SEQUENCE OF IMAGE ENHANCEMENT OF FLAT ELECTROENCEPHALOGRAPHY USING INTUITIONISTIC FUZZY SET

SUZELAWATI BINTI ZENIAN

UNIVERSITI TEKNOLOGI MALAYSIA
SEQUENCE OF IMAGE ENHANCEMENT OF FLAT ELECTROENCEPHALOGRAPHY USING INTUITIONISTIC FUZZY SET

SUZELAWATI BINTI ZENIAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mathematics)

Faculty of Science
Universiti Teknologi Malaysia

FEBRUARY 2018
To my beloved son Adam Mikael and my family
ACKNOWLEDGEMENT

First and foremost, praise be to Allah for giving me good health, strength and patience throughout these years to complete this thesis and for that I would like to express my greatest gratitude. Throughout this journey, many individuals have come along and assisted me into completing this thesis with success. My warmest and sincerest appreciation and gratitude to my supervisor, Prof. Dr. Tahir Ahmad and co-supervisor, Dr. Amidora Idris for the continuous guidance, support, encouragement, and always been a great source of inspiration throughout the research. They have led me into their world and coach me from the beginning until now.

I would like to gratefully thank Prof. Dr. Reza Saatchi and Assoc. Prof. Dr. Normah Maan for their guidance through valuable comments in producing a good thesis. My appreciation is also extended to Mr (Dr) Mohd. Sofan Zenian, Neurosurgeon, Neurosurgery Department, Queen Elizabeth Hospital, Kota Kinabalu, for his valuable advice and suggestions. Thank you so much to my beloved family for their endless support. There are simply no words to describe my appreciation for all the help and guidance you have given me from the very beginning of my career until now. Without your guidance, I would not have been where I am today.

My heartfelt thank you to the Ministry of Higher Education Malaysia and Universiti Malaysia Sabah for granting the scholarship and permission to pursue my studies under SLAI. Also to all the members of the Fuzzy Research Group (FRG), Department of Mathematics, and Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia whom I have the honour to work with during my time in UTM. Special thanks to my colleagues and friends. To everyone mentioned above, you have inspired me to be a better person through your excellence and continuous dedication. Thank you.
ABSTRACT

This study focused on contrast enhancement of Flat Electroencephalography (fEEG) image during epileptic seizure. The main interest is in visualizing the path of brainstorm in the brain that occur during seizure. Selected techniques that are involved ranging from classical, ordinary fuzzy, and advanced fuzzy namely the intuitionistic fuzzy sets (IFS). Different techniques may result in different output of fEEG image. The methods in classical approach are Power Law Transformation, Histogram Equalization, and Image Size Dependent Normalization. The intensifier operator is implemented in the fuzzy contrast enhancement technique. For the IFS approach, the Window Based Enhancement Scheme (WBES) and its revised version (RWBES) are applied. The RWBES gives better results compared to the WBES whereby the vague boundary of the cluster centres are reduced resulting in a smaller area of the vague boundary. The vague boundary represents the strength of the electrical potential of the foci of seizure. Next, the quality of the output image is measured via the objective measure such as mean squared error (MSE), peak-signal-to-noise-ratio (PSNR), universal image quality index (UIQI), and structural similarity index measure (SSIM). In IFS, the sum of membership and non-membership is not necessarily equal to one. Thus, there exists hesitancy in deciding the degree to which an element satisfies a particular property. Moreover, the sequence of enhanced fEEG images are demonstrated by varying the value of parameter, namely λ, that also influence the hesitation value π. In addition, the Sugeno type intuitionistic fuzzy generator which is used to compute the non-membership value ν has been extended to the concept of fuzzy limit. Hence, by implementing the definition of fuzzy limit, different values of ϵ will be tested in obtaining the values of integer N that will determine the value of λ and hence the value of hesitation π. The relationship between membership, non-membership, and hesitation values are also demonstrated graphically.
ABSTRAK

Kajian ini memfokuskan kepada penambahbaikan kontras bagi imej Elektroensifalografi Meleper (fEEG) semasa serangan sawan. Kepentingan utama adalah untuk menggambarkan laluan ribut otak dalam otak semasa berlakunya sawan. Teknik-teknik terpilih yang terlibat berbagai-bagai dari klasik, kabur biasa, dan kabur lanjutan iaitu set kabur intuisinistik (IFS). Teknik berbeza akan memberikan imej output fEEG yang berbeza. Kaedah pendekatan klasik adalah Transformasi Hukum Kuasa, Penyamaan Histogram, dan Normalisasi Berdasarkan Saiz Imej. Pengoperasi keamatan diimplementasi dalam teknik penambahbaikan kontras kabur. Untuk pendekatan IFS, Skim Penambahbaikan Berasaskan Tetingkap (WBES) dan versinya yang disemak semula (RWBES) digunakan. RWBES memberikan keputusan yang lebih baik berbanding WBES yang mana sempadan kabur bagi pusat gugusan dikurangkan, lalu menghasilkan kawasan yang lebih kecil bagi sempadan kabur tersebut. Sempadan kabur tersebut mewakili kekuatan potensi elektrik bagi pusat sawan. Seterusnya, kualiti imej output diukur menerusi ukuran objektif seperti min ralat kuasa dua (MSE), nisbah isyarat puncak kepada hingar (PSNR), indeks kualiti imej universal (UIQI), dan ukuran indeks kesamaan struktur (SSIM). Dalam IFS, hasil tambah keahlian dan bukan keahlian tidak semestinya bersamaan dengan satu. Oleh itu, keraguan wujud dalam menentukan darjah bagi suatu unsur memenuhi sesuatu sifat tertentu. Selanjutnya, jujukan imej fEEG yang telah ditambah baik dipamerkan dengan mengubah-ubah nilai parameter, iaitu \(\lambda \), yang juga akan mempengaruhi nilai keraguan \(\pi \). Tambahan pula, penjana intuisinistik kabur jenis Sugeno yang digunakan untuk mengira nilai bukan keahlian \(\nu \) telah dilanjutkan kepada konsep had kabur. Seterusnya, dengan mengimplementasi definisi had kabur, nilai \(\epsilon \) yang berbeza akan diuji untuk memperolehi nilai integer \(N \) yang akan menentukan nilai bagi \(\lambda \) dan seterusnya nilai keraguan \(\pi \). Hubungan antara nilai keahlian, bukan keahlian, dan keraguan turut dipamerkan secara graf.
TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
DECLARATION | ii
DEDICATION | iii
ACKNOWLEDGEMENT | iv
ABSTRACT | v
ABSTRAK | vi
TABLE OF CONTENTS | vii
LIST OF TABLES | xi
LIST OF FIGURES | xii
LIST OF SYMBOLS | xvii
LIST OF ABBREVIATIONS | xix
LIST OF APPENDICES | xx

1 | INTRODUCTION | 1
1.1 | Introduction | 1
1.2 | Research Background | 1
1.3 | Problem Statement | 3
1.4 | Research Questions | 4
1.5 | Research Objectives | 4
1.6 | Scope of Research | 5
1.7 | Significant Contributions | 5
1.8 | Research Framework | 8
2 LITERATURE REVIEW

2.1 Introduction 10

2.2 Human Brain 10

2.3 Seizures 19

2.3.1 Classification based on type 19

2.3.2 Classification based on etiology 20

2.3.3 Classification based on epileptic syndromes 21

2.3.4 Pathophysiology of seizure 22

2.4 Digital Image Processing 23

2.5 Fuzzy Image Processing 31

2.6 Intuitionistic Fuzzy Image Processing 33

2.7 Image Enhancement 37

2.8 Noise 41

2.9 Medical Imaging 42

2.10 Electroencephalography 47

2.11 Implementation of Intuitionistic Fuzzy Set in Medical Images 52

2.12 Conclusion 59

3 MATHEMATICAL BACKGROUND 60

3.1 Introduction 60

3.2 Classical Set 61

3.3 Fuzzy Set 62

3.4 Intuitionistic Fuzzy Set 63

3.5 Sequence of Fuzzy Numbers 66

3.6 Flat EEG (fEEG) 67

3.7 Digital fEEG 71

3.8 Image Quality Assessment 77

3.8.1 Mean Square Error (MSE) 78

3.8.2 Peak-Signal-to-Noise Ratio (PSNR) 78

3.8.3 Universal Image Quality Index (UIQI) 78
3.8.4 Structural Similarity Index Measure (SSIM) 80
3.9 Conclusion 81

4 ENHANCING fEEG IMAGE 82
4.1 Introduction 82
4.2 Contrast Enhancement of fEEG Image 82
4.3 Classical Approach 85
 4.3.1 Power Law (Gamma) Transformation 85
 4.3.2 Histogram Equalization 86
 4.3.3 Image Size Dependent Normalization 86
4.4 Fuzzy Approach 87
4.5 IFS Approach 89
 4.5.1 The WBES Procedure 89
 4.5.2 Revised Version of WBES Procedure 90
4.6 Conclusion 92

5 DEMONSTRATION OF fEEG IMAGE 93
5.1 Introduction 93
5.2 fEEG Input Image 93
5.3 fEEG Output Image by Using Classical Approach 102
 5.3.1 Power Law (Gamma) Transformation Output Image 102
 5.3.2 Histogram Equalization Output Image 105
 5.3.3 Image Size Dependent Normalization Output Image 106
5.4 Fuzzy Approach Output Image 107
5.5 IFS Approach Output Image 108
 5.5.1 WBES Output Image 108
 5.5.2 RWBES Output Image 112
5.6 Results for Other Datasets 121
5.7 Conclusion 122
6 EEG IMAGE QUALITY TEST 123
 6.1 Introduction 123
 6.2 Performance Comparisons 123
 6.3 Analysis and Discussion of Quality Test 126
 6.4 SSIM Index Map for fEEG Output Image 128
 6.5 Conclusion 136

7 DETERMINATION OF HESITATION VALUE 137
 7.1 Introduction 137
 7.2 Hesitation Value via Fuzzy Limit 137
 7.3 Conclusion 143

8 CONCLUSION 145
 8.1 Introduction 145
 8.2 Summary of Thesis 145
 8.3 Significance of Research 147
 8.4 Future Work 147

REFERENCES 149
 Appendices A - D 158–268
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>The location and electrical potential of cluster centres on fEEG (patient A)</td>
<td>100</td>
</tr>
<tr>
<td>6.1</td>
<td>Performance comparison for Power Law Transformation, $t = 1$</td>
<td>124</td>
</tr>
<tr>
<td>6.2</td>
<td>Performance comparison for Histogram Equalization, $t = 1$</td>
<td>124</td>
</tr>
<tr>
<td>6.3</td>
<td>Performance comparison for Image Size Dependent Normalization, $t = 1$</td>
<td>124</td>
</tr>
<tr>
<td>6.4</td>
<td>Performance comparison for Fuzzy Approach, $t = 1$</td>
<td>124</td>
</tr>
<tr>
<td>6.5</td>
<td>Performance comparison for WBES with 4 partitioned windows, $t = 1$</td>
<td>125</td>
</tr>
<tr>
<td>6.6</td>
<td>Performance comparison for WBES with 16 partitioned windows, $t = 1$</td>
<td>125</td>
</tr>
<tr>
<td>6.7</td>
<td>Performance comparison for RWBES with no partitioned window; fuzzification by Equation 4.6, $t = 1$</td>
<td>125</td>
</tr>
<tr>
<td>6.8</td>
<td>Performance comparison for RWBES with 4 partitioned windows; fuzzification by Equation 4.6, $t = 1$</td>
<td>125</td>
</tr>
<tr>
<td>6.9</td>
<td>Performance comparison for RWBES with no partitioned windows; fuzzification by Equation 4.7, $t = 1$</td>
<td>126</td>
</tr>
<tr>
<td>6.10</td>
<td>Performance comparison for RWBES with 4 partitioned windows; fuzzification by Equation 4.7, $t = 1$</td>
<td>126</td>
</tr>
<tr>
<td>7.1</td>
<td>Values of Parameters</td>
<td>140</td>
</tr>
<tr>
<td>7.2</td>
<td>Values of π for particular λ</td>
<td>140</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Research contribution on fEEG image</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Research framework</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Human brain [7]</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>(a) Dorsal portion (b) Lateral portion [11]</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>(a) Ventral portion (b) Insular lobe [11]</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Medial portion [11]</td>
<td>13</td>
</tr>
<tr>
<td>2.5</td>
<td>Specific brain functions based on cerebral lobes [9]</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Cortical layers and neuronal organizations [9]</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Neuronal action potential and depolarization [8]</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Graph of action potential of the neurons [8]</td>
<td>17</td>
</tr>
<tr>
<td>2.9</td>
<td>Broadmann area of the brain [13]</td>
<td>17</td>
</tr>
<tr>
<td>2.10</td>
<td>Cortical Homunculus [11]</td>
<td>18</td>
</tr>
<tr>
<td>2.13</td>
<td>Pixel quantization in digital image [21]</td>
<td>25</td>
</tr>
<tr>
<td>2.14</td>
<td>Image digitization [18]</td>
<td>26</td>
</tr>
<tr>
<td>2.15</td>
<td>Illustration of image sampling and quantization. (a) Original image, (b) Image under sampling, (c) Image under quantization [24]</td>
<td>26</td>
</tr>
<tr>
<td>2.16</td>
<td>An example of the digital image acquisition process. (a) Energy (illumination) source, (b) An element of a scene, (c) Imaging system, (d) Projection of the scene onto the image plane, (e) Digitized image [18]</td>
<td>26</td>
</tr>
<tr>
<td>2.17</td>
<td>Fundamental steps in digital image processing [18]</td>
<td>27</td>
</tr>
<tr>
<td>2.18</td>
<td>(a) Original image, (b) Enhanced image [18]</td>
<td>28</td>
</tr>
</tbody>
</table>
2.19 (a) Original image, (b) Restored image [18] 28

2.20 An RGB image. (a) RGB image, (b) R component, (c) G component, (d) B component [18] 29

2.21 Original image and compressed images with different coefficients [18] 29

2.22 (a) Original image, (b) Image segmented by Sobel edge detector, (c) Image segmented by Prewitt edge detector [18] 30

2.23 Structure of fuzzy image processing [22] 33

2.24 Intuitionistic fuzzy image processing framework [32] 36

2.25 Transformation of image f into image g using T [35] 38

2.26 Improving image contrast by adjusting the image histogram [39] 38

2.27 (a) Original image, (b) Edge of the image [40] 39

2.28 Noise reduction examples [41] 39

2.29 Image enhancement for brightness transformation 40

2.30 (a) Original image, (b) With added salt and pepper noise [43] 42

2.31 (a) Original image, (b) Image corrupted by Gaussian noise [24] 42

2.32 CT scan device [44] 43

2.33 CT scan images of the brain [45] 43

2.34 Medical images. (a) Ultrasound, (b) X-ray, (c) MRI [27] 44

2.35 Imperfections in medical images [47] 45

2.36 Medical image methods [47] 46

2.37 Brain imaging methods hierarchy [47] 46

2.38 An EEG system [49] 47

2.39 Post synaptic dendritic potential (current dipole) measure by EEG [52] 49

2.40 Functional magnetic resonance imaging (fMRI) [58] 50

2.41 Magnetoencephalography (MEG) [59] 50

2.42 Positron Emission Topography (PET) [60] 51

2.43 Video EEG (V-EEG) [63] 52

2.44 (a) Blood cell image, (b) FCM cluster, (c) Intuitionistic fuzzy cluster [46] 53
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.45</td>
<td>(a) CT scan brain image, (b) Enhancement using fuzzy method, (c) Enhancement using intuitionistic fuzzy method, (d) Enhancement using proposed intuitionistic fuzzy set [64]</td>
</tr>
<tr>
<td>2.46</td>
<td>(a) Original image, (b) Otsu method (nonfuzzy method), (c) Bustince method (IFS method), (d) Robert method (nonfuzzy method), (e) Couto method, (f) Chaira and Ray method, (g) Vlachos method, (h) Proposed method by Chaira [66]</td>
</tr>
<tr>
<td>2.47</td>
<td>(a) Brain image, (b)-(d) Chaira method, (e) Canny’s method [68]</td>
</tr>
<tr>
<td>2.48</td>
<td>(a) Hestain image, (b) Bustince method, (c) Proposed Chaira’s method [68]</td>
</tr>
<tr>
<td>3.1</td>
<td>Category of uncertainty [71]</td>
</tr>
<tr>
<td>3.2</td>
<td>Geometrical representation of Atanassov’s IFS [33]</td>
</tr>
<tr>
<td>3.3</td>
<td>Flat EEG at different time (in seconds) [88]</td>
</tr>
<tr>
<td>3.4</td>
<td>EEG coordinate system [4]</td>
</tr>
<tr>
<td>3.5</td>
<td>EEG projection [4]</td>
</tr>
<tr>
<td>3.6</td>
<td>EEG signal [4]</td>
</tr>
<tr>
<td>3.7</td>
<td>Analyzed EEG signal [4]</td>
</tr>
<tr>
<td>3.8</td>
<td>Transformation of EEG signal</td>
</tr>
<tr>
<td>3.9</td>
<td>Voronoi digitization on fEEG x-axis [6]</td>
</tr>
<tr>
<td>3.10</td>
<td>fEEG pixels [6]</td>
</tr>
<tr>
<td>3.11</td>
<td>Fuzzy neighborhood of each cluster centre c_j of a fEEG [6]</td>
</tr>
<tr>
<td>3.12</td>
<td>fEEG image [6]</td>
</tr>
<tr>
<td>4.1</td>
<td>Classical approach</td>
</tr>
<tr>
<td>4.2</td>
<td>Fuzzy approach</td>
</tr>
<tr>
<td>4.3</td>
<td>IFS approach</td>
</tr>
<tr>
<td>4.4</td>
<td>Fuzzy contrast enhancement</td>
</tr>
<tr>
<td>4.5</td>
<td>Flowchart of the RWBES process</td>
</tr>
<tr>
<td>5.1</td>
<td>A sample of EEG signal for patient A</td>
</tr>
<tr>
<td>5.2</td>
<td>The fEEG and fEEG image for patient A at time $t = 1$ to $t = 16$</td>
</tr>
<tr>
<td>5.3</td>
<td>fEEG image at time 1 of size 11×11, (b) Image histogram</td>
</tr>
</tbody>
</table>
5.4 Membership value of fEEG image at time 1 of size 11×11

5.5 (a) fEEG image at time 1 of size 201×201 (b) Image histogram

5.6 fEEG output image for $\gamma = 0.5$, (a) Output image (b) Image histogram

5.7 fEEG output image for $\gamma = 1$, (a) Output image (b) Image histogram

5.8 fEEG output image for $\gamma = 2$, (a) Output image (b) Image histogram

5.9 fEEG output image for $\gamma = 3$, (a) Output image (b) Image histogram

5.10 fEEG output image for $\gamma = 4$, (a) Output image (b) Image histogram

5.11 fEEG output image for $\gamma = 8$, (a) Output image (b) Image histogram

5.12 fEEG output image for $\gamma = 10$, (a) Output image (b) Image histogram

5.13 fEEG output image for $\gamma = 20$, (a) Output image (b) Image histogram

5.14 Using global histogram equalization, (a) fEEG output image (b) Image histogram

5.15 Using local histogram equalization, (a) fEEG output image (b) Image histogram

5.16 Using Image Size Dependent Normalization, (a) fEEG output image (b) Image histogram

5.17 Fuzzification by using Equation 4.6, (a) fEEG output image (b) Image histogram

5.18 Fuzzification by using Equation 4.7, (a) fEEG output image (b) Image histogram

5.19 fEEG output image by using WBES with 4 partitioned windows

5.20 Histogram by using WBES with 4 partitioned windows

5.21 fEEG output image by using WBES with 16 partitioned windows

5.22 Histogram by using WBES with 16 partitioned windows
5.23 \textit{fEEG output image with no partitioned window (fuzzification by Equation 4.6)} 114
5.24 \textit{Histogram of Figure 5.23} 115
5.25 \textit{fEEG output image by using 4 partitioned windows (fuzzification by Equation 4.6)} 116
5.26 \textit{Histogram of Figure 5.25} 117
5.27 \textit{fEEG output image with no partitioned window (fuzzification by Equation 4.7)} 118
5.28 \textit{fEEG output image with 4 partitioned windows (fuzzification by Equation 4.7)} 119
5.29 \textit{Histogram of Figure 5.27} 120
5.30 \textit{Histogram of Figure 5.28} 121
6.1 \textit{SSIM index map using Power Law Transformation} 129
6.2 \textit{SSIM index map using global histogram equalization} 129
6.3 \textit{SSIM index map using local histogram equalization} 130
6.4 \textit{SSIM index map using Image Size Dependent Normalization} 130
6.5 \textit{SSIM index map using fuzzy approach (fuzzification by Equation 4.6)} 130
6.6 \textit{SSIM index map using fuzzy approach (fuzzification by Equation 4.7)} 131
6.7 \textit{SSIM index map using WBES with 4 partitioned windows} 131
6.8 \textit{SSIM index map using WBES with 16 partitioned windows} 132
6.9 \textit{SSIM index map for RWBES using fuzzification by Equation 4.6 with no partitioned window} 133
6.10 \textit{SSIM index map for RWBES using fuzzification by Equation 4.6 with 4 partitioned windows} 134
6.11 \textit{SSIM index map for RWBES using fuzzification by Equation 4.7 with no partitioned window} 135
6.12 \textit{SSIM index map for RWBES using fuzzification by Equation 4.7 with 4 partitioned windows} 136
7.1 \textit{Relationship between membership, non-membership, and hesitation for tested }\lambda\textit{ (a) }\lambda = 2, \textit{ (b) }\lambda = 5, \textit{ (c) }\lambda = 10, \textit{ (d) }\lambda = 46, \textit{ (e) }\lambda = 92 142
7.2 \textit{The output images with different values of }\lambda 144
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na⁺</td>
<td>Sodium ion</td>
</tr>
<tr>
<td>K⁺</td>
<td>Potassium ion</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>Calcium ion</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>Chloride ion</td>
</tr>
<tr>
<td>(x_{ij})</td>
<td>Gray level at pixel ((i, j))</td>
</tr>
<tr>
<td>(\mu_i(x_{ij}))</td>
<td>Membership value of the gray level (x_{ij})</td>
</tr>
<tr>
<td>(I)</td>
<td>An image of (M \times N) pixel</td>
</tr>
<tr>
<td>(o)</td>
<td>Object function that denotes the object or scene</td>
</tr>
<tr>
<td>(p)</td>
<td>Point-spread function</td>
</tr>
<tr>
<td>(n)</td>
<td>Additive noise-nondeterministic function</td>
</tr>
<tr>
<td>(X)</td>
<td>A set of element (x_i)</td>
</tr>
<tr>
<td>(\pi_A(x))</td>
<td>The degree of non-determinacy or hesitation</td>
</tr>
<tr>
<td>(v_A(x))</td>
<td>Non membership (v_A(x))</td>
</tr>
<tr>
<td>(N)</td>
<td>Total number of pixel</td>
</tr>
<tr>
<td>(\sigma_x)</td>
<td>Standard deviations of (x)</td>
</tr>
<tr>
<td>(\sigma_y)</td>
<td>Standard deviations of (y)</td>
</tr>
</tbody>
</table>
r - Input pixel value
s - Output pixel value
c - Scaling constant
γ - Positive value
h - Frequency value
K - Enhancement variable
t_i - Time at i seconds
\mathbb{R} - Real number
\leq - Less than or equal to
\in - Member of
λ - Parameter value
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEG</td>
<td>Electroencephalography</td>
</tr>
<tr>
<td>C_{EEG}</td>
<td>EEG coordinate system</td>
</tr>
<tr>
<td>FTTM</td>
<td>Fuzzy Topographical Topological Mapping</td>
</tr>
<tr>
<td>IFS</td>
<td>Intuitionistic fuzzy set</td>
</tr>
<tr>
<td>IFIP</td>
<td>Intuitionistic fuzzy image processing</td>
</tr>
<tr>
<td>fEEG</td>
<td>Flat Electroencephalography</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean square error</td>
</tr>
<tr>
<td>PSNR</td>
<td>Peak signal to noise ratio</td>
</tr>
<tr>
<td>UIQI</td>
<td>Universal image quality index</td>
</tr>
<tr>
<td>SSIM</td>
<td>Structural similarity index measure</td>
</tr>
<tr>
<td>WBES</td>
<td>Window Based Enhancement Scheme</td>
</tr>
<tr>
<td>RWBES</td>
<td>Revised Version of Window Based Enhancement Scheme</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Topography</td>
</tr>
<tr>
<td>MEG</td>
<td>Magnetoencephalography</td>
</tr>
<tr>
<td>I-EEG</td>
<td>Intracranial Electroencephalograph</td>
</tr>
<tr>
<td>ECoG</td>
<td>Electrocorticography</td>
</tr>
<tr>
<td>fMRI</td>
<td>Functional magnetic resonance image</td>
</tr>
<tr>
<td>CT</td>
<td>Computerized tomography</td>
</tr>
<tr>
<td>PSF</td>
<td>Point-spread function</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Implementation of Patient A</td>
<td>158</td>
</tr>
<tr>
<td>B</td>
<td>Implementation of Patient B</td>
<td>194</td>
</tr>
<tr>
<td>C</td>
<td>Approval Letter of Using EEG System at Hospital</td>
<td>266</td>
</tr>
<tr>
<td></td>
<td>Kuala Lumpur</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Paper Published</td>
<td>267</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

The human body functions are generally controlled by two most important systems which are the nervous system and the endocrine system. Human nervous system is a very complex system, well organized, highly sophisticated with estimated at least about 100 billion of neurons and 100 trillion of interconnections or synapses involve in its networking system. It can be divided anatomically into central nervous system (CNS) which comprises the brain and spinal cord, and the peripheral nervous system (PNS) which forms the cranial and spinal rootlets. It also can be classified base on the functional status into somatic nervous system which innervates the structures of the body wall such as skin, muscles and mucous membranes or the autonomic nervous system (ANS) which innervates the smooth muscles, internal organs, blood vessels and glandular system. These systems work together to maintain body homeostasis and internal milieu state within the acceptable normal physiological condition in order to allow the hormones, enzymes, metabolism and other vital functions for life able to operate in the most optimal condition [1].

1.2 Research Background

Epilepsy is a general term used for a group of disorders that cause disturbances in electrical signalling in the brain. It is not a disease but a symptom that originated in the brain. A seizure refers to a single event of abnormal and excessive electrical discharge of group of neurons. People with multiple seizures will experience chronic
condition which is epilepsy. Epileptic foci refer to the location of the current sources that generate the corresponding magnetic fields. Electroencephalography (EEG) has been used as a system that measures and records electrical activity of the brain in graphic form [2]. It is a method of visualizing physiology to discover the hidden causes of epilepsy such that it reads voltage differences on the head relative to a given point [3].

In the preliminary study by Fuzzy Research Group (FRG) of Universiti Teknologi Malaysia (UTM) in 1999, the data sources is based only on the data collected from epileptic patients from Hospital Kuala Lumpur (HKL) and Hospital Universiti Sains Malaysia (HUSM) Kubang Kerian, Kelantan. Previous study by Zakaria [4] showed the transformation of the EEG signal during epileptic seizure into Flat Electroencephalography (fEEG) via flattening method. It is a mathematical technique that involved the mapping from high dimensional signal (i.e, EEG signal) into low dimensional space (i.e, fEEG) whereby clustering process was carried out in the study. Then the signals were transformed into discrete data by using Nicolet One software. The EEG signal was then processed by using Fuzzy c-means (FCM) clustering to cluster the discrete data at every second. Finally, the optimal number of clusters were obtained via cluster validity.

Moreover, previous study by Abdy [5, 6] showed the transformation of fEEG into digital fEEG and finally into image. Digitization process of fEEG by using the Voronoi digitization is implemented in obtaining the digital fEEG. Next, fuzzy approach is applied in assigning the membership value for each pixel via the quantization pixel process. Finally, the membership value is transformed into gray level value such that an image of fEEG is obtained. The main aim of the previous research by Zakaria [4] and Abdy [6] is to visualize and to trace the electrical pulses paths of the brainstorm event right from the scalp of the head to the point where they started (i.e. the foci).

In the literature, most of the images or specifically medical images are captured by using medical devices such as X-ray, MRI, CT scan, ultrasound, 3D imaging systems and so forth. The occurrence of noise in an image may be caused by the system devices or situation such as hand shaking or taking picture while moving. However the
images of fEEG are obtained without using any image processing system devices. It is a challenging task since the abnormalities are detected non-invasively.

1.3 Problem Statement

In the process of imaging and transformations such as fEEG, it is hard to avoid the inheritance of different kinds of noise during recording of the EEG signals. Since the regions of clusters in fEEG are not always defined, uncertainty might arise within every transformations. In this study, the noise is defined as the uncertainty that occur in transforming the EEG signal into image. Furthermore, the digital fEEG itself is a fuzzy object which has been proven in details in Abdy [6]. In the process of determining the membership value, uncertainty might arise due to the lack of information or knowledge which lead to the unclear boundaries of the epileptic foci.

In Abdy [6], the boundary area of the epileptic foci which is represented in the shades of gray is not well-defined. The shades of gray spread out widely since it considered the electrical potential strength. Thus, in the presence of noise, pre-processing steps such as image enhancement is needed. The objectives of image enhancement are to remove noise, to smooth non impulsive noise, and to enhance the edges or other salient structures on fEEG.

Besides that, in order to have a clearer boundary, unwanted background or unwanted object in the scene should be eliminated. Hence, enhancement is carried out in order to obtain an improved image of fEEG. Since the focus of this study is to enhance the boundary of the epileptic foci, therefore, the unwanted object or background which is the electrical potential strength will be suppressed or reduced. Previous study by Abdy [6] has implemented fuzzy set in determining the membership value of the pixels. Therefore, it is more realistic to acquire a more comprehensive element rather than ordinary fuzzy set since the ordinary fuzzy set only considers the membership value of an element. The enhancement technique that is implemented in this study is based on the intuitionistic fuzzy set (IFS) approach which considered more parameters or uncertainties compared to the ordinary fuzzy set. The IFS aims to
handling the inherent uncertainty carried by image pixels. Hence, in dealing with noise and to obtain more accurate results, more advanced techniques that considered more parameters other than membership value is needed.

1.4 Research Questions

Some of the research questions are as follows:

1. How to reduce the vague boundary of the epileptic foci?

2. How to measure the image quality of fEEG?

3. How does implementing different approaches might affect the fEEG output image?

4. To what extent the enhancement methods may help in visualizing the path of brainstorm during seizure?

5. How to determine the hesitation value via fuzzy limit?

1.5 Research Objectives

The main objectives of this study are as follows:

1. To enhance the contrast of fEEG input images in determining the epileptic foci by classical and non-classical approaches.

2. To investigate the fEEG output images by various methods such as classical and non-classical approaches.

3. To evaluate the quality of the output images via different image quality assessment.

4. To extend the concept of fuzzy generator into fuzzy limit in obtaining the hesitation parameter.
1.6 **Scope of Research**

The research focused mainly on enhancing the contrast of fEEG input images during epileptic seizures. The IFS approach is implemented on fEEG input images via Window Based Enhancement Scheme (WBES) and Revised Version of WBES (RWBES). Furthermore, the results are compared with selected classical and ordinary fuzzy approaches. Data that is used in this research is based on the secondary data of epileptic patients that obtained from Hospital Universiti Sains Malaysia (HUSM) and Hospital Kuala Lumpur (HKL).

1.7 **Significant Contributions**

In this digital era, everything is seemed to be computerized due to the rapid development in advanced technologies. The environment of medical imaging has changed dramatically from analogue to digital technology. It is important in assisting medical practitioners to diagnose different medical condition without having to undergo surgical procedure to look into various organs and areas in the body.

The contributions of the research particularly in the fEEG image is described briefly in Figure 1.1. Figure 1.1 begins with the technique of EEG whereby small and non-invasive electrode is placed on the patient’s head. EEG is an aid in characterizing epilepsy and plays important role in localizing the damaged tissue. The type of the activity such as abnormal patterns (e.g. spikes and sharp waves) can be seen in the EEG signals recording.

This study has built on previous related work by Zakaria [4] and Abdy [6] which indicates the continuity of research work. Furthermore, this research adopts the techniques of image processing in enhancing the contrast of fEEG images in different domains which are the classical and non-classical. The non-classical are the ordinary fuzzy and advanced fuzzy approaches. Different contrast enhancement techniques show different fEEG output images. Fuzzy theory based technique is designed in this study to better detect epileptic seizures. The innovation of this study has brought
together medical field, mathematics, signal and image processing. It is expected to contribute greatly in these fields. This study contains a mixture of theoretical development and practical investigation.

Besides that, the RWBES is proposed in obtaining better fEEG output images. In RWBES there are two different ways of fuzzification that have been done for the fEEG input images. The RWBES able to reduce the vague boundaries of the cluster centres. It also able to preserve information of the clusters as the value of λ increased. The outcome of the fEEG images may help in determining or improving the visibility of a sharp boundary of the epileptic foci. It is expected from the results that a clearer view of the path is able to be visualized during seizure. Moreover the Sugeno type intuitionistic fuzzy generator is extended to the concept of fuzzy limit which highlights the great impact in the field of real analysis application in image processing.
Figure 1.1 Research contribution on fEEG image
1.8 Research Framework

This research consists of eight chapters and the summary of framework is shown in Figure 1.2. The first chapter serves as an introduction to the whole thesis. This chapter provides the general information about the research background, problem statement, research questions, research objectives, scope of the research, and significant contributions. Chapter 2 presents the literature review of this research which contains of information on human brain, seizure, digital image processing, fuzzy image processing, intuitionistic fuzzy image processing, image enhancement, medical imaging, and electroencephalography.

The mathematical background of fEEG image is demonstrated in Chapter 3. Moreover, the mathematical concepts of classical set, fuzzy set, intuitionistic fuzzy set, sequence of fuzzy number, fEEG, digital fEEG, and image quality assessment are discussed in this chapter. The enhancement process of fEEG image is discussed in Chapter 4. It focused on contrast enhancement which covers the classical, fuzzy, and intuitionistic fuzzy approaches. The selected methods and algorithms are presented in details in this chapter. The implementation of the enhancement methods is given in Chapter 5. The fEEG input image that is presented in this chapter is for patient A at time $t = 1$ with size of 201×201, which is a grayscale image. Different enhancement methods will give different output images.

Chapter 6 demonstrates some image quality indices that are applied to the input and output images which consist of the error based and structural based metrics. Additionally, in Chapter 7, the concept of Sugeno type intuitionistic fuzzy generator in the non-membership function is extended to the concept of fuzzy limit. Some values of ε are tested to obtain the values of integer N. Hence the values of λ and hesitation π are also determined. Finally, Chapter 8 concludes the research outcomes which highlights the significance of the research and provides some suggestions for future works.
Figure 1.2 Research framework
REFERENCES

11. Sofan, M. Z. Neurosurgeon, Neurosurgery Department, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, 2016.

