PSYCHOTHERAPY BASED GAME DESIGN FOR HEALING BRAIN TUMOR IN CHILDREN

SADAF SAJJAD

UNIVERSITI TEKNOLOGI MALAYSIA
PSYCHOTHERAPY BASED GAME DESIGN FOR HEALING BRAIN TUMOR IN CHILDREN

SADAF SAJJAD

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Computer Science)

Faculty of Computing
Universiti Teknologi Malaysia

FEBRUARY 2017
This dissertation is dedicated to my Father Syed Shahid Abbas, Mother Dr. Shaheen Shahid, Husband Dr. Sajjad Mohsin and my Children Ali and Anusha.

I love you all.
ACKNOWLEDGEMENT

Foremost, I would like to acknowledge my supervisor, Prof. Dr. Abdul Hanan Abdullah for agreeing to offer as my supervisor and for his endurance and advice during many occasions as I completed my dissertation. I would like to thank my thesis committee, Prof. Dr. Abdullah Zawawi, Dr. Mohd Shahrizal and Prof. Dr. Hasbullah Idris for their direction, dedication, insightful comments and hard questions. Special gratitude to my lab mates; Ali Shahid, Siti Salmah, Juliet Gaithuru and Tasneem Jaber, thanks for the fun and support at thesis submission and defense time. I greatly look forward to having all of them as colleagues in the years ahead. Additionally, I would like to thank Pakistan Ministry of Information Technology, ICT R&D funds for providing me the funding for accomplishing my dreams on such a challenging work. I truly appreciate all of their funding as I navigated this process.

I have been blessed with very loving and helpful parents who have always stressed the importance of education and I know that this respect for education has, in some way, shaped my morals and made me the person that I am today. Nothing has made the importance of life more apparent to me than my two kids. My son Ali Mohsin helped me in making my presentations very attractive. My daughter Anusha Sajjad is a sunshine for me. My course work from Malaysia was possible only due to her bright smile she gave me when I was leaving for pursuing the studies. She is a biggest contributor to this work.

As for my husband Dr. Sajjad Mohsin, I find him my most enthusiastic cheerleader; he is my best friend; and he is an amazing husband and mentor. I am grateful to my husband not just because he has given up so much to make my career a priority in our lives, but because he has seen me through the ups and downs of the entire PhD process and believed in me. I had an academic background of Clinical Psychology and he believed that there is also a Computer Scientist in me. Without a doubt, he is the only contributor to my interest in Computer Science that helped me to get this day.
ABSTRACT

Brain tumor is the second largest deadly disease in children. Diagnosis of brain tumor in children may lead to other problems including psychological distress. Recent research has proven that health games have been effective for the management of psychological problems. There is still lack of psychotherapeutic game design that would help patients to alleviate psychological distress. Therefore this research proposes automation of psychotherapy using game design. The proposed game design integrates psychotherapy into it. The psychotherapy design consists of play therapy and guided imagery therapy to make a play guided imagery therapy (PGIT). The existing Mechanics, Dynamics and Aesthetics (MDA) game design framework has been enhanced into Mechanics, Dynamics, Aesthetics and Therapy (MDA-T) framework to facilitates the development of game that includes psychotherapy aspect in the design. The therapeutic game is developed and experimented on children with brain tumor. Two groups were formed with one group played the game and other group acts as a control group. Both the groups have undergone established psychological testing before and after playing the game. The results prove that the group that played the game had shown remarkable improvement as compared to their results before game playing. On the other hand, the control group has shown no significant improvement. The four psychological symptoms that represent the main indicators of brain tumor patients are measured. They are anxiety, depression, aggression and disruptive behavior. The results of the experiment shows that, anxiety and depression of the children have been reduced by more than 30%, and, anger and disruptive behavior are reduced by 20% and 5% respectively. In conclusion, the proposed therapeutic game has contributed toward producing positive behavioral changes in children with brain tumor.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Overview 1
1.2 Problem Background 1
1.3 Problem Statement 5
1.4 Research Questions 6
1.5 Research Aim 7
1.6 Research Objectives 7
1.7 Research Scope 7
1.8 Thesis Organization 8

2 LITERATURE REVIEW 10
2.1 Introduction 10
2.2 Psychotherapy 12
 2.2.1 Psychological Disorders 12
 2.2.2 The Treatment of Psychological Disorders 13
 2.2.3 Talk-Based therapeutic care 14
 2.2.4 The Goals of Psychotherapy 15
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.5</td>
<td>Modalities of Psychotherapy</td>
<td>16</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Major School of Thoughts for Psychotherapy Theories</td>
<td>16</td>
</tr>
<tr>
<td>2.2.6.1</td>
<td>Psychodynamic Approaches</td>
<td>17</td>
</tr>
<tr>
<td>2.2.6.2</td>
<td>Humanistic Approaches</td>
<td>18</td>
</tr>
<tr>
<td>2.2.6.3</td>
<td>Cognitive Behavioral Approaches (Imagery Therapy)</td>
<td>18</td>
</tr>
<tr>
<td>2.2.6.4</td>
<td>Review on Effect of Imagery Psychotherapy</td>
<td>21</td>
</tr>
<tr>
<td>2.2.6.5</td>
<td>Expressive Approaches (Play Therapy)</td>
<td>23</td>
</tr>
<tr>
<td>2.2.6.6</td>
<td>Eclectic-integrative Approaches</td>
<td>24</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Working of Psychotherapy: When and How does Therapy work Best and What Hinders Successful Results?</td>
<td>25</td>
</tr>
<tr>
<td>2.2.8</td>
<td>The Client Therapist Relationship in a Process of Psychotherapy</td>
<td>26</td>
</tr>
<tr>
<td>2.2.9</td>
<td>Overview and Conclusion of Psychotherapy</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Technology and Psychotherapy</td>
<td>30</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Review of Current Technology Uses in Psychotherapy</td>
<td>32</td>
</tr>
<tr>
<td>2.3.2</td>
<td>General Uses</td>
<td>32</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Technology uses in Therapist trainings</td>
<td>32</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Computer Technology Mediated Supervision</td>
<td>33</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Tutoring Systems Based on Computer Technology</td>
<td>33</td>
</tr>
<tr>
<td>2.3.6</td>
<td>Learning Environments based on Computer Systems</td>
<td>34</td>
</tr>
<tr>
<td>2.3.7</td>
<td>Computerized Psychological Testing and Diagnosis</td>
<td>35</td>
</tr>
<tr>
<td>2.3.8</td>
<td>Clinical Performance Date based System</td>
<td>35</td>
</tr>
<tr>
<td>2.3.9</td>
<td>Monitoring of Patient Treatment Response through Computer</td>
<td>36</td>
</tr>
<tr>
<td>2.3.10</td>
<td>Online Information Systems for Psychotherapy</td>
<td>36</td>
</tr>
<tr>
<td>2.3.11</td>
<td>Computer Supported Psychotherapy</td>
<td>37</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.3.12</td>
<td>Cognitive Behavioral Therapies in Computers</td>
<td>37</td>
</tr>
<tr>
<td>2.3.13</td>
<td>Computer Assisted treatment as a Secondary Tool</td>
<td>38</td>
</tr>
<tr>
<td>2.3.14</td>
<td>Therapy by Computer</td>
<td>39</td>
</tr>
<tr>
<td>2.3.15</td>
<td>Multimedia Storytelling</td>
<td>40</td>
</tr>
<tr>
<td>2.3.16</td>
<td>Psychotherapeutic Computer Games</td>
<td>41</td>
</tr>
<tr>
<td>2.3.17</td>
<td>Virtual Reality Treatments</td>
<td>43</td>
</tr>
<tr>
<td>2.3.18</td>
<td>Future Possibilities of Use of Psychotherapy and Technology</td>
<td>43</td>
</tr>
<tr>
<td>2.3.19</td>
<td>Psychotherapy into Computer Environments</td>
<td>44</td>
</tr>
<tr>
<td>2.3.20</td>
<td>Self-Expression and Storytelling</td>
<td>45</td>
</tr>
<tr>
<td>2.3.21</td>
<td>Adaptability</td>
<td>45</td>
</tr>
<tr>
<td>2.3.22</td>
<td>Online and Home Care Systems</td>
<td>45</td>
</tr>
<tr>
<td>2.3.23</td>
<td>Outcome Monitoring and Feedback</td>
<td>46</td>
</tr>
<tr>
<td>2.3.24</td>
<td>Human Computer Interaction Issues</td>
<td>46</td>
</tr>
<tr>
<td>2.3.25</td>
<td>Overview and Conclusion of Technology and Psychotherapy</td>
<td>46</td>
</tr>
<tr>
<td>2.4</td>
<td>Psychological Problems and Psychotherapy with Brain Tumor Patients</td>
<td>47</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Physical Effect of Brain Tumor</td>
<td>48</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Psychological Effect of Brain Tumor</td>
<td>49</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Conclusion from Studies about Physical and Psychological Effect of Brain Tumor</td>
<td>50</td>
</tr>
<tr>
<td>2.5</td>
<td>Game Studies and Relation with Human Computer Interaction (HCI)</td>
<td>51</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Conclusion from Studies about Game Studies and Relation with HCI</td>
<td>52</td>
</tr>
<tr>
<td>2.6</td>
<td>Literature Survey for Available Health Games</td>
<td>53</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Serious Computer Game</td>
<td>53</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Health Computer Games</td>
<td>56</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Psychological mechanisms behind positive effects on health games on children</td>
<td>57</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Reviewed Studies: Various Health Games</td>
<td>59</td>
</tr>
<tr>
<td>2.6.5</td>
<td>Health Video Games for Specific Purpose</td>
<td>59</td>
</tr>
</tbody>
</table>
2.6.5.1 Packy and Marlon Game for Diabetes 59
2.6.5.2 Computer Bio Feedback and Operation IBD Game for Bowl and Bladder Dysfunction 60
2.6.5.3 Bronkie the Bronchiasaurus and Watch, Discover, Think Game for Asthma 60
2.6.5.4 Heart Sense Computer Game for Awareness of Heart Attack Patients 61
2.6.5.5 Squire Quest Game for Improving Dietary Habits 61
2.6.5.6 Barcode ED Game for chronic kidney disease (CKD) patients 62
2.6.5.7 SnowWorld Game for Burn Patients 62
2.6.5.8 Re-mission for Cancer Patients 62
2.6.6 Video Health Games Available Commercially 63
 2.6.6.1 Managing Side Effects in Cancer Patients through Commercial Video Game 63
 2.6.6.2 Physical Fitness Therapy through Commercial Video Games 63
 2.6.6.3 Anxiety Management through Commercial Games 66
2.6.7 Overview and Conclusion on Serious Gaming 67
2.7 Game Design Frameworks 68
 2.7.1 Game Design 68
 2.7.2 Related Work on Frameworks for Designing Computer Games 70
 2.7.2.1 MDA Framework 70
 2.7.2.2 Rules, Play and Culture Framework 71
 2.7.2.3 HBTS Framework 71
 2.7.2.4 DPE Framework 72
2.7.2.5 MSAT Framework 72
2.7.2.6 Player Centric and AGE Framework 72
2.7.2.7 The Game-Based Learning Framework 73
2.7.2.8 6-11 and MDI Frameworks 74
2.7.2.9 Overviewed Conclusion on Selecting Framework for Game Design 74

2.8 Discussion 76
2.8.1 Chronological Discussion 76
2.8.2 Overall discussion on the Literature Review 81

2.9 Conclusion on Current Problem and Research Gap 82
2.10 Summary 83

3 RESEARCH METHODOLOGY 84
3.1 Introduction 84
3.2 Overview of the Research Methodology 84
3.3 Literature Review Leading to Problem Formulation 86
3.4 Formulation of the Research Problems 86
3.5 Selection of the Psychotherapy and Game Design 86
3.5.1 Selecting Type of Psychotherapy in Research Process 86
3.5.2 MDA Framework selection for the Design Methodology 88
3.6 Participatory Design Methodology for making a Game Environment 89
3.7 Implementation of the Proposed Design 90
3.7.1 Therapy Game Story Plotting: Therapy Design Phase 1 90
3.7.2 Survey for Game Environment: Therapy Design Phase 2 91
3.7.3 Therapy Game Brain Environment: Therapy Design Phase 3 92
3.8 Evaluations for the Proposed Methodology 93
3.8.1 Evaluation through Cognitive Walkthrough (Expert Evaluation by Psychotherapist) 93
3.8 Heuristic Evaluations
- **3.8.2 Heuristic Evaluations**
- **3.8.3 Evaluation of the Design on Brain Tumor Patients**
- **3.8.4 Evaluation of the Game with Comparison of another Game**
- **3.8.5 Evaluating the Interface through Expert Evaluation (Oncologists)**
- **3.8.6 Formal Method for Enhanced Game Design**

Discussion on Research Evaluation Methods
- **3.9 Discussion on Research Evaluation Methods**

Summary
- **3.10 Summary**

4 Evolving Psychotherapy Based Game Design

4.1 Introduction
- **4.1 Introduction**

4.2 Fusion of Two Psychotherapies
- **4.2 Fusion of Two Psychotherapies**

4.3 Use of MDA Approach to evolve a psychotherapy based design
- **4.3 Use of MDA Approach to evolve a psychotherapy based design**

4.4 Usability Aspect of Game using Participatory Design through Surveys
- **4.4 Usability Aspect of Game using Participatory Design through Surveys**
 - **4.4.1 Enemy Character Design and Animation**
 - **4.4.2 Weapons Survey and Modeling**
 - **4.4.3 Music Selection**

4.5 Sounds
- **4.5 Sounds**

4.6 Amplification of the Dialogues
- **4.6 Amplification of the Dialogues**

4.7 Adding Voice Over in Weapon Morphing
- **4.7 Adding Voice Over in Weapon Morphing**

4.8 Final development of the Therapy game
- **4.8 Final development of the Therapy game**

4.9 3D Brain Environment and Levels
- **4.9 3D Brain Environment and Levels**

Summary
- **4.10 Summary**

5 Evaluation and Validation

5.1 Introduction
- **5.1 Introduction**

5.2 Cognitive Walkthrough
- **5.2 Cognitive Walkthrough**
 - **5.2.1 Preparation Phase of Cognitive Walkthrough**
 - **5.2.2 Evaluation Phase of Cognitive Walkthrough**
5.2.3 Conclusion/Discussion of Cognitive Walkthrough 136

5.3 Heuristic Evaluation on Usability, User Interface (UI) and User Experience (UX) 137
5.3.1 Conclusion Results on Heuristic Evaluations 148

5.4 Performance Evaluation of the Tested System on Brain Tumor Children 148
5.4.1 Application of Psychotherapy Embedded Game Design on Brain Tumor Children 149
5.4.2 Process of Evaluation on Brain Tumor Experimental and Control Group 149
5.4.3 Discussion on Performance Evaluation on Brain Tumor Children 155

5.5 Design Usability Evaluation of the Therapy game (PGIT) in Comparison to Re-mission Game 156
5.5.1 Comparative Analysis on Psychological Symptoms 156
5.5.1.1 Methodology for Participants for Comparing PGIT with Re-mission 157
5.5.1.2 Interventions 157
5.5.1.3 Experimental design 157
5.5.1.4 Procedure 158
5.5.1.5 Results Related to Design Usability Evaluation on Psychological Symptoms 158
5.5.1.6 Discussion on Results of Design Usability Evaluation on Psychological Symptoms 162

5.5.2 Content Analysis for comparison of both games 163
5.5.2.1 Findings of interviews of PGIT game 163
5.5.2.2 Findings of interviews on Re-mission 164
5.5.2.3 Discussion on Content Analysis for Comparison of Games 165
5.5.3 Measuring Interest Level of Gamers on PGIT and Re-mission 166
5.5.3.1 Method and Procedure 166
5.5.3.2 Participants 166
5.5.3.3 Evaluation iGEQ questionnaire on Interest Level 166
5.5.3.4 Comparative Results on Interest Level 168
5.5.3.5 Discussion on the Interest Level for both Games 176
5.5.4 Overall Discussion on Design Usability Evaluation of the Therapy game (PGIT) in Comparison to Re-mission Game 176
5.6 Evaluation feedback from Oncologists 177
5.6.1 Discussion for Oncologist Feedback 181
5.7 Formal Method Representation of MDA to MDA-T 181
5.7.1 Discussion on Formal Representation of MDA to MDA-T 187
5.8 Analysis and Discussion on all Evaluations 187
5.9 Summary 188

6 CONCLUSION AND FUTURE DIRECTIONS 190
6.1 Introduction 190
6.2 Conclusion 190
6.3 Effective and appropriate psychotherapy for computer game design 191
6.4 Effective video game design with an embedded psychotherapy. 192
6.5 Computer game that can serve as a therapist for psychological symptoms of brain tumor children. 194
6.6 Contribution to Knowledge 195
6.7 Future Research Directions 196

REFERENCES 198
Appendices A – C 220 – 224
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Modality, Therapeutic Techniques and Interventions</td>
<td>29</td>
</tr>
<tr>
<td>2.2</td>
<td>Health Games Comparison</td>
<td>67</td>
</tr>
<tr>
<td>2.3</td>
<td>Chronology of Psychotherapy</td>
<td>77</td>
</tr>
<tr>
<td>2.4</td>
<td>Chronology of Psychotherapy 20th Century and beyond</td>
<td>78</td>
</tr>
<tr>
<td>2.5</td>
<td>Computer Game Evolution</td>
<td>79</td>
</tr>
<tr>
<td>4.1</td>
<td>MDA goals in accordance with the requirements of PGIT game design.</td>
<td>103</td>
</tr>
<tr>
<td>4.2</td>
<td>Favorite weapon for fighting</td>
<td>111</td>
</tr>
<tr>
<td>4.3</td>
<td>Music Sample through survey</td>
<td>113</td>
</tr>
<tr>
<td>5.1</td>
<td>Tasks, input, steps to be performed and desired output</td>
<td>127</td>
</tr>
<tr>
<td>5.2</td>
<td>Tasks, input, steps to be performed and desired output Cont.(i)</td>
<td>128</td>
</tr>
<tr>
<td>5.3</td>
<td>Tasks, input, steps to be performed and desired output Cont.(ii)</td>
<td>129</td>
</tr>
<tr>
<td>5.4</td>
<td>Summary of evaluations by experts</td>
<td>131</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary of evaluations by experts Cont.(i)</td>
<td>132</td>
</tr>
<tr>
<td>5.6</td>
<td>Summary of evaluations by experts Cont.(ii)</td>
<td>133</td>
</tr>
<tr>
<td>5.7</td>
<td>Summary of evaluations by experts Cont.(iii)</td>
<td>134</td>
</tr>
<tr>
<td>5.8</td>
<td>Summary of evaluations by experts Cont.(iv)</td>
<td>135</td>
</tr>
<tr>
<td>5.9</td>
<td>Visibility of system status</td>
<td>139</td>
</tr>
<tr>
<td>5.10</td>
<td>Match between system and the real world</td>
<td>140</td>
</tr>
<tr>
<td>5.11</td>
<td>User Control and Freedom</td>
<td>141</td>
</tr>
<tr>
<td>5.12</td>
<td>Consistency and Standard</td>
<td>142</td>
</tr>
<tr>
<td>5.13</td>
<td>Error Prevention</td>
<td>143</td>
</tr>
<tr>
<td>5.14</td>
<td>Recognition rather than recall</td>
<td>144</td>
</tr>
<tr>
<td>5.15</td>
<td>Flexibility and efficiency of use</td>
<td>145</td>
</tr>
<tr>
<td>5.16</td>
<td>Aesthetics and minimalist design</td>
<td>146</td>
</tr>
<tr>
<td>5.17</td>
<td>Help users recognize, diagnose and recover from errors</td>
<td>147</td>
</tr>
<tr>
<td>5.18</td>
<td>There are means for error prevention and recovery</td>
<td>147</td>
</tr>
<tr>
<td>5.19</td>
<td>Experimental Groups results on Beck Inventory</td>
<td>150</td>
</tr>
</tbody>
</table>
5.20 Regression test applied on experimental group

5.21 Control Group results on Beck Inventory

5.22 Regression test applied on control group

5.23 Percentages of post-tests in control and experimental group

5.24 Mean, SD, and t value of groups on pre-test and post-test of BSCI-Y

5.25 Mean, SD, and t value of groups on levels pre-test and post-test of BDI-Y

5.26 Mean, SD, and t value of groups on pre-test and post-test of BANI-Y

5.27 Mean, SD, and t value of groups on pre-test and post-test of BDBI-Y

5.28 Brief summary of response by the cancer patients who played PGIT

5.29 Brief summary of response by the cancer patients who played Re-mission. Effects of Re-mission on subjective well being of patients

5.30 Evaluation of player’s first experience for Re-mission

5.31 Evaluation of player’s first experience for PGIT

5.32 Average evaluation of eight player’s experience for Re-mission.

5.33 Average evaluation of eight player’s experience for PGIT

5.34 Average evaluation of eight player’s for Re-mission

5.35 Average evaluation of eight player’s for PGIT

5.36 Expert Evaluation feedback (Oncologists)

5.37 Expert Evaluation feedback (Oncologists) Cont. (i)

5.38 Expert Evaluation feedback (Oncologists) Cont. (ii)
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Organization of the literature review</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Computer in a client therapist relationship</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Serious Games Types</td>
<td>54</td>
</tr>
<tr>
<td>2.4</td>
<td>Serious games application areas (Wijers, 2009)</td>
<td>55</td>
</tr>
<tr>
<td>2.5</td>
<td>Evolution of the number of serious games (1950 to 2000)</td>
<td>56</td>
</tr>
<tr>
<td>2.6</td>
<td>Different application areas of health games</td>
<td>57</td>
</tr>
<tr>
<td>2.7</td>
<td>Designing Computer Based Games.</td>
<td>69</td>
</tr>
<tr>
<td>2.8</td>
<td>MDA Games Design</td>
<td>71</td>
</tr>
<tr>
<td>2.9</td>
<td>Mapping of Multidisciplinary fields</td>
<td>80</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview Model of Research Methodology</td>
<td>85</td>
</tr>
<tr>
<td>3.2</td>
<td>Systematic Architecture of Therapy Game Design</td>
<td>92</td>
</tr>
<tr>
<td>3.3</td>
<td>Systematic Architecture of Therapy Design implementation</td>
<td>93</td>
</tr>
<tr>
<td>4.1</td>
<td>The fusion of two therapies to evolve PGIT</td>
<td>100</td>
</tr>
<tr>
<td>4.2</td>
<td>Psychotherapy based Game design</td>
<td>101</td>
</tr>
<tr>
<td>4.3</td>
<td>Screenshot of the game showing the NPC characters</td>
<td>104</td>
</tr>
<tr>
<td>4.4</td>
<td>Screenshot of the game showing the fruits</td>
<td>104</td>
</tr>
<tr>
<td>4.5</td>
<td>Screenshot of the game showing health bars status</td>
<td>105</td>
</tr>
<tr>
<td>4.6</td>
<td>Sample of Category 1 drawings</td>
<td>106</td>
</tr>
<tr>
<td>4.7</td>
<td>Sample of Category 2 drawings</td>
<td>107</td>
</tr>
<tr>
<td>4.8</td>
<td>Sample of Category 3 drawings</td>
<td>107</td>
</tr>
<tr>
<td>4.9</td>
<td>2D sketch for a tumor extracted from the common features</td>
<td>107</td>
</tr>
<tr>
<td>4.10</td>
<td>Character Pencil Sketch of the Enemy</td>
<td>108</td>
</tr>
<tr>
<td>4.11</td>
<td>Character Morph Cycle in Drawing</td>
<td>109</td>
</tr>
<tr>
<td>4.12</td>
<td>Digitized Character Morph Cycle</td>
<td>109</td>
</tr>
<tr>
<td>4.13</td>
<td>Rendering 3D model of enemy character</td>
<td>110</td>
</tr>
<tr>
<td>4.14</td>
<td>Rendered 3D model of enemy character</td>
<td>110</td>
</tr>
<tr>
<td>4.15</td>
<td>Arrangement of music components on the layers</td>
<td>112</td>
</tr>
<tr>
<td>4.16</td>
<td>Composition matching survey</td>
<td>114</td>
</tr>
<tr>
<td>4.17</td>
<td>Recording voice-over in Jet Audio</td>
<td>116</td>
</tr>
<tr>
<td>4.18</td>
<td>Amplification of the dialogues through AVS Audio Editor</td>
<td>117</td>
</tr>
</tbody>
</table>
4.19 Morphing of white blood cells into a weapon 118
4.20 Voice-overs of the Cinematic 118
4.21 Visualization of the overall stepwise technical design 119
4.22 Visualization of the first person shooter game 120
4.23 Scene view of Unity 3D 120
4.24 Pickup placement in game environment 121
4.25 Unity3D game scene environment 121
4.26 Level cave modeled in Autodesk Maya 3D 122
4.27 Power pickup modeling 122
4.28 Level 1 Screen Shot 2 123
4.29 Level 1 Complete 123
5.1 Virus engulfed the player, and the player was not able to shoot 136
5.2 Fireballs have accumulated 136
5.3 Graph of Experimental Groups results on Beck Inventory 151
5.4 Graph of Control Group results on Beck Inventory 153
5.5 Graph of percentages of post-tests in both groups 154
5.6 Marginal Means of Pre and Post Intervention BSCI 159
5.7 Marginal means of Pre and Post intervention on BDI-Y 160
5.8 Marginal means of Pre and Post intervention on BANI-Y 161
5.9 Marginal means of Pre and Post intervention on BDBI-Y 162
5.10 Comparison of average experience for Re-mission and PGIT 174
5.11 Average Response of eight player’s for 14 questions 174
5.12 Comparison of average SD for Re-mission and PGIT 175
5.13 Average SD for eight player’s for 14 questions 175
5.14 Comparison of Average Experience and Average SD 176
5.15 Enhanced Architecture of Game Design 182
5.16 Formal Schema for MDA-T (a) 183
5.17 Formal Schema for MDA-T (b) 184
5.18 Formal Schema for MDA-T (c) 185
5.19 Formal Schema for MDA-T (d) 186
5.20 Formal Schema for MDA-T (e) 186
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>Action, Gameplay, Experience</td>
</tr>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>BAI</td>
<td>Beck Anxiety Inventory</td>
</tr>
<tr>
<td>BANI</td>
<td>Beck Anger Inventory</td>
</tr>
<tr>
<td>BDBI</td>
<td>Beck Disruptive behavior Inventory</td>
</tr>
<tr>
<td>BDI</td>
<td>Beck Depression Inventory</td>
</tr>
<tr>
<td>BSCI</td>
<td>Beck Self Concept Inventory</td>
</tr>
<tr>
<td>CBT</td>
<td>Cognitive Behavior Therapy</td>
</tr>
<tr>
<td>CKD</td>
<td>Chronic Kidney Disease</td>
</tr>
<tr>
<td>DPE</td>
<td>Design, Play, Experience</td>
</tr>
<tr>
<td>GEQ</td>
<td>Game Experience Questionnaire</td>
</tr>
<tr>
<td>HBTS</td>
<td>Holistic, Boundary, Temporal, Structural</td>
</tr>
<tr>
<td>HCI</td>
<td>Human Computer Interaction</td>
</tr>
<tr>
<td>IBD</td>
<td>Irritating Bowel Disease</td>
</tr>
<tr>
<td>iGEQ</td>
<td>in-Game Experience Questionnaire</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>MDA</td>
<td>Mechanics, Dynamics, Aesthetics</td>
</tr>
<tr>
<td>MDA-T</td>
<td>Mechanics, Dynamics, Aesthetics, Therapy</td>
</tr>
<tr>
<td>MDI</td>
<td>Mechanics, Dynamics, Impression</td>
</tr>
<tr>
<td>MSAT</td>
<td>Mechanics, Story, Aesthetics, Technology</td>
</tr>
<tr>
<td>NPC</td>
<td>Non Player Character</td>
</tr>
<tr>
<td>PD</td>
<td>Participatory Design</td>
</tr>
<tr>
<td>PGIT</td>
<td>Play Guided Imagery Therapy</td>
</tr>
<tr>
<td>PI</td>
<td>Personal Investigator</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Sciences</td>
</tr>
<tr>
<td>UI</td>
<td>User Interface</td>
</tr>
<tr>
<td>UX</td>
<td>User Experience</td>
</tr>
<tr>
<td>WBC</td>
<td>White Blood Cell</td>
</tr>
<tr>
<td>WDTA</td>
<td>Watch, Discover, Think and Act</td>
</tr>
<tr>
<td>WTO</td>
<td>Working Things Out</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Game Play</td>
<td>220</td>
</tr>
<tr>
<td>B</td>
<td>Sample Figures of 3D Level Designing</td>
<td>221</td>
</tr>
<tr>
<td>C</td>
<td>List of Weapons</td>
<td>224</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

New computer games are launched on an almost daily basis. These games have applications in various capacities from military trainings to health care and from education to cultural training, information, sports etc. Games made for the purpose of training, education or improving health is usually referred to as serious games. One of the most important aspects in developing serious game is “Game Design”. Game design documents the creative, conceptual, technical and functional aspects of game. Every game has to be custom design depending on its intended usage. There are no specific set of rules for serious game design but common principles can be applied to these games. Health games are meant for the purpose of targeting the psychological aspect of people and are important for the improvement of health behaviors, positive behavioral modification and self-management of deadly illnesses as well as encouraging and sustaining psychological wellbeing. One of the second largest deadly diseases in children is brain tumor which causes many psychological problems among them and these problems can be dealt with success if some form of psychotherapy is applied on such patients. Health games can be used for such a purpose. The psychological health games need psychological harmony in their design in order to be effective.

1.2 Problem Background

Diagnosis of any kind of cancer may lead to mental health problems and psychological distress thus causing them to have high level of anger, anxiety and may distort their self-concept (Pinkerton et al., 2007). Brain tumor is the second largest deadly disease in children and studies by Wellisch et al. (2002) have shown
that 50% of the patients and perhaps 80% of the brain tumor patients are suffering from depression (Price et al., 1997). Depression is a state of low mood and a symptom which appears after certain trauma or bad experience. It may lead to severe mental and physical conditions. It is believed by researchers that depressive behavior of the people is usually due to the traumas they have faced in the past and one of the ways to recover from it is the use of some form of psychotherapy (McCabe, 2007). Psychotherapy is a treatment based on the relationship between a therapist and patient, to produce change in feelings, thoughts and actions. For treatment, psychotherapist makes systematic use of psychological theories to devise and direct intervention. The level of psychotherapy specifies the level of training regarding the treatment. Current research confirms that psychotherapy is an effectual conduct for psychiatric disorders. Psychotherapy heals patient’s problems, and appreciating psychotherapeutic techniques (Bateman, 1995). Two such psychotherapies are imagery psychotherapy and play therapy.

The idea of utilizing imagery psychotherapy as a therapeutic involvement in health is established on the basis that images could have direct or indirect effect on health. Visuals stimuli communicate and manipulate the perceptions while providing imaginary views. This is considered to be a tool for various perspectives in helping people to cope with mental problems. This technique has a history, in early ages where drawings and colors were used to indicate certain meaning for decision. In the Arnheim theory real life situations are appropriate for viewing of images. Act of seeing is not a simple stimulus-response action but it is actually a cognitive activity which helps the capacity to craft and classify individual meaning (O’Neil, 2011). Visual display of information is the extension of a therapy utilizing the curative properties. This therapy uses activities through the use of imaginative scenes, intended to improve mental problems and skills. Researchers have shown that people who received imagery psychotherapy has shown marked improvement in their behaviors over the people who did not receive psychotherapy and also more positive attitude towards life was observed (Astin et al., 2003). Similarly play therapy is a form of psychotherapy used for children in which play is used to communicate to resolve some psychosocial tasks. This is thought to help them towards better social and emotional growth and researches has shown improvement in mental health of children after utilizing this therapy with problematic children (Moustakas, 1955). This therapy helps children in many ways. The concept behind it is that children may play out traumatic or difficult life experiences in order to make sense of present problems and may cope with the future problems. Bratton et al. (2005) have explained that the outcomes of the play therapy may be general e.g. a reduction in anxiety and raised self-concept, or more specific such as a change in behavior and improved social relations. Play therapy may have different forms as per the requirement of a problem. However a psychotherapist
is a must requirement for conducting such a therapy.

Targeting brain tumor in children to solve their problematic behaviors related with the diagnosis of their disease through the use of psychotherapy video game can be one use of the technology. Radiation therapies like stereotactic radio surgery, immunotherapy, and vaccine therapy are given to the brain tumor patients as a primary treatment and it is a must but during these treatments the psychological state of body should not be ignored because psychological treatments have also contributed for better prognosis reports for such patients (McCabe, 2007).

Imagery psychotherapy and play therapy for children has been doing well in advancing relaxation, soothing anxieties and facilitating children in numerous way, (Garrett and Norris, 1985). In order to examine the effect of imagery therapy a study was conducted on depressed white blood cell (WBC) counts, over a 90-day period. All the patients showed significant increases in their WBC count, even though they possess diseases/illnesses that could cause the decrease in WBC count. The experiment conducted by Troesch et al. (1993) found that individuals who took part in guided imagery sessions not only scored better on both mood scores and quality of life scores than those who did not. Rather, even after sessions were complete, the scores continued to improve in the experimental group, giving clear indication that guided imagery is effective in improving mood and quality of life in cancer patients.

Psychological therapies can reduce the mental health problem focusing on the symptoms highlighted. Therapy can make patients handle the behaviors and mental stress stages. Regarding brain tumor some therapies act as a healing tool. The problem is that many psychotherapists know little about video games such as World of Warcraft and Second Life. They may let go gaming as insignificant. When people come to treatment with problems, it is important to remember that they are trying to cope with them in the best way they can. With that in mind, therapists can offer a reflective and engaging partnership with their clients, working toward the goal of helping them to be authentic and compassionate in a world that can be extremely stressful. Meeting the needs of the competing goals of psychological therapy through conventional techniques of psychotherapy is extremely challenging due to the shortage of psychotherapists and the need to create an appropriate therapy environment. Technology nowadays is providing many human like solutions in different aspects of life from education to treatments.
The role of serious gaming in managing health is one of the examples for the use of management of difficult or problematic behaviors. Health games can help patients develop specific skills needed to manage illnesses in a cost-effective, easily distributed way (Kato, 2010). Several games, have been developed on the treatment of health through games. Elementary principles for a game design generally include basic idea, problems to solve, game rules and mechanisms of feedback for health purposes. But one more thing that has to be considered while designing a health game is the message of the game and the interest in the game.

A popular health game, Re-mission has been developed by Hope Lab for cancer patients in which the player manages realistic and life threatening side effects related to cancer with the purpose of better understanding and handling physical disease (Tate and Haritatos, 2009). Re-mission was the first game made for cancer patients and proved effective with regard to decrease in anxiety and depression level of the patients but it was meant for teenagers. There is no such therapeutic game made for children. Re-mission game was a third person shooter game, hence does not provide the explanation of self-empowerment which is essential to fight any enemy and hence cannot fulfill the therapeutic requirements. They have introduced their own design principles by following some medical mechanism of disease identification and then full testing of disease and symptoms but the game is meant for teenagers only and the design does not contain any form of known psychotherapy into it.

Another health related serious game is Personal Investigator (PI) (Coyle et al., 2005b). It is designed to engage adolescents in psychotherapy through a computer aided model. This game is developed to cope with the mental health problems like anxiety, social skill problems and depression. In this game the Solution Focus Therapy (SFT) is used as a therapeutic model because it focuses on the goal oriented approach as computer games do.

‘Treasure Hunt’ is the very first psychotherapeutic computer game made based on the rules of behavior enhancement (Brezinka, 2008). It targets children high quality attraction for video games in order to maintain psychotherapy. This collective adventure game which is for eight to twelve year old children is not developed for replacing the therapist but to advise engaging electronic homework assignments and practice the main educational concepts that have been adopted during therapy.

Many frameworks for making game designs has been explained for the health as well as entertainment games, for example, Hunicke et al. (2004) has proposed
a MDA Framework for game design. MDA stands for Mechanics, Dynamics and Aesthetics. Mechanics illustrates the game at algorithms level. Dynamics shows the run-time behavior of the game as system and Aesthetics demonstrates the emotional reactions induced in the player. This game developed an approach that is flexible enough to make changes in the aesthetic part. It is difficult to propose a game design that is safe for multiple targets because several designs are technically very sound but are not close to heart of players. A game must have psychological synchronization if it is to have psychotherapeutic impact on its audience.

It was found that the existing solutions for targeting the therapeutic aspect are not addressing the psychological problems of the brain tumor children in time and especially children are not aware of what is going inside their body. The reality for them is too hard to understand. However they are really good in imagination and play. The physical aspects of these children are dealt as a priority but the fact that mental state can affect the physical state is ignored. There is also a lack of game design which can work as a therapist itself when the psychotherapist is not available.

Therefore, to design an appropriate therapy game for brain tumor cancer children a design is desired to be proposed in which psychotherapy is embedded and can be provided without the physical presence of the psychotherapist. Computer technology is utilized in every area of life and hence can be utilized to generate psychotherapeutic game for children with brain tumor. Psychotherapy for use with the illness-related psychological problems is a very important aspect as explained in the background and thus it should not be ignored.

1.3 Problem Statement

Embedding psychotherapy into a game design can clearly be the important line of research into serious health video game designs which has not yet used in previous designs. The previous games such as Re-mission, Personal Inventory and Treasure Hunt showed that there are reactive approaches in terms of game designs of health game as several designs are technically very sound but may not be closer to heart of player due to lack of involvement of the players cognitive interests themselves. Menestrina (2007) have proved the involvement of the end-users in the development of a health game that is truly user oriented. Participatory design or in general terms involving the users must be taken into account for the design of health games. Games
such as Re-mission though meant for cancer patients have not involved the end users in its design. Therefore there is a need to use proactive approach in designing a game so that the adaptation becomes natural and support for those having behavior problems associated with physical illnesses such as brain tumor may be targeted. Lastly designing a computer game for brain tumour children with psychotherapy into it will minimize the role of psychotherapist in the oncology ward who is rarely available in every hospital. Hence, the issue of unavailability of a therapist to solve psychological problems related with diagnosis of brain tumour in children are the main problem to solve in this research by proposing an effective game design for a psychotherapeutic purpose.

In this thesis an attempt has been made to propose psychotherapeutic game design, which can work as a psychotherapist in the unavailability of therapist for the children suffering from brain tumor, through involving the children in developing the therapeutic game. Hocine and Gouaïch (2011) emphasized the importance of embedding psychotherapy into a game design and this work has addressed the involvement of psychotherapy into a game design for health games, targeting brain tumor in children.

1.4 Research Questions

The open issues discussed above lead to some research questions. The following research questions are addressed in this research:

i Which psychotherapy or combination of psychotherapy can be embedded into a computer game design?

ii How can health game design be enhanced to make it a therapy design for brain tumor in children?

iii How can the computer game be served as therapist for children problematic behaviours with brain tumor?
1.5 Research Aim

The aim of this research is to propose psychotherapy game design for children suffering from brain tumor, by introducing the psychotherapy into the game design, thereby making it possible to provide psychotherapy through a computer game for the related psychological problems of this disease.

1.6 Research Objectives

The following research objectives are to be achieved during the research work. These objectives are in the perspective of the research questions mentioned in section 1.4.

i To propose a suitable existing psychotherapy or combination of therapies that can be embedded into a game design.

ii To enhance existing computer game design and propose a new game design for the children with brain tumor.

iii To integrate the proposed game design into a computer game that can serve as a therapist for psychological symptoms of brain tumor children.

1.7 Research Scope

The scope of this research covers the following points:

i The study focuses on finding and embedding a suitable combination of psychotherapy in design of computer health games.

ii The research is restricted to the use of imagery psychotherapy and play psychotherapy for embedding into a computer game design and other form of therapies are out of scope for this research.

iii The proposed psychotherapy game design is implemented using Adobe Photoshop, 3D Max and Unity.

iv The proactive involvement of the children is ensured by involving them in the creation of game environment for the proposed design.
v The proposed design is tested on the children suffering from brain tumor and is particularly designed for children with age range 10 to 14 years.

vi The change in behaviour such as anger, disruptive behaviour, self-concept, aggression, anger and anxiety of brain tumor children before and after playing the game is verified through a standardized psychological inventory testing module.

vii The MDA framework has been chosen to design the game with psychotherapy.

viii The scope of this study is limited to the effects of psychotherapy based game design only on children suffering from malignant brain tumor and it does not apply on other cancers.

ix The Beck Psychological Inventory Tool is utilized in this study due to its variability in measuring five most accurate psychological problems which are originated after the diagnosis. The test is specially designed for the purpose. The scope does only cover the testing from Beck Inventory.

1.8 Thesis Organization

The rest of the thesis is organized as follows.

Chapter 2 describes an exhaustive literature review of the area of study, background, problems, solutions and evaluations. A comprehensive exploration on the existing literature in the available approaches for game design, serious health games and the available game designs of health games, effect of playing computer games for dealing with anxiety and pain control, psychotherapy and effect of imagery therapy and play therapy on problematic behaviors of brain tumor children are presented in chapter 2.

Chapter 3 highlights the flow of research methodology, which is used in this research. This is followed by survey steps of the proposed game environment. Research design procedures of the game design are explained such as MDA design and justification for choosing MDA design. The two chosen therapies are described in detail. Evaluation methods are elaborated.

Chapter 4 outlines the design detail of introducing the suggested therapy part using the MDA framework and it presents the proposed psychotherapy play and
imagery model in which game design with therapy is evolved. The proposed steps to design the game and proposed enhanced game design are evaluated through the standardized methods used in HCI.

Chapter 5 explains the proposed design validation with the brain tumor children. Expert evaluation, user evaluation, user interface evaluation and user acceptance evaluation has been performed.

Chapter 6 presents the conclusion, describes the contributions made by this study, and suggests directions for future research.
REFERENCES

APA (2016). Media psychology and technology.

Report.

Proceedings of the 3rd International Conference on Tangible and Embedded Interaction, pages 85–92. ACM.

