IMPROVING PROJECT DELIVERY PROCESS USING LEAN CONSTRUCTION APPROACH

SAMAILA ADAMU

UNIVERSITI TEKNOLOGI MALAYSIA
IMPROVING PROJECT DELIVERY PROCESS USING LEAN CONSTRUCTION APPROACH

SAMAILA ADAMU

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Quantity Surveying)

Faculty of Built Environment
Universiti Teknologi Malaysia

JUNE 2017
DEDICATION

This research work is dedicated to late father Alhaji Adamu Dan Malam and my late wife Fatima Mohammed, may Allah SWT grant them Jannatul Firdaus
ACKNOWLEDGEMENT

Many thanks and gratitude goes to Allah the almighty who gave me the will, courage and means for this endeavour. After the salutations to prophet Muhammad (SAW), my heartfelt gratitude goes to my indefatigable supervisor, the source of my inspiration, Associate Professor Dr. Razali Bin Abdul Hamid, whose guidance, tolerance and understanding in all situations ensured my smooth sailing, my gratitude once again, for his untiring effort in shaping the research journey. May Allah (SWA) make it among your sadaqatul Jariya. I also appreciate the companionship of my colleagues, whose assistance from beginning till end of the journey has helped in keeping me on track.

My gratitude and prayers also goes to my parents whose training, discipline and prayers made me who I am today, Rabbirhmuma kama rabbayani sagira. Similarly, my gratitude goes to the Emir of Damaturu HRH Alhaji Shehu Hashimi II Ibn Umar Al-Amin Elkanemi for moral and financial support throughout this journey, may Allah SWT protect and guide him. My gratitude also goes to my brothers and friends who kept an eagle eye on my family and ensured their comfort and satisfaction in my absence. I will also not forget the Yobe state government for releasing me to pursue this course.

I particularly appreciate the patience, tolerance and understanding of my four wife’s Fatima Ibrahim, Late Fatima Mohammed, Zainab Hassan and Aisha Ismail, and all my children throughout this period. Fatima Mohammed may your soul rest in peace, your efforts are not forgettable. This study was possible because of their sacrifice. I thank you all for taking care of the family in my absence.
ABSTRACT

The poor image of the Nigerian construction industry arising from suboptimal performance in project delivery due to colossal wastes is well documented in existing literature. However, effort to proffer solutions to the problems of waste on site has been marginal. After an in-depth literature review it was established that, lean construction approach has been adopted to address waste and non-value adding activities and improved productivity in project delivery. Therefore, this study is aimed at proposing a lean implementation framework (LIF) that will guide the site implementation of lean construction tools to address the waste occurrence menace. Accordingly, action research using mixed-mode approach was adopted, data related to waste occurrences and benefits of lean construction was collected. This was conducted in two phases. The first phase sought to explore the frequency and level of waste and non-value adding activities occurrences in project delivery in Nigerian construction sites. To achieve this aim, data was collected using survey questionnaire administered to 400 experts in construction industry, and tested for internal reliability using Cronbach Alpha. Consequently, the data was analysed using descriptive and inferential statistics and validated using one sample t-test. The results showed the existence of wastes that leads to cost and time overrun. The second phase assessed six lean construction tools via six case study sites. Data was collected through observation, interview, questionnaire and site diary, and analysed thematically using content analysis. The results were validated using methodological triangulation. The results showed that the application of lean construction techniques in Nigerian construction sites could address the problems of waste and non-value adding activities and improve productivity. The study identifies several challenges and barriers that could impede the implementation of lean construction, including lack of knowledge on lean approach, cultural issues, misconception by participants, and lack of involvement of designers in the implementation process. In view of these findings, the study recognises training, enlightenment on benefits of lean, involvement of designers in the implementation process, simplifying the process, trust between the project participants and collaborative planning as strategies for addressing the problems. To facilitate implementation of the suggested solutions to waste occurrences, a lean implementation framework (LIF) was developed to guide the site implementation of lean construction for improving the project delivery process. The LIF was validated using expert opinions by face to face interview, and the result revealed that the framework could be a guide for implementation of lean in construction site.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxv</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.0 Introduction 1

1.1 Background of the Research 1

1.1.1 Lean Construction 3

1.2 The Problem Statement 4

1.3 Research Gap 6

1.4 Research Question 6

1.5 Objective of the Research 7

1.6 Significance of the Research 7

1.7 Focus and Scope of the Research 8

1.8 Research Methodology 9

1.9 Limitation of the Research 10

1.10 Structure of Thesis 10
2 NIGERIAN CONSTRUCTION INDUSTRY AND WASTE

2.0 Introduction 14

2.1 Geographical and Socio-Economic Characteristics of Nigeria 14

2.2 Transformational Agenda 15

2.3 Over View Nigerian Construction Industry 17

2.4 The Contribution of Nigerian Construction Industry to the Economy 19

2.5 Stakeholders of the Nigerian Construction Industry 21

2.6 The Actors in Nigerian Construction Industry 21

2.6.1 The Client 22

2.6.2 The Consultants 22

2.6.3 The Contractor 22

2.7 Project Delivery Methods 23

2.7.1 Traditional Procurement Method 23

2.7.2 Non-Conventional Procurement Method 24

2.7.3 Relational Contracting and Lean Project Delivery 25

2.8 Construction Industry and Project Delivery Process 26

2.9 Waste and Non-Value Adding Activities 27

2.10 Sources of Waste and Non-Value Adding Activities 28

2.11 Summary of Material and Time Waste in Project Delivery Process 32

2.12 Quantitative Construction Waste Estimation 35

2.12.1 Percentage Method 37

2.12.2 Generic Project Parameters/Variable 37

2.12.3 Macroeconomic Variables 38

2.13 Magnitude of Construction Waste Project Delivery Process 38

2.14 Using Lean Construction Strategy to Address Waste and Non-Value Adding Activities in Project Delivery 45

2.11 Summary 46
3 LEAN CONSTRUCTION TECHNIQUE

3.0 Introduction 48
3.1 Lean Construction 49
3.2 The Lean Thinking 50
3.3 Lean Thinking Adoption by Non-Automotive Sectors 51
3.4 History of Lean Production 54
3.5 Application of Lean Production Concept to Construction 56
3.6 Transformation, Flow, Value (TFV) Concepts 56
 3.6.1 Transformation Concept 56
 3.6.2 Flow Concept 57
 3.6.3 Value Concept 57
3.7 Lean Project Delivery System 58
3.8 Lean Design and Construction Techniques/Tools 61
 3.8.1 Last Planner System 61
 3.8.1.1 Master Schedule (MS) 65
 3.8.1.2 Phase Schedule (PS) 66
 3.8.1.3 Lookahead Planning (60) 66
 3.8.1.4 Weekly Work Plan (WWP) 67
 3.8.1.5 Percentage Plan Completion (PPC) 67
 3.8.2 Increase Visualization 68
 3.8.3 Daily Huddle Meetings 70
 3.8.4 First Run Studies 70
 3.8.5 Fail Safe for Safety and Quality 71
 3.8.6 The 5S Process (Visual Work Place) 71
 3.8.6.1 Sort or Sorting 72
 3.8.6.2 Straighten or Simplifying or Set in Order 72
 3.8.6.3 Shine or Sweeping 72
 3.8.6.4 Standardize or Standardizing 73
 3.8.6.5 Sustain or Self Discipline 73
3.9 Benefits of Applying Lean Construction Approach 74
3.10 Factors for Successful Implementation of Lean Construction 79
 3.10.1 Management 79
 3.10.2 Finance 80
3.10.3 Education 80
3.10.4 Government 81
3.10.5 Technical 82
3.10.6 Human Attitude 82
3.11 Deficiencies of Traditional Project Delivery Process 83
3.12 Integrating Lean Construction Practice with Waste 86
 3.12.1 Last Planner System (LPS) 87
 3.12.2 Increased Visualisation 90
 3.12.3 Daily Huddle Meetings 90
 3.12.4 First Run Studies 91
 3.12.5 5S Process 91
 3.12.6 Fail Safe for Quality and Safety 92
3.13 Review of Developed Lean Framework 94
 3.13.1 Framework for Promoting Safety Using Lean construction 95
 3.13.2 Conceptual Framework for Implementing Lean Approach for Sustainable Construction 95
 3.13.3 Lean Framework 96
 3.13.4 Lean Enterprise Architecture 96
 3.13.5 Lean Assessment Tool 97
 3.13.6 The Framework for Management of Lean Product Lifecycle 98
 3.13.6.1 Understanding Customer’s Needs 98
 3.13.6.2 Value Stream Mapping 98
 3.13.6.3 Improving End-to-end Technical process 99
 3.13.6.4 Improving End-to-end People Process 99
 3.13.6.5 Developing the Single Project Standard 99
 3.13.6.6 Developing the Complete Process Standard 100
 3.13.7 Framework Describing Levels of Lean Capability 100
 3.13.8 Impact Assessment Framework 101
3.14 Conceptual Framework Development 101
 3.14.1 Input 102
3.14.2 Processes 102
3.14.3 Output 103
3.14.4 Challenges/Barriers 104
3.14.5 Strategies for addressing the Challenges 104

3.15 Summary of Literature Review 106

4 RESEARCH METHODOLOGY 109

4.1 Introduction 109
4.2 Research Model 109
 4.2.1 Quantitative Model 100
 4.2.2 Qualitative Model 111
 4.2.3 Mixed Mode Research Model 113
4.3 Selection of Research Model 113
 4.3.1 The Research Problem 114
 4.3.2 Audience 114
 4.3.3 Researcher Experience 114
4.4 Action Research Model 116
4.5 Summary of Research model 119
4.6 Research Design 120
4.7 Data Collection Procedure 123
 4.7.1 Procedure of Quantitative Data Collection 123
 4.7.2 Procedure of Qualitative Data Collection 124
4.8 Sampling Methods 125
 4.8.1 Probability Sample 125
 4.8.1.1 Cluster Sampling 125
 4.8.1.2 Systematic Samples 126
 4.8.1.3 Simple Random Sampling 126
 4.8.1.4 Stratified Random Sampling 126
 4.8.2 Non-Probability Sampling 126
 4.8.2.1 Quota Sampling 127
 4.8.2.2 Snowball Sampling 127
 4.8.2.3 Convenience Sampling 127
 4.8.2.4 Purposive Sampling 127
4.9 Quantitative Study 128
4.9.1 Design of Questionnaire

4.9.2 Clarity

4.10 Quantitative Data Analysis

4.10.1 Descriptive Statistical Data Analysis

4.10.2 Inferential Statistics: Significance Level Testing

4.11 Case Study

4.12 Rationale Behind Selecting the Case Study

4.13 Unit of Analysis

4.14 The Qualitative Study

4.14.1 Sampling Technique Adopted

4.14.2 Data Collection Procedure Adopted

4.14.2.1 Project Manager and Supervisors

4.14.2.2 General Foremen and Key Specialist Foremen

4.14.2.3 Project Manager, Supervisors, contractors, and subcontractors

4.15 Qualitative Data Analysis

4.15.1 Familiarity with the Data

4.15.2 Transcribing the Data

4.15.3 Identification of Patterns

4.15.4. Generating the Initial Codes

4.15.5 Collating the Extracts

4.15.6 Reorganisation and Renaming of Themes

4.15.7 Discussion and Interpretation of Findings

4.15.8 Reliability and Validity Test.

4.15.8.1 Methodological Triangulation

4.15.8.2 Data Triangulation

4.15.8.3 Investigator Triangulation

4.15.8.4 Theory Triangulation

4.15.8.5 Environmental Triangulation

4.16 Documents Analysis

4.17 Observations

4.18 Development of Framework

4.19 The Validation of the Developed Framework
5 DATA ANALYSIS AND DISCUSSIONS 1
WASTE AND NON-VALUE ADDING ACTIVITIES 151

5.1 Introduction 151

5.2 Frequency and Level of Waste Occurrences 152
 5.2.1 Administration of Questionnaire and Response Rate 152
 5.2.2 Analysis for Missing Value 155
 5.2.3 Reliability Test 155

5.3 Data Analysis and Discussions 156
 5.3.1 Frequency of Material Waste 156
 5.3.1.1 Design Material Waste 159
 5.3.1.2 Procurement Material Waste 160
 5.3.1.3 Material Handling Waste 160
 5.3.1.4 Operation Material Waste 161
 5.3.1.5 Residual Material Waste 162
 5.3.1.6 Other Material Waste 162
 5.3.1.7 Summary of Material Waste Occurrences in Project Delivery 163

5.4 Frequency of Time Waste 165
 5.4.1 Design Time Waste 168
 5.4.2 Procurement Time Waste 169
 5.4.3 Operation Time Waste 169
 5.4.4 Other Time Waste 170
 5.4.5 Summary of Time Waste Occurrences in Project Delivery 171

5.5 Discussions of Findings 173
 5.5.1 Material Waste 174
 5.5.2 Time Waste 176

5.6 Quantification of Material and Time Waste 178
 5.6.1 Results and Findings 181

5.7 Summary 182
6 DATA ANALYSIS AND DISCUSSION 2
LEAN CONSTRUCTION ASSESSMENT 184

6.1 Introduction 184
6.2 Lean Case Study 184
6.3 Case Study A and B 188
 6.3.1 Project Description 188
 6.3.2 Data Collections 189
 6.3.3 Field Study Implementation Assessment 189
 6.3.3.1 Last Planner System 190
 6.3.3.2 Increase Visualization 191
 6.3.3.3 Fail safe for quality and safety 191
 6.3.3.4 5S Process 192
 6.3.3.5 Huddle Meetings 192
 6.3.3.6 First Run Studies 192
 6.3.4 Observations Results 193
 6.3.4.1 Last Planner System 193
 6.3.4.2 Daily Huddle Meetings 200
 6.3.4.3 Increase Visualization 201
 6.3.4.4 5S Process 202
 6.3.4.5 Fail Safe for Quality and Safety 202
 6.3.4.6 First Run Studies 203
 6.3.5 Summary of Lean Tools Field Assessment 204
6.4 Interview Results Analysis for Case Study A and B 206
 6.4.1 Introduction 207
 6.4.2 Project Managers/Supervisors (A) and (B) Interview 208
 6.4.3 Foremen for Contractors/Subcontractors interview Responses for Case Studies A and B 212
 6.4.4 Strengths and Weaknesses 213
6.5 Questionnaire Responses and Analysis 214
6.6 Documents Analysis 216
 6.6.1 Site Diaries Analysis 222
6.7 Case Studies C and D 229
6.7.1 Project Description 229
6.7.2 Data Collection 230
6.7.3 Observations Results 230
 6.7.3.1 Last Planner 231
 6.7.3.2 Huddle Meetings 232
 6.7.3.3 Fail Safe for Quality and Safety 233
6.7.4 Interview Responses Analysis Case Study C and D 234
 6.7.4.1 Project Manager/Supervisors C and D 234
 6.7.4.2 Subcontractor’s Interviewees Results 237
6.8 Questionnaire Responses and Analysis 239
6.9 Documents Analysis 240
6.10 Case Studies E and F 250
 6.10.1 Project Description 251
 6.10.2 Data Collections 251
 6.10.3 Field Study Implementation Assessment 252
 6.10.3.1 Last Planner System 252
 6.10.3.2 Increase Visualization 254
 6.10.3.3 Daily Huddle Meetings 254
 6.10.3.4 First Run Studies 254
 6.10.3.5 Fail Safe for Quality and Safety 256
 6.10.4 Project Manager/Supervisors E and F Interview Results 256
 6.10.5 Subcontractor’s Interviewees 260
 6.10.6 Questionnaire Responds Result and Analysis 261
 6.10.7 Documents Analysis 263
6.11 General Summary of Case Studies 267
 6.11.1 Interview and Observation 267
 6.11.2 Questionnaire 269
 6.11.3 Document Analysis 271
6.12 Data Triangulation 272
6.13 The Lean Implementation Framework 274
6.14 Summary 276
6.15 Validation of Research Framework 276
 6.15.1 External Validation 277
 6.15.2 Information on Respondents and Responses 278
6.16 Summary 283

7 CONCLUSIONS AND RECOMMENDATIONS 284
 7.0 Introduction 284
 7.1 Research Findings 284
 7.2 Contribution to Knowledge and Practice 287
 7.3 General Conclusion 288
 7.4 Recommendation and Future Research 289
 7.5 Recommendation to Practice 290

REFERENCES 291
Appendices A - R 333 - 362
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Sectored contribution to GDP of the Nigerian economic sectors</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Causes of waste per project phase</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>Material and Time Waste</td>
<td>31</td>
</tr>
<tr>
<td>2.4</td>
<td>Activities generating material waste in building construction in Nigeria</td>
<td>31</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary of material and time waste in project delivery process</td>
<td>33</td>
</tr>
<tr>
<td>2.6</td>
<td>Magnitude of Construction Waste in Dutch, Brazil and USA</td>
<td>40</td>
</tr>
<tr>
<td>2.7</td>
<td>Construction Waste Quantities</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>Definitions of Lean Construction</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>Lean Driver leading to adoption of lean concept in UK</td>
<td>53</td>
</tr>
<tr>
<td>3.3</td>
<td>Benefits Achieved by Adopting Lean Construction</td>
<td>77</td>
</tr>
<tr>
<td>3.4</td>
<td>Benefits Achieved in Specific Projects using Lean Construction</td>
<td>78</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparison between Traditional and Lean Approach</td>
<td>84</td>
</tr>
<tr>
<td>3.6</td>
<td>Inter-relationship between lean tools and waste cause on site</td>
<td>93</td>
</tr>
<tr>
<td>3.7</td>
<td>Relationship between waste and relevance lean techniques</td>
<td>94</td>
</tr>
<tr>
<td>4.1</td>
<td>Research Model Employed for Each Objective</td>
<td>120</td>
</tr>
<tr>
<td>4.2</td>
<td>Survey Scale</td>
<td>129</td>
</tr>
<tr>
<td>4.3</td>
<td>Sources of Material Waste in Project Delivery Process</td>
<td>130</td>
</tr>
<tr>
<td>4.4</td>
<td>Sources of Time Waste in Project Delivery Process</td>
<td>131</td>
</tr>
<tr>
<td>4.5</td>
<td>Records Collection</td>
<td>147</td>
</tr>
<tr>
<td>5.1</td>
<td>Year of Experience of the Respondents</td>
<td>153</td>
</tr>
<tr>
<td>5.2</td>
<td>Internal Reliability Test (Material)</td>
<td>156</td>
</tr>
<tr>
<td>5.3</td>
<td>Liked Scale description</td>
<td>157</td>
</tr>
<tr>
<td>5.4</td>
<td>Frequency of Material Waste</td>
<td>158</td>
</tr>
</tbody>
</table>
5.5 Summary of material waste occurrence effects 164
5.6 Internal Reliability Test (Time) 165
5.7 Time waste 166
5.8 Summary of time waste occurrence effects 172
5.9 Descriptive Statistics Material Waste 178
5.10a One Sample t-test Material Waste 179
5.10b Description 95% Confidence Interval t-test Material Waste 179
5.11 Descriptive Statistics Time Waste 180
5.12a One Sample t-test Time 180
5.12b Description 95% Confidence Interval t-test Time Waste 181
6.1 Case study projects description 187
6.2 Phases scheduling for case studies A and B 195
6.3 Root cause for failure 200
6.4 Interview responds of PM’s of case study A and B 209
6.5 Summary of responds from project team case (project
managers, supervisors and engineer) case studies A and B 215
6.6 Summary of responds from contractors and subcontractors
foremen case studies A and B 216
6.7 Material waste assessment from site diary data case study A 219
6.8 Time waste assessment from site diary data case study A 220
6.9 Summary of material and time waste for case A lean and
non-lean projects 221
6.10 Material waste assessment from site diary data case study B 225
6.11 Time waste assessment from site diary data case study B 226
6.12 Summary of material and time waste for case B lean
and non-lean projects 227
6.13 Interview result of case study C and D with PM 235
6.14 Summary responds of project managers, supervisors
and engineer case C and D 239
6.15 Contractors and subcontractors, foremen survey
case studies C and D 240
6.16 Material waste assessment from site diary data case study C 241
6.17 Time waste assessment from site diary data case study C 242
6.18 Summary of material and time waste for case study C lean and non-lean projects 243
6.19 Material waste assessment from site diary data case study D 246
6.20 Time waste assessment from site diary data case study D 247
6.21 Summary of material and time waste for case D lean and non-lean projects 248
6.22 Productivity improvement for lean project 250
6.23 Interview result of case study E and F with PM 258
6.24 Questionnaire response from project team in case studies E and F 262
6.25 Contractors and subcontractors’ foremen survey case studies E and F 263
6.26 Material and time waste assessment from site diary data case study E 264
6.27 Material and time waste assessment from site diary data case study F 266
6.28 Summary of questionnaire response from PM, Sup. & Engr.’s survey 270
6.29 Summary of contractors and subcontractors’ foremen survey 271
6.30 Respondent opinion on validity of framework 280
6.31 Responses on framework validation 282
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Research structure</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>Building and construction Growth and contribution to total GDP</td>
<td>20</td>
</tr>
<tr>
<td>2.2</td>
<td>Project delivery process</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Lean project delivery process</td>
<td>60</td>
</tr>
<tr>
<td>3.2</td>
<td>Traditional project delivery system</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Lean project delivery system</td>
<td>62</td>
</tr>
<tr>
<td>3.4</td>
<td>Process of last planner system cycle</td>
<td>63</td>
</tr>
<tr>
<td>3.5</td>
<td>"SHOULD-CAN-WILL" Diagram A and B</td>
<td>64</td>
</tr>
<tr>
<td>3.6</td>
<td>Last planner sequence</td>
<td>65</td>
</tr>
<tr>
<td>3.7</td>
<td>Percentage plan completion chart</td>
<td>68</td>
</tr>
<tr>
<td>3.8</td>
<td>Traditional work flow</td>
<td>85</td>
</tr>
<tr>
<td>3.9</td>
<td>Lean management work flow</td>
<td>86</td>
</tr>
<tr>
<td>3.10</td>
<td>Lean assessment tool: spider-web diagram</td>
<td>97</td>
</tr>
<tr>
<td>3.11</td>
<td>Conceptual Framework</td>
<td>105</td>
</tr>
<tr>
<td>4.1</td>
<td>Action research model</td>
<td>119</td>
</tr>
<tr>
<td>4.2</td>
<td>Research procedure</td>
<td>150</td>
</tr>
<tr>
<td>5.1</td>
<td>Professions of respondents</td>
<td>152</td>
</tr>
<tr>
<td>5.2</td>
<td>Year of experience of the respondents</td>
<td>153</td>
</tr>
<tr>
<td>5.3</td>
<td>Respondents organizations</td>
<td>154</td>
</tr>
<tr>
<td>5.4</td>
<td>Procurement methods used by respondents</td>
<td>154</td>
</tr>
<tr>
<td>5.5</td>
<td>Frequency of design material waste</td>
<td>159</td>
</tr>
<tr>
<td>5.6</td>
<td>Frequency of procurement material waste</td>
<td>160</td>
</tr>
<tr>
<td>5.7</td>
<td>Frequency of material handling waste</td>
<td>161</td>
</tr>
</tbody>
</table>
5.8 Frequency of operation material waste
5.9 Frequency of residual material waste
5.10 Frequency of other material waste
5.11 Summary of material waste occurrence
5.12 Frequency of design time waste
5.13 Frequency of procurement time waste
5.14 Frequency of operation time waste
5.15 Frequency of other time waste
5.16 Summary of time waste occurrence
6.1 Showing the researcher conducting lean coaching
6.2 Phase planning meeting
6.3 WWP meeting sessions
6.4 Percentage plan completions (PPC) case study A
6.5 Sequence of last planner implementation
6.6 Percentage plan completions (PPC) case study B
6.7 Soil pipes laid down by plumber in case study B
6.8 Daily huddle meetings session on site case study B
6.9 Rework occurrence in non-lean project case study A
6.10 JIT supply of filling material in lean projects
6.11 Showing materials placed near operation in lean projects
6.12 Case study A lean and non-lean project
6.13 Case study B lean and non-lean project
6.14 Chart showing material waste for lean and non-lean projects in case study A
6.15 Chart Showing Time Waste for Lean and Non-Lean Projects Case Study A
6.16 Chart showing material waste for lean and non-lean projects in case study B
6.17 Chart showing time waste for lean and non-lean projects in case study B
6.18 Case study C starting lean implementation
6.19 Case study D lean implementation
6.20 Case studies C and D completed
6.21 PPC chart for case study C
6.22 PPC chart for case study D
6.23 Chart showing material waste for lean and non-lean projects in case study C
6.24 Chart showing time waste for lean and non-lean projects in case study C
6.25 Chart showing material waste for lean and non-lean projects in case study D
6.26 Chart showing time waste for lean and non-lean projects in case study D
6.27 PPC chart case study E
6.28 PPC chart case study F
6.29 Work in progress matching crew to work case study E.
6.30 Work in progress matching crew to work case study F
6.31 Chart showing material and time waste for lean projects in case study E
6.32 Chart showing material and time waste for lean projects in case study F
6.33 Data triangulation
6.34 Lean construction implementation framework
6.35 Respondents Background
6.36 Respondent’s Occupation
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>NIOB</td>
<td>Nigerian Institute of Building</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>NBS</td>
<td>National Bureau of Statistics</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Science</td>
</tr>
<tr>
<td>NIP</td>
<td>National Implementation Plan</td>
</tr>
<tr>
<td>3Cs</td>
<td>Commitment, Consistency and Continuity</td>
</tr>
<tr>
<td>3Ps</td>
<td>Policies, Projects and Programs</td>
</tr>
<tr>
<td>CIDB</td>
<td>Construction Industry Development Board</td>
</tr>
<tr>
<td>AGM</td>
<td>Annual General Meeting</td>
</tr>
<tr>
<td>CI</td>
<td>Construction Industry</td>
</tr>
<tr>
<td>BLDG</td>
<td>Building</td>
</tr>
<tr>
<td>CAGR</td>
<td>Compound Aggregate Growth Rate</td>
</tr>
<tr>
<td>PPP</td>
<td>Public Private Partnership</td>
</tr>
<tr>
<td>DBFT</td>
<td>Design, Build, Financed and Transfer</td>
</tr>
<tr>
<td>BOO</td>
<td>Build, Operate and Own</td>
</tr>
<tr>
<td>BOT</td>
<td>Build, Operate and Transfer</td>
</tr>
<tr>
<td>DBFO</td>
<td>Design Build, Finance and Operate</td>
</tr>
<tr>
<td>BOOST</td>
<td>Build, Own, Operate, Subsidize and Transfer</td>
</tr>
<tr>
<td>BOOT</td>
<td>Build Operate, Own and Transfer</td>
</tr>
<tr>
<td>BLT</td>
<td>Build Lease and Transfer</td>
</tr>
<tr>
<td>ROT</td>
<td>Renovate Operate and Transfer</td>
</tr>
<tr>
<td>IFOA</td>
<td>Integrated Form of Agreement</td>
</tr>
<tr>
<td>BOQ</td>
<td>Bill of Quantities</td>
</tr>
<tr>
<td>LCI</td>
<td>Lean Construction Institute</td>
</tr>
<tr>
<td>CII</td>
<td>Construction Industry Institute</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>JIT</td>
<td>Just-In-Time</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>TPS</td>
<td>Toyota Production System</td>
</tr>
<tr>
<td>TFV</td>
<td>Transformation, Flow, Value</td>
</tr>
<tr>
<td>LPDS</td>
<td>Lean Project Delivery System</td>
</tr>
<tr>
<td>MS</td>
<td>Master Schedule</td>
</tr>
<tr>
<td>PS</td>
<td>Phase Schedule</td>
</tr>
<tr>
<td>RPS</td>
<td>Reverse Phase Schedule</td>
</tr>
<tr>
<td>LP</td>
<td>Lookahead Planning</td>
</tr>
<tr>
<td>SWLA</td>
<td>Six Week Lookahead</td>
</tr>
<tr>
<td>FWLA</td>
<td>Four Week Lookahead</td>
</tr>
<tr>
<td>WWP</td>
<td>Weekly Work Plan</td>
</tr>
<tr>
<td>PPC</td>
<td>Percentage Plan Completed</td>
</tr>
<tr>
<td>FISCA</td>
<td>Factors Influencing Scottish Construction Accidents</td>
</tr>
<tr>
<td>PDCA</td>
<td>Plan, Do, Check & Act</td>
</tr>
<tr>
<td>5S</td>
<td>Seiri, Seiton, Seiso, Seiketsu Shitsuke</td>
</tr>
<tr>
<td>LIP</td>
<td>Lean Implementation Programme</td>
</tr>
<tr>
<td>CE</td>
<td>Construction Excellence</td>
</tr>
<tr>
<td>BRE</td>
<td>British Research Establishment</td>
</tr>
<tr>
<td>CPM</td>
<td>Critical Path Method</td>
</tr>
<tr>
<td>IGLC</td>
<td>International Group for Lean Construction</td>
</tr>
<tr>
<td>LPS</td>
<td>Last Planner System</td>
</tr>
<tr>
<td>WBS</td>
<td>Work Breakdown Structures</td>
</tr>
<tr>
<td>TQC</td>
<td>Total Quality Control</td>
</tr>
<tr>
<td>LEA</td>
<td>Lean Enterprise Architecture</td>
</tr>
<tr>
<td>QFD</td>
<td>Quality Function Deployment</td>
</tr>
<tr>
<td>KIVP</td>
<td>Knowledge Innovation Visible Planning</td>
</tr>
<tr>
<td>EME</td>
<td>Extended Manufacturing Enterprise</td>
</tr>
<tr>
<td>FA</td>
<td>Factor Analysis</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental Organisation</td>
</tr>
<tr>
<td>N</td>
<td>Number</td>
</tr>
<tr>
<td>WOLI</td>
<td>Waste Occurrences Level Indicator</td>
</tr>
<tr>
<td>WSM</td>
<td>Material Waste</td>
</tr>
<tr>
<td>WST</td>
<td>Time Waste</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Letter of ethics approval case study A</td>
<td>333</td>
</tr>
<tr>
<td>B</td>
<td>Letter of ethics approval case study B</td>
<td>334</td>
</tr>
<tr>
<td>C</td>
<td>Frequency and level of waste survey instrument</td>
<td>335</td>
</tr>
<tr>
<td>D</td>
<td>Project managers and supervisor’s interviews</td>
<td>339</td>
</tr>
<tr>
<td>E</td>
<td>General foremen and key specialist foremen interview</td>
<td>342</td>
</tr>
<tr>
<td>F</td>
<td>Project manager, engineers and supervisors survey</td>
<td>344</td>
</tr>
<tr>
<td>G</td>
<td>Foremen of contractor and sub-contractor survey</td>
<td>347</td>
</tr>
<tr>
<td>H</td>
<td>Framework validation questionnaire</td>
<td>349</td>
</tr>
<tr>
<td>I</td>
<td>Material inspection note form</td>
<td>353</td>
</tr>
<tr>
<td>J</td>
<td>Inspection and status form</td>
<td>354</td>
</tr>
<tr>
<td>K</td>
<td>Non-conformity note form</td>
<td>355</td>
</tr>
<tr>
<td>L</td>
<td>Project production check list form</td>
<td>356</td>
</tr>
<tr>
<td>M</td>
<td>Site diary</td>
<td>357</td>
</tr>
<tr>
<td>N</td>
<td>Training manual</td>
<td>358</td>
</tr>
<tr>
<td>O</td>
<td>SWLA form</td>
<td>359</td>
</tr>
<tr>
<td>P</td>
<td>WWP and PPC Form</td>
<td>360</td>
</tr>
<tr>
<td>Q</td>
<td>Last planner: lookahead constraints analysis form</td>
<td>361</td>
</tr>
<tr>
<td>R</td>
<td>5S audit check list</td>
<td>362</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.0 Introduction

The motivation behind the study was based on the call by the federal government of Nigeria for the transformation of the key sectors of the economy through its transformational agenda 2011 to 2015 programs. The Nigerian construction industry is one of the key sectors of the Nigerian economy; it contributes about 3.74% of gross domestic product (GDP) in 2011 (Statistics, 2012). A challenge was thrown to professionals in the construction industry by Hon. Minister of Housing to come up with a holistic solution of addressing the current problems in the construction industry for sustainable development (42nd National Conference/AGM NIOB, 2012). This study will look at the possibility of applying lean construction tools in construction sites in Nigeria, and assess its suitability in managing and controlling activities in the project delivery process for the minimization or possibly elimination of waste and non-value adding activities, for improving the construction process and the creation of value to the owner, by improving productivity.

1.1 Background of the Research

The Nigerian construction industry is characterised with high cost of production, time overrun, uncompleted projects, poor quality of work, accidents and
so on (Abdulhameed et al., 2012; Oyewobi et al., 2011). The industry is also facing continues decrease in profit margin which lead to claims for variations (Adamu and Howell, 2012; Adamu et al., 2012). All these ensuing from poor project planning (Olusegun and Machael, 2011; Oke and Ogunsemi, 2011; Adamu and Abdulhamid, 2012), uncompleted design during the project delivery (Aina and Wahab, 2011; Windapo and Matins 2010), waste generation due to bureaucracy, delay from material suppliers, variations and poor site management (Dlakwa and Culpin, 1990; Oke and Ogunsemi, 2011; Adeagbo, 2014), and unethical behaviours in some government works in form of fraudulence practice and kickback (Mansfield et al., 1994; Olomolaye et al., 1987). All these problems are peculiar to the Nigerian construction industry which attribute to its low productivity, high cost and time overrun, poor quality of the products produced.

The Nigerian construction industry as a major sector of the economy requires attention for the transformation agenda to be successful. Nigeria, just like any other developing country in line with her Vision 20:2020 and indeed its Transformation Agenda 2015, recognized the need to use infrastructural development as a means of firing the Nigerian economy and uplifting the wellbeing of its citizenry. The need for the use of best practice in the provision of these infrastructures is necessary. In this respect, it was recognised by extant that lean construction has made a colossal impact within the construction industry of developed nations. Such as USA, UK, Denmark, Chile, Finland, Brazil are so on. Also, some developing countries have recorded improvements in their project delivery process after the application of lean construction approach (Ballard and Howell, 2003). Application of lean construction tools was investigated by (Salem et al., 2005; Gonzalez et al., 2010; Ballard et al, 2009; Loong et al., 2010; Al Sehaimi et al., 2009; Yu et al., 2009; Adamu and Howell, 2012; Adamu et al, 2012), the result has shown a substantial improvement in the project performance of the projects in the countries applied.
1.1.1 Lean Construction

Lean Construction was developed based on production management method of project delivery, is a new technique of project delivery that can be adopted to any type of construction, mainly suitable for quick, uncertain and complex project (Howell, 1999). Lean Construction is just as the current practice has objective of better meeting customers need while using of minimum or smaller amount of everything, but different from the current practice because production management philosophy is the basis of lean construction. It is a “physics” of construction. “Physics” is the word borrowed from production philosophy, which means “factory of physics” an exceptional wording on production management (Hopp and Spearman, 1996). Lean management in production has made a great revolution to the manufacturing industry, from design stage, supply chain and assembling. When adapted from manufacturing to construction, it changes the method of the work right through the project delivery process. The lean management approach differs from traditional management approach, as lean pull concept of scheduling opposes to traditional push concept. Lean construction emerges from the objectives of lean production systems, i.e. minimization of waste and maximization of end value to users using specific approaches by applying them in the new concept of project delivery (Howell, 1999). Because of these changes:

- The delivery process of a facility and the definition of the facility were designed collectively to better meet the user’s expectation and support client purposes. Negative iterations are reduced in the process while positive iterations are allowed and supported.
- Work is planned all through the process to reduce waste and increase value at the project delivery level.
- Effort for improvement of performance and its’ management are targeted towards improving general project performance. As it is better than to increase the speed of an activity or reduction of cost.
- “Control” is redefined from “results monitored” to “make effects to occur”. The planning and control of the systems performance were measured and improved.
1.2 The Problem Statement

The current yield of the Nigerian construction industry suffers continues decrease, as its contribution to GDP continues to fluctuate up and down every year as per report of the National Bureau of Statistics (2012). The average GDP contribution of Building and Construction sector for ten year after the independence records shows that, from 1971-1980 was 8.3%, 1981-1990 was 2.3%, 1991-2000 was 1.8%, 2001-2010 was 1.8% and for 2011 was 1.79%. While in the last quarter of 2012 it records 1.14%. As per records of NBS (2015), the average GDP contribution of the construction sector for 2012 maintained 1.79% and dropped to 1.62% in 2013. In 2014, the contribution made in 2013 dropped down by 0.46%. Currently, the record from NBS shows that the construction sector recoded GDP contribution of 11.24% in 2015 and dropped to 7.47% in 2016 (NBS, 2016) with all the efforts of investment in the sector by public and private sectors. The industry is also characterized with continued decrease of profit margin, increase in defects and rework, cost and time overrun, abandoned and uncompleted project due poor project definition, control and management of the project delivery process, unnecessary waste generation and non-value adding activity (Olusegun and Machael, 2011; Oke and Ogunsemi, 2011). Even so, it was demonstrated that lack of proper application of innovative approaches is among the many contributing factors associated with the recorded failure in the GDP contribution and a poor image of the industry (Adamu and Howell, 2012; Adamu et al., 2012; Adeagbo, 2014). Accordingly, waste generation and non-value adding activities were also found to be attributing factors in the poor project delivery (Oke and Ogunsemi, 1991; Dlakwa and Culpin, 1990; Adeagbo, 2014; Ahiakwo et al, 2012; Ahiakwo et al., 2014). All this research identified these problems without offering solution of solving them. The success of any project is largely dependent upon proper tools of planning, control, management, and elimination of waste and non-value activities in the industry, (Sacks and Goldin, 2007; Memon et al, 2013) as enunciated by the extant.

However, recently the lean construction community outlined that research should be centred on developing practical solutions to explicitly solve problems not only to identify them (Alschaimi and Koskela, 2008). Accordingly, to solve the prevailing problems within the Nigerian construction industry, a novel research
approach that can go beyond the normal traditional research of descriptive or explanatory research should be adopted to address the persistent practical construction management problems, and contribute to construction management knowledge. An action research, constructive research and design science research are suggested to be the best suitable research model for this situation (Aken, 2005; Jarvinen, 2007; Azhar, et al., 2010; Koskela, 2008; Alsehaimi et al., 2009; Voordijk, 2009; Jang et al., 2010).

Challenging the traditional construction approach, lean construction approach is a production-based management philosophy that stresses the removal of waste and non-value adding activities in the project delivery process. Starting from the project design stage to delivery processes of a construction project using lean ideologies advocated by Ohno (Fewings, 2013). It is a continuous process for the elimination of material and time wastages, with determination of meeting or exceeding client’s requirements, at the same time focusing on the value stream and pursuing continuous perfection in the project delivery process (Koskela et al. 2002; Salem and Zimmer 2004).

It was enunciated by extant that adopting lean construction approach in project delivery on sites could address the problem of waste and non-value adding activities occurrences (Houvila and Koskela, 1998; Howell and Ballard, 1999; Saurin et al., 2002; Thomas et al., 2005; Salem et al. 2007; Schaefer et al, 2008; Mossman 2009). The lean construction concept has been adopted by some developed nations in their construction industry at the project sites, and remarkable benefits were achieved at the projects levels (Nahmens and Ikuma, 2009; Koranda et al., 2012). Lean construction tools have been used in many countries to improve co-ordination, planning, control, productivity, communication, collaboration, teamwork, learning and project performance success in projects (Alarcon, 1997; Tommelein and Ballard, 1997; Fiallo and Revelo, 2002; Ballard et al, 2009; Gonzalez et al, 2010; Mossman, 2012). Nevertheless, there is no any empirical evidence that relays the implementation of lean construction concepts in the Nigerian construction sites.

After assessing the peculiar problems of waste and non-value adding activities occurrences in Nigerian construction sites, and the benefits of addressing these menaces associated with lean construction approach, this research gap was identified.
1.3 Research Gap

After enlightening the economic role, the construction industry played in Nigerian, and its ugly status in terms of waste generation and on-value adding activities occurrences in the project delivery process. Consequently, with recognition of the effect of waste and non-value adding activities, which leads to cost and time overrun, and decrease in productivity and profit margin, there is no comprehensive data on frequency and level of waste and non-value adding activities occurrence in the project delivery process. Similarly, there is scarce information on how to address these menaces in the construction site. Subsequently, there is little attempt to use lean construction to improve the project delivery process in terms of waste and non-value adding activities occurrences in the construction site. Based on this gap, this research come with this aims. To develop a framework for the implementation of the lean construction in Nigerian construction site to improve the project delivery process. To achieve the research, aim the following research questions were raised.

1.4 Research Question

1. **What is the frequency and level waste generation and non-value adding activity occurrence in the current project delivery of Nigerian construction sites?** This question is aimed at exploring the literature to generate a survey questionnaire using expert opinion to establish the frequency and level of waste and non-value adding activities occurrence in the current project delivery process in the Nigerian construction industry.

2. **Can the adoption of lean construction approach in Nigerian construction sites eliminate waste and non-value adding activities in the project delivery process?** This question is aimed at broadening our knowledge to understand the benefits of applying lean construction approach in Nigeria construction sites, through assessing the implementation of lean tools in the case study sites.

3. **How can lean construction approach be implemented in Nigerian construction sites to improve the project delivery process?** This question aims
to propose a detail framework for the implementation of lean construction in the construction sites to address the problems of colossal waste and non-value adding activities occurrences in project delivery process of Nigeria.

To answer the research questions and pursuance to achieving the main aim of the research, the following objectives were developed.

1.5 **Objective of the Research**

1. To determines the frequency and level of waste and non-value adding activities occurrences in the current projects delivery process in Nigerian construction sites.
2. To assess the implementation of lean construction techniques in Nigeria construction sites, and established its contribution towards the elimination of waste and non-value adding activities.
3. To develop and propose a framework for the implementation of lean construction in Nigerian construction site.

1.6 **Significance of the Research**

The poor image of Nigerian construction industry in terms of waste and non-value adding activities occurrence is well documented in literature. Similarly, the application of lean construction to address the problem of waste and non-value adding activities has been established by many researches. Therefore, this research will contribute to the body of knowledge by revealing.

- The frequency and level of waste generation and non-value adding activities occurrences in Nigerian project delivery processes.
A clear picture for the benefits of lean construction implementation in the Nigerian construction site to address the problems of waste and non-value adding activities.

Remarkably, the study has come up with lean construction implementation framework to guide the government and organizations to implement lean construction on sites to eliminate waste and non-value adding activities. This will be presented as a gizmo of project delivery process improvement.

To guide the research and pursuant to these objectives, the study was design to be conducted within certain parameters.

1.7 **Focus and Scope of the Research**

The Nigerian construction industry is very broad; therefore, the scope of this research is to establish the frequency and level of waste and non-value adding activities in the project delivery process, and assess the implementation of six lean construction tools within six construction sites in Nigeria. This study cannot pretend to address all problems in Nigerian construction industry; therefore, it is necessary to specify the boundary of knowledge behind the study. The research will focus on project delivery process at construction sites only. This will involve the planning, control and management of the construction process, because of its impact to cost, quality, safety and time. Looking at the percentage of the projects being carried out by government, medium and small contractors, lean construction approach will be applied in medium and small projects executed by government and the private sector. The projects may be handled by contracts and direct labour. The research will be conducted using building construction in academics’ environment and residential in three different cities and locations. However, issue discussed will be equally relevant to other complex project in term of the lean construction implementation process.
1.8 Research Methodology

This study adopted an action research model, using mixed mode for data collection. Action Research Model is a method used to facilitate change by participating in or being involved in the system’s operation in a diagnostic, active learning, problem finding, and problem-solving process (Jarvinen, 2007). Action research is either research initiated to solve an immediate problem or a reflective process of progressive problem solving led by individuals working with others in teams or as part of a "community of practice" to improve the way they address issues and solve problems (John and Sons, 2010). There are ten features why using action research, these will be discussed in detail in the Methodology chapter.

The study relies on a literature review to develop the survey questionnaire for the realisation of the first objective. The survey was undertaken within the professional in the construction industry, which includes architect’s engineers, project managers, builders, quantity surveyors, and others. The quantitative data collected will be analysed using descriptive and inferential statistics using the Statistical Package for Social Science (SPSS) software to explore the frequency and level of material and time waste occurrences in the current project delivery process. Cronbach Alpha will be used to test the internal reliability of the questionnaire.

The second research question will be addressed using established data from case studies sites and empirical data from the survey and semi-structured interview. The research will adopt mixed mode model using pragmatic approach, based on the principles of phenomenology combining both quantitative and qualitative data. Phenomenological approach commonly used in construction environment for inquiry offers an opportunity for a broad description of a phenomenon of everyday experience to achieve an understanding of its essential structure (Malagon-Maldonado, 2014). The action research via case studies experiments conducted will answer the second research question. Literature of previous research on implementation of lean construction will be reviewed to understand how the tools will be implemented in the site. Site diary, minutes of meeting, interview, pictures, questionnaire survey and documentations are the instruments of data collection. Data collected will be analysed
thematically using classical content analysis for the interview, descriptive and inferential statistic for the questionnaire. The lean projects are compared with non-lean implemented projects to identify the benefit of the lean construction implementation. The data collected and analysed will be synthesised to develop a lean implementation framework. The framework will show how lean construction approach will improve the project delivery process in construction site in terms of waste and non-value adding activities. Detail methodology will be described in chapter 4 including the sampling method adopted.

1.9 Limitations of the Research

This research was conducted in Nigerian construction sites, using the site and the practitioners in the construction industry as unit of analysis. Lean construction is not yet implemented in construction site in Nigeria, therefore, there are limited practitioners with knowledge on lean construction implementations. The data collection procedure was limited to the case study sites only, and people involved in training conducted and the lean projects execution.

Due to this limitation, the research was conducted in the projects that were managed using lean construction approach only, and validations were made with expert that have experience in lean construction practice.

1.10 Structure of Thesis

The thesis will be consisting of seven chapters organised in logical and systematic manner to accomplish the research aim and objectives, through addressing the research questions. The detail flow chart is presented in Figure 1.1.
The first chapter gives an introduction of the research, by highlighting the background of the research, and how the studies was conducted from literature review to development of the research problem and research gap. Furthermore, the research goal was defined by stating the aim of the study. Subsequently, the research questions and objectives were stated and clearly outlined. The significance of the research was outlined, and the scope and focus of the study was identified And the methodology adopted for the research was outlined, followed by the research limitations. And finally, the structure of the thesis was presented in Figure 1.1.

The second chapter reviews literature on Nigerians transformational agenda and the theory on the Nigerian construction industry in term of investment and output and the problems of traditional project delivery. Comprehensive literature review on waste and non-value adding activity that exist and efforts in addressing the problems were discussed in this chapter.

The third chapter entails an in-depth review of literature and on theoretical background of lean construction, and outline the benefits achieved by the adoption of lean construction approach by developed nations and emerging economy. Different lean frameworks developed from previous studies were reviewed and conceptual framework was developed in this chapter.

The fourth chapter will outline the research methodology used for the study. It presents in detail the philosophical paradigm, theories, strategies and methods adopted during the research. It gives details of how the research was conducted in responds to the research problem and question. That is describing different research models and research designs and reason for selecting action research using mixed mode model. It will demonstrate how quantitative and qualitative data are collected and analysed to address the objective of the research.

The fifth chapter presents data analysis, discussions and findings for quantitative data. Subsequently, synthesised the results and generates an analytical outcome to present the frequency and level of waste and non-value adding activities existing in current project delivery process of Nigerian construction industry.
The sixth chapter presents the lean construction implementation reports, how data was collected and analysed. Then, presents the findings for both quantitative and qualitative data. Subsequently, synthesised the results and generates an analytical outcome to present the framework. The framework and its relevance are also presented. The validation of the framework process and its result are also presented in this chapter.

The seventh chapter will summarise the finding and draw conclusion of the research, and make recommendations for practice as well as area for further research.
Chapter One

Introduction
- Background, Problem Statement, Objectives, Questions; Focus and Scope; Methodology; Research Gap and Structure of Thesis

Chapter Two

Literature Review I
- Nigerian Construction Industry Waste and Non-value adding

Chapter Three

Literature Review II
- Lean Construction Principles and Techniques

Chapter Four

Methodology
- Research Models and Design
- Sampling Methods and Data Collection
- Methods of Analysis and Evaluation

Chapter Five

Result and Discussion
- Data analysis and presentation of results to achieve the research objectives
 - **Objective 1**: Survey Questionnaire on waste and non-value adding activity

Chapter Six

Case Study
- Reports and Analysis, Framework Development
 - **Objective 2**: Reports from Six Case Study sites on Implementation of Lean Construction tools
 - **Objective 3**: Lean Implementation Framework Development and validation

Chapter Seven

Conclusion and Recommendation
- Summary of Findings
- Recommendations

Figure 1.1: Research structure
REFERENCES

Chandra M. M. (2010) Development of Rating Scale in Lean Construction; A thesis submitted to the Division of Graduate Studies and Research; University of Cincinnati In partial fulfilment of the requirements for the degree of MASTER OF SCIENCE;

Ciampa, D. 1991 Total Quality: a user's guide for implementation; The Wageningen UR Library Catalogue

City of San José (2012). *Construction and Demolition Recycling*. City of San José, California, United States. Available at <http://www.sjrecycles.org/construction-demolition/cddd.asp>

Enshassi, A (1996) Materials control and waste on building sites, Building Research & Information, 24:1, 31-34, DOI: 10.1080/09613219608727495

Jang, Hyungshim; Reeve, Johnmarshall; and Deci, Edward L. (2010). Engaging students in learning activities: It is not autonomy support or structure but autonomy support and structure. *Journal of Educational Psychology, 102*(3), 588-600.

Mossman, A. (2005) Last Planner Overview: Collaborative Production Planning, Collaborative Programme Coordination, Lean Construction Institute, UK

Olubanwo, T., Adewuyi, T. O. and Odesola, I A (2016). Material Waste Minimisation Strategies among Construction Firms in South-South, Nigeria International Journal of Sustainable Construction Engineering & Technology (ISSN: 2180-3242) Vol 7, No 1, Published by Universiti Tun Hussein Onn Malaysia (UTHM) and Concrete Society of Malaysia (CSM) 11

Tan, W. L. (2004). The application of lean construction to reduce wastes in construction process flow, MSc Thesis, Sch. of Housing, Building and Planning, Univ. of Saints, Malaysia.

Teo, S.P., Abdelnaser, O. and Abdul, H.K. (2009), Material Wastage in Malaysian Construction Industry. *International Conference on Economic and Administration*, Faculty of Administration, University of Bucharest, Romania, pp. 257-264

Yashuai, LI, (2013) *Developing a Sustainable Construction Waste Estimation and Management System*; A Thesis Submitted to The Hong Kong University of Science and Technology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Civil Engineering

