5.28</td>
<td>Calculation for the average of independent variables (A_9 and A_9% to A_11 and A_11%)</td>
</tr>
<tr>
<td>5.29</td>
<td>Projects maximum and minimum limits of the project item cost price per square foot for 2009 and 2010 analysis before and after substituting the independent variables</td>
</tr>
<tr>
<td>5.30</td>
<td>Projects item maximum and minimum percentages price per square foot</td>
</tr>
</tbody>
</table>
5.31 Correlation coefficient calculation for model inputs and outputs 217
5.32 Correlation coefficient for the model inputs and outputs 218
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Research Methodology.</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Construction Bid process.</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Tender Cost Index from 2008-2015.</td>
<td>38</td>
</tr>
<tr>
<td>2.4</td>
<td>Theoretical Frame Work.</td>
<td>40</td>
</tr>
<tr>
<td>2.5</td>
<td>A model of residential buildings’ bidding cost influential factors.</td>
<td>43</td>
</tr>
<tr>
<td>2.6</td>
<td>Cost Elements sources.</td>
<td>51</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Methodology Flow Chart</td>
<td>100</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of Documentary analysis Flow</td>
<td>102</td>
</tr>
<tr>
<td>3.3</td>
<td>Questionnaires Phase 1 Flow Chart Process</td>
<td>109</td>
</tr>
<tr>
<td>4.1</td>
<td>Dubai Building Bidding Cost per square foot in 2009 and 2010</td>
<td>137</td>
</tr>
<tr>
<td>4.2</td>
<td>Percentage of Preliminaries of total bidding cost in 2009 and 2010</td>
<td>141</td>
</tr>
<tr>
<td>4.3</td>
<td>Preliminaries bidding cost per square foot in 2009 and 2010</td>
<td>141</td>
</tr>
<tr>
<td>4.4</td>
<td>Percentage of Site work of total bidding cost in 2009 and 2010</td>
<td>144</td>
</tr>
<tr>
<td>4.5</td>
<td>Site work bidding cost per square foot in 2009 and 2010.</td>
<td>144</td>
</tr>
<tr>
<td>4.6</td>
<td>Percentage of concrete work of total bidding cost in 2009 and 2010</td>
<td>146</td>
</tr>
<tr>
<td>4.7</td>
<td>Concrete work bidding cost per square foot in 2009 and 2010</td>
<td>147</td>
</tr>
<tr>
<td>4.8</td>
<td>Masonry work of total bidding cost in 2009 and 2010</td>
<td>149</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Masonry work bidding cost per square foot in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Percentage of thermal and moisture protection of total bidding cost in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Thermal and moisture protection bidding cost per square foot in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Percentage of doors and windows of total bidding cost in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Doors and windows bidding cost per square foot in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Percentage of metal works of total bidding cost in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>Metal works bidding cost per square foot in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>Percentage of carpentry work of total bidding cost in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>Carpentry work bidding cost per square foot in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.18</td>
<td>Percentage of Finishes work of total bidding cost in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td>Finishes work bidding cost per square foot in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>Percentage of MEP of total bidding cost in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.21</td>
<td>MEP work bidding cost per square foot in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.22</td>
<td>Percentage of conveying system of total bidding cost in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.23</td>
<td>Conveying system bidding cost per square foot in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>Accessories work bidding cost per square foot in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>4.26</td>
<td>External works of total bidding cost in 2009 and 2010.</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>4.27</td>
<td>External works bidding cost per square foot in 2009 and 2010</td>
<td>172</td>
</tr>
<tr>
<td>4.28</td>
<td>Percentage of provisional sum of total bidding cost in 2009 and 2010</td>
<td>174</td>
</tr>
<tr>
<td>4.29</td>
<td>Provision sum bidding cost per square foot in 2009 and 2010.</td>
<td>175</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>AACE</td>
<td>American Association of Cost Engineers</td>
<td></td>
</tr>
<tr>
<td>AED</td>
<td>United Arab Emirate Dirham</td>
<td></td>
</tr>
<tr>
<td>AASE</td>
<td>Airborne Arctic Stratospheric Expeditions</td>
<td></td>
</tr>
<tr>
<td>BCR</td>
<td>Beyond Contractual Reward</td>
<td></td>
</tr>
<tr>
<td>BIM</td>
<td>Building Information Modelling</td>
<td></td>
</tr>
<tr>
<td>BQ</td>
<td>Bill of Quantities</td>
<td></td>
</tr>
<tr>
<td>CIOB</td>
<td>Chartered Institute of Buildings</td>
<td></td>
</tr>
<tr>
<td>COV</td>
<td>Coefficient of Variation</td>
<td></td>
</tr>
<tr>
<td>DCAM</td>
<td>Division of Capital Asset Management</td>
<td></td>
</tr>
<tr>
<td>GCC</td>
<td>Gulf Corporation Council</td>
<td></td>
</tr>
<tr>
<td>GFA</td>
<td>Gross Floor Area</td>
<td></td>
</tr>
<tr>
<td>GSA</td>
<td>General Service Administration</td>
<td></td>
</tr>
<tr>
<td>ICE</td>
<td>Institute of Civil Engineers</td>
<td></td>
</tr>
<tr>
<td>IBS</td>
<td>Industrialized Building System</td>
<td></td>
</tr>
<tr>
<td>MEED</td>
<td>Middle East Economic Digest</td>
<td></td>
</tr>
<tr>
<td>MEP</td>
<td>Mechanical Electrical and Plumbing</td>
<td></td>
</tr>
<tr>
<td>MTD</td>
<td>Maintenance Training Device</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>Prime Cost</td>
<td></td>
</tr>
<tr>
<td>PRI</td>
<td>Profitability Requirement Index</td>
<td></td>
</tr>
<tr>
<td>PRIR</td>
<td>Profitability Responsiveness Item Ranking</td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>Repair and Alteration</td>
<td></td>
</tr>
<tr>
<td>RICS</td>
<td>Royal Institute of Chartered Surveyors</td>
<td></td>
</tr>
<tr>
<td>SF</td>
<td>Square Foot</td>
<td></td>
</tr>
<tr>
<td>SMM</td>
<td>Standard Method of Measurement</td>
<td></td>
</tr>
<tr>
<td>WSDOT</td>
<td>Washington Department of Transportation</td>
<td></td>
</tr>
<tr>
<td>UAE</td>
<td>United Arab Emirate</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Statistics on Trends of Material Prices</td>
<td>275</td>
</tr>
<tr>
<td>B</td>
<td>BQs Items Details and Residential building projects tender documents collected date check list</td>
<td>276</td>
</tr>
<tr>
<td>C</td>
<td>Construction Companies Questionnaires Survey</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>Phase 1</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Construction Companies Questionnaires Survey</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>Phase 2</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Construction Companies Evaluation Letters</td>
<td>383</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Research

Construction bidding cost for residential building projects in Dubai during economic crisis will be analyzed to determine the construction bid mathematical model for the year 2009 and 2010. This period was chosen to reflect the latest economic crisis of Dubai and show the difficulties of bid winning of residential building projects (MEED, Middle East Economic Digest Cost Indices Report, 2012). The bases of developing the bidding mathematical model which is a unique contribution for this study and will be a reference for the construction companies during the economic crisis (Jung et al, 2016).

Instead of preparing precise basic reasons for fluctuations in price, forecasting bid levels was given more emphasis. And the achievement or disappointment of a project can be judged based upon various factors yet the most well-known factor is the cost. The most vital component to a client is ordinarily to finish the project within budget (Wood, 2010).

Many unsuccessful businesses were the result of more and more inexperienced people forming construction firms and venturing into the construction sector each year, as free exit naturally follows free entry. The construction sector’s unpredictability including high risks further added to this situation. According to Kaka (1990), the high risks include elements of weather, site problems as well as the
It is obvious that difficulties of winning new bid of residential building existed in Dubai during the economic crisis in 2009 and 2010. According to Gugler et al., (2015), these difficulties were due to the wrong cost estimation. Likewise, Mansfield et al. (1994) asserted that wrong cost estimation was due to construction market fluctuation (The tender stage for Dubai’s residential buildings during the economic crisis is very crucial and important and the estimations done in these stages must be accurate and precise).

The wrong cost estimation and the difficulties of getting new residential building projects were faced by the United Arab Emirates (UAE) construction firms in 2009. In addition, the construction market was suffering the effects of an economic liquidity crunch and that was evident in the impact on tender prices (MEED, 2012).

Therefore, competing among contractors in the construction industry, increased which resulted high rate of residential building projects bid failure and the construction market instability. Many attempts to identify and solve the problem of construction bidding failure in residential building projects in the construction industry during the economic crisis were in conflict. The construction bidding cost has attracted a lot of attention in the recent years. However, more efforts are required to achieve a successful bidding especially during the economic crisis.

To obtain an exact estimate for residential building projects in Dubai during economic crisis is very critical. While it is not easy to prepare the budget forecast as it involves predicting the nature of residential building project, on the other hand, lack of cost forecasting for residential building projects was the main cause for the failure of construction firms in Dubai during economic crisis (Challal and Tkiouat, 2012). To be able to conduct cost forecasts on a frequent basis, the method used has to be simple, fast and reliable. Current construction bid models for residential
building projects have not considered bid evaluation stage during economic crisis. Consequently, cannot be used for residential building during economic crisis (Apeldoorn, 2013; Pucker et al., 2006).

Moreover, all residential building projects are known to have some form of risk due to market fluctuation especially during economic crisis. Most Dubai contractors did not adopt construction bid model for residential building projects during economic crisis. According to Latham (1994), risk of market fluctuation in the construction sector must be anticipated and handled well, reduced as much as possible, either solved together or relocated. In this regard, construction bid must be managed according in Dubai peculiarity taking into account construction market fluctuation during this economic crisis 2009 and 2010 (Myers, 2017). This research effort is made to introduce approaches for predicting construction bid model associated with residential building projects.

1.2 Problem Statements

It is obvious that the residential building project during economic crisis can never be considered successful if the cost, upper and lower limits are applied to it are not satisfied (Elchaig et al., 2005). And most common causes of residential buildings failure in construction industry during economic crisis were low profits and inadequate market risk (Kanggari, 1988). Large construction companies in Dubai failed to dominate a respectable share of the market. To this effect, accurate market price fluctuation information, feedback of building materials, equipment and technologies during residential building projects necessary to allocate the required risk factor for this residential building bid during economic crisis is questionable. Consequently, these companies are always characterized by fluctuations and crisis effect.

Also due to global economic crisis, the impact on tender prices after the real estate crash was reflected on the commodities, costs for thirty two (32) key items.
These include cost of materials, labor, plant and fuel. Likewise, it involves the price movements for major items, such as concrete in foundations, reinforcement steel and formwork to slabs and soffits. Tender prices is not just the material cost, but also the cost of transporting and placing the materials, it has tracked commodity items using this compounded rate as used in tender information (MEED Cost Indices Report, 2012).

Most construction companies faced bidding cost issues due to the wrong estimation of cost especially during the economic crises period. The wrong estimation of cost is commonly found in the tender and bidding stages (www.dubaided.gov.ae). The tender stage is very crucial and the estimations done on these stages must be accurate in Dubai especially during economic crisis. If the contract sum was wrongly estimated, then the construction company will lose this job. This is not good for the company in terms of its image, reputation, loyalty and good market rating (Sriprasert, 2000).

Currently, conventional bidding cost model could not adequately fulfill the needs of construction sector needs, since most of the conventional models did not incorporate the market fluctuation uncertainties in such a challenging environment, residential building projects must integrate market fluctuations (Abdallah, 2007).

In Dubai, the shift towards construction bid cost was driven by two major reasons. Firstly, the need to estimate bid projects and secondly, the need for construction companies’ innovation in the bidding cost model of residential building projects. In developing countries like UAE, the high demand for residential buildings pressures on global market situation and competition compelled construction companies to innovate alternative bidding models to improve estimation for residential building projects (Al Sharif, 2007).

Construction markets are complex and require careful segmental bid models. The construction industry has undergone considerable model change in the last decade. Clients that are ever demanding and fierce competitions have resulted in
many construction companies having to look for ways of: beating their competitors. They focused on new bidding models, getting to know market situation of residential building projects, doing their marketing before trying to participating in their bids (Christopher et al., 2003). Hence, this study focused on the Dubai’s economic crisis in 2009-2010 to answer several questions arised

1.3 Research Questions

1. Do construction firms face bidding problems in residential building projects in Dubai during economic crisis (2009-2010)?
2. Do construction bid factors of residential building projects arise during market fluctuation?
3. Has there been any construction bid model to achieve appropriate estimation for residential building projects during the economic crisis?
4. Is there any construction bid risks that arise for residential building projects during economic crisis?

1.4 Aim and Objective

The aim of this study is to develop a construction bid cost mathematical model during economic crisis for residential buildings in Dubai, United Arab Emirates. To achieve this aim, the following objectives are identified:

i. To identify and establish the factors that influence bidding cost for residential buildings during economic crisis.

ii. To establish the components of bid model necessary to be considered in bidding cost model during economic crisis.

iii. To develop the construction bid mathematical model of a residential building project in Dubai during economic crisis.

iv. To validate the bid model statistically through expert opinions.
1.5 Scope of the Research

This research focused on build construction bid model for residential building projects in Dubai during economic crisis. The research made used of typical bidding documents for Dubai’s residential building projects for the year 2009 and 2010. The first questionnaire was developed to establish the required cost mathematical model and construction bidding cost components. The second questionnaire on the other hand focused on establishing the main components affecting residential building projects bidding. It also deals with the main variables in developing the bid mathematical model. Furthermore, the type of the projects considered are residential buildings. To this effect, the bidding stage for project executed duration for economic crisis was the main focus. On the other hand, the documentary analysis was performed to get an insight on the real market fluctuation and to explore the factors and components affecting bidding cost during economic crisis to establish the construction bid mathematical model and contractors’ bid plan.

1.6 Research Methodology

The research is divided into four phase 1, 2, 3 and four respectively, as illustrated in the Figure 1.1. Phase 1 deal with the identification of research problems and establishing the aims and the objectives of the research.

Phase 2 covers a review on the information regarding the problem, construction-bidding cost during economic crisis in Dubai; factors influencing residential building bidding cost during economic crisis, construction bidding cost components during economic crisis and existing construction bidding cost models.

Phase 3 deals with the , documentary analysis to investigate the bidding cost of construction for residential buildings during the economic crisis from 2009 to 2010. Likewise, Phase 3 involved questionnaire surveys to support the documentary
analysis in order to determine the construction bidding cost problems for residential buildings during the economic crisis in Dubai,

Phase 4 covers development of construction cost bid mathematical model, bidding plan and validation of the model.

![Figure 1.1: Research Methodology](image)
1.7 Significance of the Research

The research identifies and established those factors influencing bidding cost for residential buildings during the economic crises. Likewise, construction bid mathematical model for residential building projects that incorporate construction market fluctuations and accurately predicts the bidding cost during the economic crises is developed. The model can be used by relevant firms for predicting the demand of ideal cost estimate of residential building projects for bidding stage during economic crisis. Consequently, this will assist construction firms to survive the most competitive environment during the economic crises with increased level of satisfaction.

1.8 Thesis Organization

This thesis is divide into six chapters. Chapter 1 which consists of background of the research, problem statement, objectives of the research, scopes of the research, and significant of the research aimed to highlight the introduction aspect of this research work.

Chapter 2 consists of comprehensive literature review based on the research topic. The literature reviewed covers the general overviews on factors affecting construction bidding cost. The chapter further reviews the available construction bidding cost methods It also describes the overview of construction bid cost mathematical models.

Chapter 3 explained the methodology, data collection and analysis conducted to achieve the research objectives. The chapter discussed the research approach and overall research flow chart.

Chapter 4 describes the results for the data collected from documentary analysis, questionnaire phase 1 and questionnaire phase 2. It also discusses the
results of projects’ prices during the economic crisis, construction bidding cost item components for data collected from the documentary analysis, the results for the residential building projects bidding cost in the form of graphs and tables, the construction bidding methodologies of bidding cost and the construction bidding cost components during the economic crisis.

Chapter 5 presents the final results of the study, the construction bid cost mathematical model for residential buildings including validation tests for the model and then establish the contractors’ construction bidding plan as well as cost components.

Chapter 6. Finally, overall conclusions were made based on the objectives. Recommendations for further investigation based on the research outcome acknowledge during this study were mentioned and highlighted.
REFERENCES

Proceedings of the 11th Annual ARCOM Conference. University of York,
September, pp. 359-66.

Boddewyn, Jean J., Robin Soehl, and Jacques, P. (1986). Standardization in
69-75.

Bookstaber, R. (2007). A demon of our own design: Markets, hedge funds and the

Practice and Theory in Perspective, *Construction Management and

planning and price control.

Boussabaine, A. H. and Elhag, T. M. S. (1999). Extraction of interpretable infor-
nation from cost data of office projects. *In, Proceedings of COBRA '99. The
Royal Institution of Chartered Surveyors*.

Worth Heinemann, 47-236

Burger, R. (2016). 4 Steps to a Successful Residential Bid Every Construction Manager Should Know (But Most Don’t)

Deloitte Middle East. http://www.deloittemiddleeast.com

Dubai economy. www.dubaided.gov.ae/English/ecosrch/EcoHistDb/default.aspx

George, J. (2012). Construction Construction cost in UAE declines by 30%.

Gulf construction online. http://www.gulfconstructiononline.com

Middle East business intelligence. http://www.meed.com

Research Paper Series. Royal Institution of Chartered Surveyors, London. 1(2)

Valentin, B. (2014). Discovering Major Bidding Errors.

