PREPARATION AND CHARACTERIZATION OF TITANIA BASED
TRIMETALLIC METAL OXIDE PHOTOCATALYSTS FOR
PHOTODEGRADATION OF 1,2-DICHLOROBENZENE
AND POLYCHLORINATED BIPHENYL
COMPOUNDS IN AQUEOUS PHASE

RENUGAMBAAL A/P K.NADARAJAN

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

APRIL 2017
For my beloved supervisor and family, who offered me unconditional love and a lot of support throughout the course of this report, my wonderful husband and loving daughter, and all my dearest friends who have been always with me when in need. Thanks for all the support and guidance. May God bless you always.
ACKNOWLEDGEMENTS

Although I am indeed the sole author of this report, I am by no means the sole contributor. So many people have contributed to my report and it is now my great pleasure to take this opportunity to thank them.

Firstly and foremost, all praise and gratitude to the Supreme Power for without His benevolence and grace, I will not even be living right now to complete this project. I would like to take this opportunity to express my sincere appreciation and utmost gratitude to my supervisors Prof. Dr. Wan Azelee Wan Abu Bakar, Assoc. Prof. Dr Rusmidah Ali and Assoc. Prof. Dr. Razali Ismail for guiding me throughout the course of this project. Their advice, suggestions and insight has helped me from the initial phase of this project to its completion, for which I am eternally grateful.

I also would like to express my gratitude to all lecturers and staff in Department of Chemistry, Physics, Institute of Ilnusina, Department of Material Science, UPMU and my fellow friends that had directly and indirectly helped me throughout this research project. I am also grateful to Universiti Teknologi Malaysia (UTM) for providing research grant besides the necessary facilities in presentation of this work, and Ministry of Education for providing MyPhD scholarship.

Finally and most importantly, I am forever indebted to my loving husband, daughter, my mother and all my family members for their understanding, endless patience and encouragement throughout the years. It is such a heart-warming experience I had, and such experience will always be with me.
ABSTRACT

The deterioration of water quality has raised serious safety concerns due to the discharge of chlorinated industrial wastes such as 1,2-dichlorobenzene (DCB) and polychlorinated biphenyls (PCBs) which are highly toxic and cause dangerous effects on human health. The polluted water is usually treated using adsorption method, Fenton, ozonation and photocatalysis. Among these methods, photocatalysis is the most promising technique for the easy decomposition of pollutants in the presence of suitable photocatalyst. Hence, in this research, a series of titania based photocatalysts have been prepared and were utilized to investigate its efficiency in the photocatalytic degradation of DCB in aqueous solution. The influence of catalyst preparation methods (sol-gel, sol-immobilization and mechanical mixing) were explored under different calcination temperatures, ratios and a light source. Further, the potential photocatalyst was then investigated by hydrothermal and hydrogenation techniques. Relatively, trimetallic oxide SnO$_2$/WO$_3$/TiO$_2$ (10:10:80) prepared by mechanical mixing of hydrothermal SnO$_2$, WO$_3$, TiO$_2$ calcined at 850°C, 850°C and 950°C respectively, exhibited the highest degradation of 98.43% under visible light irradiation at the DCB concentration of 100 ppm. The high activity of mechanically mixed hydrothermal trimetallic oxide Sn850/W850/T950 (10:10:80)HY was associated with the exposed surface with edges as observed in the field emission scanning electron microscope (FESEM) morphologies, and also the presence of Ti$^{3+}$ analyzed by X-ray photoelectron spectroscopy (XPS). The existence of surface defects was further confirmed by photoluminescence (PL) spectroscopy. The reduction in the band gap energy of the trimetallic oxide and the absorption shift towards the visible light region was observed in the absorption band edge using diffuse reflectance-ultraviolet visible (DRUV) spectroscopy. Meanwhile, transmission electron microscope (TEM) images confirmed the absence of an interface gap between the metal oxides which is beneficial for the occurrence of charge transfer and enhancement of the activity. The effectiveness of this photocatalyst when immobilized on polyvinyl chloride (PVC) film, nevertheless decreased the photocatalytic activity to 93.67%. Eventually, the degradation activity of DCB was improved to 95.70% upon increasing the photocatalyst loading on PVC film of up to 0.25 g and under neutral pH. The optimization utilizing response surface methodology with Box-Behnken design was in good agreement with the obtained experimental result. The degradation of DCB in water was justified by the identification of two intermediates using gas chromatography-mass spectrometry (GCMS) analysis. Consequently, the investigation on removal of PCBs from green mussels using polyethylene glycol (PEG), and subsequent degradation of PCBs in aqueous phase utilizing immobilized photocatalysts, capable to degrade 83% of the total PCBs content under the optimized conditions.
Kemerosotan kualiti air telah menimbulkan kesedaran yang tinggi terhadap kepentingan keselamatan disebabkan oleh pelepasan bahan sisa industri berklorin seperti 1,2-diklorobenzena (DCB) dan bifenil poliklorinat (PCBs) yang sangat toksik dan mengakibatkan kesan yang berbahaya kepada kesihatan manusia. Air tercemar biasanya dirawat dengan menggunakan kaedah penjerapan, Fenton, pengozonan dan fotopemangkinan. Antara kaedah-kaedah ini, fotopemangkinan merupakan teknik yang paling menjanjikan penguraian mudah bahan pencemar dengan kehadiran fotomangkin yang sesuai. Maka, dalam penelitian ini, satu siri fotomangkin berasaskan titania telah disediakan dan digunakan untuk mengkaji keberkesanan degradasi fotopemangkinan sebatian DCB di dalam air. Pengaruh kaedah penyediaan mangkin (sol-gel, pemegunan-sol dan pencampuran secara mekanikal) telah diteroka pada suhu kalsin, nisbah dan sumber cahaya yang berbeza. Seterusnya, fotomangkin yang berpotensi kemudiannya dikaji menggunakan teknik hidroterm dan penghidrogenan. Secara relatif, trilogan oksida SnO2/VO3/TiO2 (10:10:80) yang disediakan melalui pencampuran mekanikal SnO2, V2O5, TiO2 hidroderma yang dikalsin pada suhu 850°C, 850°C dan 950°C masing-masing, memperoleh degradasi yang tertinggi iaitu 98.43% di bawah penyinaran cahaya nampak pada kepekatan DCB 100 ppm. Aktiviti tinggi trilogan oksida hidroderma yang disediakan secara pencampuran mekanikal Sn850/W850/T950 (10:10:80)HY mempunyai kaitan dengan morfologi permukaan yang terdedah dengan buku, yang dicapai menggunakan mikroskop imbasan elektron pancaran medan (FESEM) dan juga kehadiran Ti3+ yang dialisisis menggunakan spektroskopi fotoelektron sinar-X (XPS). Kewujudan cacat permukaan selanjutnya telah disahkan dengan spektroskopi fotopendarcahaya (PL). Pengurangan tenaga luang jalur bagi trilogan oksida dan pengakian serapan kepada kawasan cahaya nampak telah diperbuka dalam penelitian pinggiran yang digunakan spektroskopi pantulan serakan ultralembayung-cahaya nampak (DRUV). Manakala, imej dari mikroskop penghantaran elektron (TEM) mengesahkan bahawa tiada luang antara muka di antara logam oksida yang bermanfaat bagi berlakunya pemindahan cas dan peningkatan aktiviti. Keberkesanan fotomangkin ini yang digunakan di atas filem polivinil klorida (PVC) bagaimana, telah menunjukkan aktiviti fotopemangkin kepada 93.67%. Akhirnya, aktiviti degradasi DCB telah meningkat kepada 95.70% dengan pertambahan muatan fotomangkin pada filem PVC kepada 0.25 g pada pH neutral. Pengoptimum menggunakan kaedah respon pemukaan (RSM) dengan reka bentuk Box-Behnken (BBD) didapati bertepatan dengan keputusan eksperimen. Degradasi DCB di dalam air telah dibuktikan dengan pengenalpastian dua bahan perantara dengan menggunakan analisis gas kromatografi-spektrometri jisim (GCMS). Oleh yang demikian, kajian terhadap penyingkir PCBs dari kupang dengan menggunakan polietilina glikol (PEG) dan seterusnya degradasi PCBs di dalam fasa akueus dengan menggunakan fotomangkin pegun, mampu mendegradasikan 83% daripada jumlah kandungan keseluruhan PCBs pada keadaan optimum.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxvii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of study 1
1.2 Various Remediation Techniques 5
1.3 Semiconductor Photocatalysis 7
1.4 Photocatalyst 9
1.5 Response Surface Methodology 11
1.6 Mechanistic Study 11
1.7 Statement of Problem 12
1.8 Objectives of the Study 14
1.9 Scope of Study 14
1.10 Significance of the Study 16

2 LITERATURE REVIEW

2.1 Introduction 17
2.2 Catalytic Decomposition of Dichlorobenzene (DCB) 17
2.3 Catalytic Decomposition of Polychlorinated Biphenyl 20
2.4 Titanium Dioxide as Photocatalyst 22
 2.4.1 Crystalline Phase 22
 2.4.2 Surface Defects 23
 2.4.3 Structural Defect 24
2.5 Semiconductor Coupling 26
 2.5.1 Selection of Co-catalyst 27
2.6 Deactivation of Catalyst 30
2.7 Influence of Preparation Method 30
2.8 Immobilized Photocatalyst on Support Material 33
2.9 Response Surface Methodology 35
2.10 Mechanistic Study 37
2.11 Removal of PCBs from Mussel 39
 2.11.1 Polyethylene Glycol (PEG) 40
 2.11.2 PEG as Phase Transfer Agent 40

3 EXPERIMENTAL 42
3.1 Introduction 42
3.2 Apparatus 42
3.3 Chemicals 43
3.4 Catalyst Preparation 43
 3.4.1 Preparation of Monometallic Oxide Catalyst 44
 3.4.1.1 Preparation of TiO₂ by sol-gel 44
 3.4.1.2 Preparation of WO₃ by sol-gel 44
 3.4.1.3 Preparation of SnO₂ by sol-gel 45
 3.4.1.4 Preparation of ZnO by sol-gel 45
 3.4.2 Preparation of Bimetallic and Trimetallic Oxide Photocatalysts 46
 3.4.3 Catalyst Preparation by Hydrothermal Method 47
 3.4.4 Hydrogenation 48
3.5 Supported Photocatalyst 49
 3.5.1 PVC Support 49
 3.5.2 Chitosan Beads Support 49
3.5.3 Glass Plate Support 50
3.6 Photocatalytic Degradation on 1,2-Dichlorobenzene (DCB) 50
3.7 Photolysis 51
3.8 Adsorption 52
3.9 Effect of Light Source 52
3.10 Optimization of the Potential Photocatalyst 52
 3.10.1 Efficiency of Immobilized Photocatalyst 52
 3.10.2 Effect of Calcination Temperature 53
 3.10.3 Effect of pH 53
 3.10.4 Effect of Loading 53
 3.10.5 Reproducibility 54
 3.10.6 Application of Response Surface Methodology 54
3.11 Mechanistic Study 56
3.12 Gas Chromatography Mass Detector (GC-MS) 57
3.13 Removal and Degradation of PCBs from Green Mussels (*Perna virdis*) 57
 3.13.1 Sampling of Green Mussels (*Perna virdis*) 58
 3.13.2 Removal of PCB from Mussels (*Perna virdis*) 58
 3.13.3 Extraction of PCBs from Mussels (*Perna virdis*) 59
 3.13.4 Experimental of In-situ Removal and Degradation of PCBs 60
 3.13.5 Degradation of PCBs after Removal 60
 3.13.6 Gas Chromatography with Electron Capture Detector (GC-ECD) 61
3.14 Characterization 61
 3.14.1 X-ray Diffraction Analysis (XRD) 62
 3.14.2 Field Emission Scanning Electron Microscopy (FESEM)/Energy Dispersive X-ray Analysis (EDX) 62
 3.14.3 Nitrogen Adsorption Analysis (NA) 63
3.14.4 Photoluminescence Spectroscopy (PL) 63
3.14.5 Diffuse Reflectance UV-Vis Spectroscopy (DRUV) 64
3.14.6 X-ray Photoelectron Spectroscopy (XPS) 64
3.14.7 Transmission Electron Microscopy (TEM) 65
3.14.8 Attenuated Total Reflection Fourier Transformed Infrared (ATR-FTIR) 65
3.14.9 Atomic Force Microscopy (AFM) 65

4 SCREENING OF THE CATALYSTS 66
4.1 Introduction 66
4.2 Photolysis of 1,2-Dichlorobenzene 66
4.3 Catalytic Study on Monometallic Oxides 67
 4.3.1 Characterization for Monometallic Oxides 68
 4.3.1.1 X-ray Diffraction (XRD) Analysis for Monometallic Oxide 68
 4.3.1.2 Field Emission Scanning Electron Microscopy (FESEM) Analysis for Monometallic Oxide 74
 4.3.1.3 Nitrogen Adsorption (NA) for Monometallic Oxides 75
 4.3.1.4 Diffuse Reflectance UV-Vis (DRUV) Analysis for Monometallic Oxides 76
 4.3.2 Photocatalytic Screening on Monometallic Oxides 77
4.4 Photocatalytic Screening on Bimetallic Oxides 80
 4.4.1 Calcination Temperature Determination 81
 4.4.2 Effect of Ratio on Bimetallic Oxides 85
4.5 Photocatalytic Screening on Trimetallic Oxides 88
 4.5.1 Effect of Calcination Temperature on Potential Trimetallic Oxide 93
 4.5.2 Effect of Hydrothermal Treated Trimetallic Oxide 94
4.5.3 Effect of Light Source 95
4.5.4 Effect of Hydrogenation on Trimetallic Oxide 97

4.6 Characterization for Bimetallic and Trimetallic Oxides 100
4.6.1 X-ray Diffraction Analysis (XRD) 100
4.6.2 Diffuse Reflectance UV-Vis (DRUV) 109
4.6.3 Nitrogen Adsorption Analysis 116
4.6.4 Field Emission Scanning Electron Microscopy (FESEM) for Potential Trimetallic Oxides 119
4.6.5 Photoluminescence Spectroscopy (PL) 126
4.6.6 X-ray Photoelectron Spectroscopy (XPS) 128
4.6.7 Transmission Electron Microscopy (TEM) 134

4.7 Structure-Activity Relationship 142

5 OPTIMIZATION STUDY ON BEST PHOTOCATALYST 145
5.1 Introduction 145
5.2 Characterization under Optimization Study 145
5.2.1 X-ray Diffraction Analysis (XRD) 146
5.2.2 Diffuse Reflectance UV-Vis (DRUV) 147
5.2.3 X-ray Photoelectron Spectroscopy (XPS) 149
5.2.4 Photoluminescence (PL) 151
5.2.5 Field Emission Scanning Electron Microscopy (FESEM) 152
5.2.6 Nitrogen Adsorption Analysis (NA) 153
5.3 Effect of Support on Photocatalytic Activity 155
5.4 Effect of Calcination Temperature 157
5.5 Effect of pH 162
5.6 Effect of Catalyst Loading 163
5.7 Optimization of Degradation Conditions using RSM Approach 165
5.8 Reproducibility 169

5.9 Efficiency of Photodegradation 169
5.10 Mechanism Postulation 170
5.10.1 Intermediate Products Determination 170
5.10.2 Mechanism Reaction 172

6 REMOVAL AND PHOTOCATALYTIC DEGRADATION OF POLYCHLORINATED BIPHENYL FROM GREEN MUSSELS (*Perna Viridis*) 176

6.1 Introduction 176
6.2 Removal of PCBs from Mussels by Using Polyethylene Glycol 176
6.3 Degradation of PCBs in Aqueous After Removal from Mussels 181
6.4 In-situ PCBs Removal from Mussels and Its Degradation in Aqueous 185

7 CONCLUSION AND RECOMMENDATIONS 188

7.1 Conclusion 188
7.2 Recommendations 190

REFERENCES 191

Appendices A-U 225-255
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Concentration level of PCBs in water, fish, mussels and human while DCB in water</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>The health problem and tolerable limit of DCB and PCB in drinking water and fishery product</td>
<td>4</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental design for each parameter varied over 3 levels using coded value</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Design layout for degradation of DCB using three parameters/factors</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>Crystallite size for TiO$_2$, SnO$_2$, WO$_3$ and ZnO prepared by sol-gel at different calcination temperatures</td>
<td>73</td>
</tr>
<tr>
<td>4.2</td>
<td>Lattice parameter for TiO$_2$, SnO$_2$, WO$_3$ and ZnO prepared by sol-gel at different calcination temperatures</td>
<td>73</td>
</tr>
<tr>
<td>4.3</td>
<td>The BET surface area (m2 g$^{-1}$) for TiO$_2$, SnO$_2$, WO$_3$ and ZnO prepared by sol-gel at different calcination temperatures</td>
<td>76</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of light source in the photodegradation of 1,2-dichlorobenzene</td>
<td>96</td>
</tr>
<tr>
<td>4.5</td>
<td>Measured band-gap for sol-gel prepared bimetallic and trimetallic oxides using SnO$_2$/WO$_3$/TiO$_2$ at different ratios, temperatures and with hydrothermal</td>
<td>110</td>
</tr>
<tr>
<td>4.6</td>
<td>Measured band-gap for sol-gel prepared bimetallic and trimetallic oxides using ZnO/WO$_3$/TiO$_2$ at different ratios, temperatures and with hydrothermal</td>
<td>112</td>
</tr>
<tr>
<td>4.7</td>
<td>Measured band-gap for sol-immobilized bimetallic and trimetallic oxides SnO$_2$/WO$_3$/T950 at different ratios, temperatures and with hydrothermal</td>
<td>113</td>
</tr>
<tr>
<td>4.8</td>
<td>Measured band-gap for mechanical mixed bimetallic and</td>
<td></td>
</tr>
</tbody>
</table>
trimetallic oxides SnO\textsubscript{2}/WO\textsubscript{3}/TiO\textsubscript{2} at different ratios, temperatures and with hydrothermal treatment and with hydrothermal treatment obtained from EDX analysis and the calculated amount of metal oxide

4.11 Binding energy and related species for SnO\textsubscript{2}/WO\textsubscript{3}/TiO\textsubscript{2} (10:20:70), SnO\textsubscript{2}/WO\textsubscript{3}/TiO\textsubscript{2} (10:20:70)HY calcined at 950°C, Sn850/W850/T950 (10:10:80) and Sn850/W850/T950 (10:10:80)HY

4.12 Binding energy and related species for Sn850/W850/T950 (10:10:80) and Sn850/W850/T950 (10:10:80)HY after 15 and 30 minutes hydrogenation respectively

5.1 BET specific surface area, total pore volume and average pore diameter for the trimetallic oxide photocatalysts

5.2 Box-Behnken design experiments and experimental results

5.3 Analysis of variance (ANOVA) obtained from Box-Behnken Design showing photocatalytic efficiency
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Chemical structure of (a) 1,2-dichlorobenzene (DCB) and (b) polychlorinated biphenyl (PCB)</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Absorption of photon energy by semiconductor and formation of electron-hole pairs</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Formation of oxygen vacancy and Ti$^{3+}$ on TiO$_2$ surface</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>TiO$_2$ rutile in (a) rhombus shaped with facets (110)/(011) or (111), (b) with tetragonal prism (labelled as I) and rectangular prism (labelled as II) shape and (110)/(111) facet, (c) with irregular shape nanostep structure facets and (d) rice shaped</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Heterojunction between two semiconductors with (a) Type I and (b) Type II heterojunctions</td>
<td>26</td>
</tr>
<tr>
<td>2.4</td>
<td>Band position (top of valence band and bottom of conduction band) of several semiconductors with selected redox potentials as a function of V vs NHE at pH = 0</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>The proposed mechanism for photocatalytic degradation of 1,2-dichlorobenzene in aqueous</td>
<td>38</td>
</tr>
<tr>
<td>2.6</td>
<td>The pathway for dechlorination of PCB 138 in (based on identified intermediates and proposed intermediates marked as (*))</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Hydrogen treatment on (a) photocatalyst powder sample in quartz glass tube and post-calcined using (b) isothermal tube furnace</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>The apparatus set up for photodegradation process</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>A red circle on the map showing sampling point of Sungai Melayu area (1°27.816'N 103°41'.200'E) located</td>
<td></td>
</tr>
</tbody>
</table>
3.4 Removal of PCBs from green mussels using polyethylene glycol in distilled water

4.1 Photolysis of 1,2-dichlorobenzene in aqueous under UV light for 4 hour, [DCB]=100 ppm

4.2 X-ray diffractograms for TiO$_2$ prepared by sol-gel method and calcined at temperature range of 400-1000°C

4.3 X-ray diffractograms for WO$_3$ prepared by sol-gel method and calcined at temperature range of 400-1000°C

4.4 X-ray diffractograms for SnO$_2$ prepared by sol-gel method and calcined at temperature range of 400-1000°C

4.5 X-ray diffractograms for ZnO prepared by sol-gel method and calcined at temperature range of 400-1000°C

4.6 FESEM images for (a) TiO$_2$ SG950, (b) WO$_3$ SG850, (c) SnO$_2$ SG850, (d) ZnO SG950, (e) TiO$_2$ SG1000 and (f) WO$_3$ SG1000 at magnification of 50K

4.7 Band gap energies for monometallic oxides at optimum temperatures with (i) TiO$_2$ SG950, (ii) WO$_3$ SG850, (iii) SnO$_2$ SG850, (iv) ZnO SG950

4.8 Optimum calcination temperatures for sol-gel prepared (i) TiO$_2$, (ii) WO$_3$, (iii) SnO$_2$ and (iv) ZnO monometallic oxides over the degradation of DCB under UV light irradiation for 4 hour, [DCB]=100 ppm

4.9 Calcination temperature determination for different ratios of WO$_3$/TiO$_2$ prepared by sol-gel method over the degradation of DCB under UV light, [DCB]=100 ppm

4.10 Calcination temperature determination for different ratios of SnO$_2$/TiO$_2$ prepared by sol-gel method over the degradation of DCB under UV light, [DCB]=100 ppm

4.11 Calcination temperature determination for different ratios of ZnO/TiO$_2$ prepared by sol-gel method over the degradation of DCB under UV light, irradiation,
Calcination temperature determination for different ratios of WO$_3$/T950 prepared by sol-immobilization over the degradation of DCB under UV light irradiation, [DCB]=100 ppm

Calcination temperature determination for different ratios of SnO$_2$/T950 prepared by sol-immobilization over the degradation of DCB under UV light irradiation, [DCB]=100 ppm

Percentage degradation of DCB for different ratios of sol-gel prepared WO$_3$/TiO$_2$, SnO$_2$/TiO$_2$ and ZnO/TiO$_2$ calcined at 900°C under UV light, [DCB] = 100 ppm

Percentage degradation of DCB for T950 impregnated with WO$_3$ or SnO$_2$ at different ratios and calcined at 900°C under UV light irradiation, [DCB] = 100 ppm

Percentage degradation of DCB for mechanically mixed bimetallic oxide of W850/T950 and Sn850/T950 at different ratios under UV light irradiation, [DCB] = 100 ppm

Percentage degradation of DCB for sol-gel prepared trimetallic oxide WO$_3$/SnO$_2$/TiO$_2$ and SnO$_2$/WO$_3$/TiO$_2$ at different ratios and calcined at 900°C under UV light irradiation, [DCB] = 100 ppm

Percentage degradation of DCB for sol-gel prepared trimetallic oxide WO$_3$/ZnO/TiO$_2$ and ZnO/VO$_3$/TiO$_2$ at different ratios and calcined at 900°C under UV light irradiation, [DCB] = 100 ppm

Percentage degradation of DCB for trimetallic oxide WO$_3$/SnO$_2$/T950 and SnO$_2$/WO$_3$/T950 prepared by sol-immobilization of T950 at different ratios and calcined at 900°C under UV light, [DCB] = 100 ppm

Percentage degradation of DCB for mechanically mixed trimetallic oxide W850/Sn850/T950 and Sn850/W850/T950 at different ratios, [DCB] = 100 ppm
4.21 Effect of calcination temperature on potential trimetallic oxide photocatalysts prepared from different methods over the degradation of DCB, with x refers to TiO$_2$ calcination temperature, [DCB] = 100 ppm

4.22 Percentage degradation of DCB using potential trimetallic oxide photocatalysts after hydrothermal under UV light irradiation, [DCB] = 100 ppm

4.23 Effect of post-calcination of Sn850/W850/T950 (10:10:80) and Sn850/W850/T95 (10:10:80)HY at different temperatures under H$_2$ flow for 30 minutes towards photodegradation of DCB under visible light irradiation, [DCB] = 100 ppm

4.24 The duration of post-calcination carried on Sn850/W850/T950 (10:10:80) at 800°C under hydrogenation and its influence on photodegradation of DCB under visible light irradiation, [DCB] = 100 ppm

4.25 X-ray diffractograms display the effect of (a) ratio and (b) calcination temperature for sol-gel prepared SnO$_2$/WO$_3$/TiO$_2$ photocatalyst

4.26 X-ray diffractograms display the effect of (a) ratio and (b) calcination temperature for sol-gel prepared ZnO/WO$_3$/TiO$_2$ photocatalyst

4.27 X-ray diffractograms display the effect of (a) ratio and (b) calcination temperature for SnO$_2$/WO$_3$/T950 photocatalyst prepared by sol-immobilization

4.28 X-ray diffractograms display the effect of (a) ratio and (b) calcination temperature for SnO$_2$/WO$_3$/TiO$_2$ photocatalyst prepared by mechanical mixing

4.29 XRD diffractograms for Sn850/W850/T950 (10:10:80) photocatalyst hydrogenated at 800°C at different durations

4.30 Band gap energy indicates (a) effect of ratios for bimetallic and trimetallic oxides calcined at 900°C and (b) effect of calcination temperature for SnO$_2$/WO$_3$/TiO$_2$
4.31 Band gap energy indicates (a) effect of ratios for bimetallic and trimetallic oxides calcined at 900°C and (b) effect of calcination temperature for sol-gel prepared ZnO/WO$_3$/TiO$_2$ (10:40:50) and hydrothermal method

4.32 Band gap energy indicates (a) effect of ratios for bimetallic and trimetallic oxides calcined at 900°C and (b) effect of calcination temperature for SnO$_2$/WO$_3$/T950 (10:40:50) prepared by sol-immobilization and hydrothermal method

4.33 Band-gap energy (a) effect of ratios for mechanical mixed bimetallic and trimetallic oxides and (b) effect of TiO$_2$ calcination temperature (labelled as x) for Sn850/W850/Tx (10:10:80) and hydrothermal method

4.34 Absorption spectra for potential trimetallic oxides with and without hydrothermal treatments

4.35 N$_2$ adsorption/desorption isotherms for potential trimetallic oxides calcined at various temperatures and with hydrothermal treatments

4.36 FESEM morphology for sol-gel prepared (a) SnO$_2$/WO$_3$/TiO$_2$ (10:20:70) at magnification of 25K and (b) at magnification of 50K and (c) sol-gel/hydrothermal SnO$_2$/WO$_3$/TiO$_2$ (10:20:70)HY, calcined at 950°C

4.37 FESEM-EDX mapping profile for sol-hydrothermal SnO$_2$/WO$_3$/TiO$_2$ (10:20:70)HY calcined at 950°C

4.38 FESEM morphology for sol-gel prepared (a) ZnO/WO$_3$/TiO$_2$ (10:40:50) and (b) sol-gel/hydrothermal ZnO/WO$_3$/TiO$_2$ (10:40:50)HY calcined at 900°C at magnification of 50K

4.40 FESEM morphology for photocatalyst prepared by sol-immobilized (a) SnO$_2$/WO$_3$/T950 (10:40:50) and (b) SnO$_2$/WO$_3$/T950 (10:40:50)HY calcined at 900°C at
magnification of 50K

4.41 FESEM-EDX mapping profile for sol-immobilized SnO$_2$/WO$_3$/T950 (10:40:50)HY calcined at 900°C

4.42 FESEM morphology for photocatalyst prepared by mechanical mixing for (a) Sn850/W850/T950 (10:10:80) at magnification of 25K while (b) and (c) Sn850/W850/T950 (10:10:80)HY at magnification of 25K and 50K respectively

4.43 FESEM-EDX mapping profile for mechanical mixed/hydrothermal Sn850/W850/T950 (10:10:80)HY

4.44 FESEM morphology showing the effect of hydrogenation for Sn850/W850/T950 (80:10:10) at 800°C for (a) 15 minutes and (b) 30 minutes at magnification of 25K

4.45 PL spectra for the potential trimetallic oxides with and without hydrothermal

4.46 XPS spectra showing deconvolution for (a) Ti 2p, (b) Sn 3d, (c) W 4f and (d) O 1s of (i) SnO$_2$/WO$_3$/TiO$_2$ (10:20:70) and (ii) SnO$_2$/WO$_3$/TiO$_2$ (10:20:70)HY calcined at 950°C

4.47 XPS spectra showing deconvolution for (a) Ti 2p, (b) Sn 3d, (c) W 4f and (d) O 1s of (i) Sn850/W850/T950 (10:10:80) and (ii) Sn850/W850/T950 (10:10:80)HY

4.48 XPS spectra showing deconvolution for Ti 2p, Sn 3d, W 4f and O 1s of (i) Sn850/W850/T950 (10:10:80) and (ii) Sn850/W850/T950 (10:10:80)HY after 15 and 30 minutes hydrogenation respectively

4.50 (a) TEM image for mechanical mixed Sn850/W850/T950 (10:10:80)HY by hydrothermal and (b) HRTEM showing the lattice fringe of (i) SnO$_2$ (101), (ii) TiO$_2$ (101), (iii) TiO$_2$ (111) and (iv) WO$_3$ (200)

4.51 (a) TEM image for mechanical mixed Sn850/W850/T950
4.52 (a) TEM image for sol-gel prepared trimetallic oxide SnO₂/WO₃/TiO₂ (10:20:70)-950°C and (b) HRTEM showing the lattice fringe of (i) TiO₂ (101), (ii) WO₃ (022) and (iii) SnO₂ (110)

4.53 (a) TEM image for sol-hydrothermal prepared trimetallic oxide SnO₂/WO₃/TiO₂ (10:20:70)HY-950°C and (b) HRTEM showing the lattice fringe of (i) TiO₂ (110), (ii) SnO₂ (110) and (iii) WO₃ (202)

4.54 (a) TEM image for sol-immobilized/hydrothermal prepared trimetallic oxide SnO₂/WO₃/TiO₂ (10:40:50)HY-900°C and (b) HRTEM showing the lattice fringe of (i) TiO₂ (101), (ii) SnO₂ (110), (iii) WO₃ (112) and (iv) WO₃ (222)

5.1 X-ray diffraction patterns for (i) Sn850/W850/T850-HY, (ii) Sn850/W850/T950-HY and (iii) Sn850/W850/T1050-HY photocatalyst with the ratio of (10:10:80)

5.2 (a) Kubelka-Munk absorption curve for trimetallic oxide (i) Sn850/W850/T850-HY, (ii) Sn850/W850/T950-HY and (iii) Sn850/W850/T1050-HY with inset plot for monometallic oxides by hydrothermal with different calcination temperatures. (b) Band gaps of mechanical mixed-hydro trimetallic oxides

5.3 XPS spectra showing the deconvolution for (a) Ti 2p, (b) Sn 3d, (c) W 4f and (d) O 1s of (i) pure metal, (ii) Sn850/W850/T850-HY, (iii) Sn850/W850/T950-HY and (iv) Sn850/W850/T1050-HY

5.4 Photoluminescence spectra of (i) Sn850/W850/T850-HY, (ii) Sn850/W850/T950-HY and (iii) Sn850/W850/T1050-HY

5.5 FESEM image of sample (a) Sn850/W850/T850-HY, (b) Sn850/W850/T950-HY, (c) Sn850/W850/T1050-HY, (d) Sn850/W850/T950-HY immobilized on PVC film and (e)
Sn850/W850/T1050-HY immobilized on chitosan beads at magnification of 25K

5.6 N\textsubscript{2} adsorption/desorption isotherms for the trimetallic oxide photocatalysts

5.7 Percentage degradation of DCB using 0.1 g Sn850/W850/T950 (10:10:80)HY photocatalyst (i) in powder form, (ii) immobilized on PVC film, (iii) immobilized on chitosan in beads form and (iv) immobilized on glass plate, [DCB] = 100 ppm

5.8 Percentage degradation of DCB using 0.1 g Sn850/W850/T\textit{x} photocatalyst in powder form and immobilized on PVC film (with \textit{x} referred to calcination temperature of TiO\textsubscript{2}-HY) conducted for 4 hours under visible light, [DCB] = 100 ppm

5.9 Photocatalytic degradation of DCB under visible light using (i) Sn850-HY, (ii) W850-HY, (iii) T950-HY, (iv) Sn850/W850/T850-HY, (v) W850/T950 (10:90)-HY (vi) Sn850/W850/T1050-HY and (vii) Sn850/W850/T950-HY photocatalysts immobilized on PVC film ([DCB] = 100 ppm, loading = 0.1 g)

5.10 Percentage degradation of DCB under visible light and (ii) adsorption in dark for 4 hours using 0.1 g Sn850/W850/T950-HY photocatalyst immobilized on PVC film, [DCB] = 100 ppm

5.11 Proposed schematic diagram for charge transfer in Sn850/W850/T950-HY upon irradiation under visible light

5.12 Photocatalytic degradation of DCB with 0.1 g Sn850/W850/T950-HY photocatalyst (i) in powder form and (ii) immobilized on PVC film at different pH range, [DCB] = 100 ppm

5.13 Photocatalytic degradation of DCB with Sn850/W850/T950-HY photocatalyst in powder form and immobilized on PVC film at different catalyst loading,
AFM images of Sn850/W850/T950-HY immobilized on PVC with catalyst loading of (a) 0.25g and (b) 0.30g

DCB percentages of degradation and the interaction between (a) calcination temperature versus loading, (b) calcination temperature versus pH and (c) catalyst loading versus pH presented in 3D surface response plot

Reproducibility efficiency of Sn850/W850/T950-HY photocatalyst immobilized on PVC film over the photodegradation of DCB in aqueous, [DCB] = 100 ppm

GC-MS chromatogram for photodegradation of DCB at 0, 120, 180 and 240 minutes which shows the intermediate products at two different retention times

FTIR spectra in the range of 600 - 1600 cm\(^{-1}\), for determination of adsorbed species on photocatalyst during the photodegradation of DCB in aqueous

FTIR spectra in the range of 1600 - 2900 cm\(^{-1}\), for determination of adsorbed species on photocatalyst during the photodegradation of DCB in aqueous

Proposed mechanism pathway for photodegradation of DCB in aqueous using photocatalyst Sn850/W850/T950 (80:10:10)HY under visible light irradiation

GC-ECD chromatogram showing PCBs not removed in the absence of PEG.

Percentage of PCBs in aqueous and mussels after the removal using PEG 400 at concentration of (a) 0.05 M, (b) 0.1 M, (c) 0.2 M and (d) 0.3 M

Percentage of PCBs in aqueous and mussels after the removal using PEG 600 at concentration of (a) 0.05 M, (b) 0.1 M, (c) 0.2 M and (d) 0.3 M

Percentage of PCBs in aqueous and mussels after the removal using PEG 2000 at concentration of (a) 0.05 M, (b) 0.1 M, (c) 0.2 M and (d) 0.3 M

Concentration of PCBs in aqueous after removal from
mussels with 0.2 M of PEG 400

6.6 Photolysis conducted on PEG 400 with concentration of 0.2 M under visible light for 6 hours

6.7 Concentration of PCBs in aqueous after the removal process from mussel and upon degradation using immobilized Sn850/W850/T950 (10:10:80) photocatalyst under visible light for 6 hours. The per cent degradation of total PCBs and photolysis of PEG 400 (0.2 M) are shown in the inset graph.

6.8 Reaction pathways for PCB 52 as proposed by Noma et al., 2007

6.9 Concentration of PCBs in aqueous during a control test under visible light for 6 hours in the absence of photocatalyst together with the concentration of PCBs in mussels after reaction.

6.10 Concentration of PCBs in aqueous during in situ removal and photocatalytic degradation of PCBs using immobilized photocatalyst under visible light for 6 hours together with concentration of PCBs in mussels after complete reaction.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>a.u.</td>
<td>Arbitrary unit</td>
</tr>
<tr>
<td>BBD</td>
<td>Box-Behnken design</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer, Emmet and Teller</td>
</tr>
<tr>
<td>BE</td>
<td>Binding energy</td>
</tr>
<tr>
<td>CB</td>
<td>Conduction band</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>conc.</td>
<td>Concentration</td>
</tr>
<tr>
<td>DCB</td>
<td>1,2-Dichlorobenzene</td>
</tr>
<tr>
<td>e⁻</td>
<td>Electron</td>
</tr>
<tr>
<td>ECD</td>
<td>Electron capture detector</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy dispersive X-ray analysis</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency</td>
</tr>
<tr>
<td>Eq.</td>
<td>Equation</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>eV</td>
<td>Electron volt</td>
</tr>
<tr>
<td>FDA</td>
<td>Food, Drug and Additive</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h⁺</td>
<td>Positive hole</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>hv</td>
<td>Photon energy</td>
</tr>
<tr>
<td>I</td>
<td>Intensity</td>
</tr>
<tr>
<td>M</td>
<td>Mol</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
</tbody>
</table>
mmol - Millimole
mmolL⁻¹ - Millimole per Litre
mL - Millilitre
m/z - Mass/charge
nm - Nanometer
o - Ortho
OC - Organochlorine
P/P₀ - Relative pressure; obtained by forming the ratio of the equilibrium pressure and vapour pressure P₀ of the adsorbate at the temperature where the isotherm is measured
PDF - Powder diffraction file
rpm - Rate per minute
TOC - Total organic carbon
UV - Ultraviolet
UV-Vis - Ultraviolet-visible
VB - Valence band
W - Watt
wt % - Weight percentage
zpc - Zero point charge
λ - Wavelength
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Molecular Structure for Commonly Detected Polychlorinated Biphenyls (PCB) in Fish and Mussel</td>
<td>225</td>
</tr>
<tr>
<td>B</td>
<td>Operational Research</td>
<td>226</td>
</tr>
<tr>
<td>C</td>
<td>Schematic Diagram for Bimetallic and Trimetallic Oxide Photocatalyst Preparation</td>
<td>227</td>
</tr>
<tr>
<td>D</td>
<td>Calculation for Bimetallic and Trimetallic Oxides Photocatalyst</td>
<td>230</td>
</tr>
<tr>
<td>E</td>
<td>Preparation of TiO$_2$ based Bimetallic Oxide Photocatalyst using Different Techniques (Sol-gel mixing, Sol-immobilization and Mechanical mixing) with Different Ratios and Temperatures</td>
<td>232</td>
</tr>
<tr>
<td>F</td>
<td>Preparation of TiO$_2$ based Trimetallic Oxide Photocatalyst using Different Techniques (Sol-gel mixing, Sol-immobilization, Mechanical mixing and Hydrothermal) with Different Ratios</td>
<td>233</td>
</tr>
<tr>
<td>G</td>
<td>Setup of Photodegradation Reactor Under UV Light and Visible Light</td>
<td>234</td>
</tr>
<tr>
<td>H</td>
<td>Calibration Graph for PCB 15, 28, 52, 138 and 153 using GC-ECD and GC-ECD chromatogram for mixed PCBs standard (PCB 15, 28, 52, 153 and 138) at different retention times</td>
<td>235</td>
</tr>
<tr>
<td>I</td>
<td>XRD for Monometallic Oxides Calcined at Different Temperatures</td>
<td>236</td>
</tr>
<tr>
<td>J</td>
<td>XRD for Bimetallic Oxide SnO$_2$/TiO$_2$ (30:70)-900°C, Trimetallic Oxides SnO$_2$/WO$_3$/TiO$_2$ at Different Ratios, Calcination Temperatures and After</td>
<td></td>
</tr>
</tbody>
</table>
Hydrothermal Treatment

K XRD for Bimetallic Oxide ZnO/TiO$_2$ (30:70)-900°C, Trimetallic Oxides ZnO/WO$_3$/TiO$_2$ at Different Ratios, Calcination Temperatures And After Hydrothermal Treatment

L XRD for Bimetallic Oxide SnO$_2$/T950 (30:70)-900°C, Trimetallic Oxides SnO$_2$/WO$_3$/T950 at Different Ratios, Calcination Temperatures and After Hydrothermal Treatment

M XRD for Bimetallic Oxide W850/T950 (20:80), Trimetallic Oxides Sn850/W850/T950 at Different Ratios, Calcination Temperatures and After Hydrothermal Treatment

N XRD for Trimetallic Oxides Sn850/W850/T950 (10:10:80) After Hydrogenation at Different Durations

O XPS Range of Binding Energy from NIST database

P Comparison of Lattice Fringe Value Obtained from TEM and XRD

Q XRD for Trimetallic Oxides Sn850/W850/T950 (10:10:80)HY at Different Calcination Temperatures

R UV Absorbance Spectrum For Photocatalytic Degradation of 1,2-Dichlorobenzene Under Visible Light for 4 Hour using 0.1 g Sn850/W850/T950 (10:10:80)HY Photocatalyst in (a) Powder Form and (b) Immobilized on PVC, [DCB]=100ppm.

S GC-MS Chromatogram for Aqueous Sample Collected During The Photocatalytic Degradation of DCB using Immobilized Sn850/W850/T950 (10:10:80) Photocatalyst Under Visible Light Irradiation for 4 Hours

T GC-ECD Chromatogram for Aqueous Sample Collected During the Photocatalytic Degradation Of PCBs (After Removed from Mussels) using
Immobilized Sn850/W850/T950 (10:10:80) Photocatalyst Under Visible Light Irradiation for 6 Hours

Publications and Presentations
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Over the past decades, mankind has observed an unprecedented and remarkable growth in industry, resulting in generation of organic toxic wastes. Toxic waste has been relentlessly released into air and water leading to serious and devastating environmental and health problem (Anpo and Kamat, 2010). Some of the organochlorine compounds used in industrials have been detected to bioaccumulate in the environment and living organisms and cause many toxic actions. Such compounds have been identified as persistent organic pollutants (POP). Polychlorinated biphenyls (PCBs) and dichlorobenzene (DCB) are among the identified toxic organochlorine pollutants (OCP) under this category. Figure 1.1 shows the chemical structure of DCB and PCB.

![Chemical structure of DCB and PCB](image)

Figure 1.1 Chemical structure of (a) 1,2-dichlorobenzene (DCB) and (b) polychlorinated biphenyl (PCB)

PCB with chlorine attached to 2 benzene rings and DCB with chlorine attached to one benzene ring, are man-made organic compounds for wide application in industries as dielectric fluids or transformers and capacitors, in paints, inks and
pesticides. The number of chlorine at different positions in PCB leads to 209 different isomers and toxicity. DCB having three isomers with chlorine atom either at ortho, meta or para position is less toxic compared to PCB. These contaminants have very low solubility in water and thus are highly lipophilic and have long biological half-lives. Moreover, PCBs are extremely stable compounds under environmental conditions (WHO, 1998).

Organochlorine pollutants (OCP) can enter the aquatic system in a variety of ways, run-off from run-point sources, discharge of industrial and sewerage wastewater and wet/dry disposition. Due to their high persistence, these pollutants tend to bioaccumulate in fatty tissue of aquatic lives and subsequently into the food chain. Despite of the low concentrations (ppb to ppt), PCBs and DCB have high toxicity, carcinogenicity and mutagenicity. Toxic actions to humans include reproductive and developmental effects, neurological and behavioural effects, dermal toxicity, immunomodulatory and carcinogenic effects (Costopoulou et al., 2016; ATSDR, 2002). Due to their potential detrimental effects on both environment and human health, PCBs and DCB have been listed as priority pollutants by United States Environmental Protection Agency (EPA, 2001) and Environmental Quality Standards Directive 2008/105/EC (Directive 2008; Directive 2013). In 2004, Stockholm Convention has urged many countries to reduce and eliminate POP. Nevertheless, despite the ban and restriction on the use of these chemicals, their contamination in air, sediment, water, biota and humans are still being reported.

In view of its toxicity, many studies were conducted worldwide monitoring the level of PCBs in marine/river water, fish, shellfish and also in human (from breast milk). Relatively very few data concerning the occurrence of DCB in water and fish has been reported, which is not surprising as the partitioning and accumulation characteristics of highly toxic PCBs makes it more attractive for study. Nevertheless, the contamination effect of those compounds should not be ruled out since, even at low doses, a long term exposure to it could bring various problems to humans. Some of the studies have shown that DCB has been detected in drinking water (Abdullah et al., 2011; Dwiyitno et al., 2016). Consequently, a detailed comparative account of DCB and PCBs worldwide has been summarized in Table 1.1 which delineates wide variations between different regions.
Table 1.1 Concentration level of PCBs in water, fish, mussels and human while DCB in water

<table>
<thead>
<tr>
<th>Country</th>
<th>Water (ppt)</th>
<th>Fish (ppb)</th>
<th>Mussel (ppb)</th>
<th>Human (ppb)</th>
<th>DCB in water (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaysia</td>
<td>1.4 - 14 (Huang et al., 2014)</td>
<td>0.2 - 2.6 (Mohamad et al., 2015)</td>
<td>5 - 250 (Yap, 2014)</td>
<td>80 (Tanabe & Kunisue, 2007)</td>
<td>0.01 - 64.1 (Abdullah et al., 2011)</td>
</tr>
<tr>
<td>Indonesia</td>
<td>0.5 - 420 (Ilyas et al., 2011)</td>
<td>10 - 2700 (Sudaryanto et al., 2007)</td>
<td>6.7 - 250 (Bayen et al., 2003)</td>
<td>6.7 - 250 (Sudaryanto et al., 2006)</td>
<td>10 - 20 (Dwiyitno et al., 2016)</td>
</tr>
<tr>
<td>India</td>
<td>2 - 779 (Kumar et al., 2012)</td>
<td>9 - 90 (Ahmed et al., 2016)</td>
<td>10 - 2200 (Bayen et al., 2003)</td>
<td>3.1 - 5400 (Devanathan et al., 2012)</td>
<td>N.A.</td>
</tr>
<tr>
<td>China</td>
<td>0.2 - 2473 (Xing et al., 2005)</td>
<td>6.3 - 199 (Sun et al., 2014)</td>
<td>2.8 - 2480 (Xing et al., 2005)</td>
<td>26 - 130 (Haraguchi et al., 2009)</td>
<td>1 - 138 (Huang et al., 2015)</td>
</tr>
<tr>
<td>Japan</td>
<td>9.6 - 133 (Yamamoto, 2014)</td>
<td>61.6 - 85.2 (Matsumoto et al., 2014)</td>
<td>20 - 3100 (Ueno et al., 2010)</td>
<td>14 - 360 (Haraguchi et al., 2009)</td>
<td>N.A.</td>
</tr>
<tr>
<td>Korea</td>
<td>2.9 - 3.1 (Hong et al., 2011)</td>
<td>2.9 - 96.6 (Yim et al., 2005)</td>
<td>17 - 1000 (Ramu et al., 2007)</td>
<td>20 - 128 (Haraguchi et al., 2009)</td>
<td>N.A.</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>N.A.</td>
<td>40 - 710 (Bayen et al., 2003)</td>
<td>170 - 1000 (So et al., 2005)</td>
<td>0.3 - 87 (Qin et al., 2011)</td>
<td>N.A.</td>
</tr>
<tr>
<td>United State</td>
<td>N.A.</td>
<td>28 - 1337 (Greenfield & Allen, 2013)</td>
<td>576 - 1220 (Subedi et al., 2014)</td>
<td>76 - 856 (Subedi et al., 2014)</td>
<td>N.A.</td>
</tr>
<tr>
<td>Europe</td>
<td>1.4 - 264 (Montuori et al., 2014)</td>
<td>1 - 1672 (Bettinetti et al., 2016)</td>
<td>0.6 - 107.5 (Carro et al., 2010)</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

Note: N.A. – Literature not available

Higher contaminant level of PCBs in fish was observed at industrialized and developed countries as Japan, China, United States and Korea. Although the usage of PCBs has been banned in those countries, the important sources such as older PCB-containing equipment, landfill, and incineration of e-waste are continuing to release
PCBs to the environment (Breivik et al., 2007). A recent study suggested that large quantities of e-waste have been exported to Malaysia (Robinson, 2009). Due to PCBs lipophilicity, lipid containing food products such as meat and meat products, milk and dairy products, fish and seafood are responsible for at least 90% of human exposure to these toxic compounds (Bordajandi et al., 2006). Among the 209 PCB isomers, PCB 28, 52, 101, 118, 138, 153 and 180 (Appendix A) were commonly detected at higher concentration in fish and shellfish. Nevertheless, research by Yap et al. (2014) only reported total PCBs in mussels at Malaysia and until now no report has been published on individual PCBs concentration.

The occurrence of these contaminants worldwide and its high risk on human health has caused several authorities to propose safety limits for PCBs and DCB in water and food products which vary according to the authorities. Most countries including Malaysia follow the standard by US Environmental Protection Agency (EPA) and European Commission Regulation (EC) which has stringent limitation for the concentration of DCB and PCB in drinking water and fishery product as shown in Table 1.2.

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Health problem</th>
<th>Drinking water</th>
<th>Fish and fishery products</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-DCB</td>
<td>Liver, kidney, or circulatory system problems.</td>
<td>0.6 ppm</td>
<td>NA</td>
</tr>
<tr>
<td>PCB</td>
<td>Skin problems, thymus gland problems, immune deficiencies, reproductive or nervous system difficulties, increased risk of cancer.</td>
<td>zero</td>
<td>2.5 ppt</td>
</tr>
</tbody>
</table>

It has to be noted that the tolerable limit of PCBs in fish and fishery product has been narrowed from 6.5 ppt in EC 1881/2006 to 2.50 ppt on year 2013 which clearly shows the concern rose due to its adverse effect on human from daily intake.
Therefore, the concentration of this contaminant in water and seafood should be kept at recommended level to reduce its effect on human health.

1.2 Various Remediation Techniques

Numerous efforts have been made to remediate the contamination sources including soil, sediments and surface/ground water in order to improve the drinking water quality and reduce the contamination level into the aquatic biota. There are few remediation techniques which have been explored for the removal of DCB and PCBs from water source that involves biodegradation, physical adsorption, reductive dechlorination and advanced oxidation process. Although these methods are effective for the removal/degradation of DCB and PCBs, each has its advantages and limitations.

Biodegradation is a widely used method to treat organic pollutants that leads to a complete mineralization. Aerobic and anaerobic microbial conversions of chlorinated contaminant into nontoxic hydrocarbons have been studied for the potential application of in-situ treatment over the last few decades. The slower degradation rate associated with biodegradation limits large-scale application, and high concentrations of chlorinated solvents could have adverse effects on the microorganisms in the biodegradation media, resulting in a reduction in the efficiency of contaminant removal by this method (Huang et al., 2014).

Physical adsorption method has high reliability due to a robust operating configuration and hence is widely used for the treatment of drinking water supplies and industrial wastewaters. Several adsorbents such as activated carbons (Sotelo et al., 2002), multi-walled carbon nanotubes (Beless et al., 2014), graphene (Wang et al., 2013), cyclodextrin (Shao et al., 2010) have been utilized for the removal of DCB and PCBs in aqueous medium. Adsorption using activated carbon has been recommended in EU directive 2001 for drinking water treatment (EPA, 2001). Compared to biodegradation, this process is considered a non-destructive method as this technique only transfers the contaminants from one phase to another. Therefore post-treatment
for the decomposition of the pollutants are necessary which leads to higher operating cost.

Reductive dechlorination has been intensively used for the remediation of DCB and PCBs due to the electronegative nature of chlorine. In reductive dechlorination, the chlorine ion is removed, forming non-toxic hydrocarbons. Most studies used zerovalent iron for the dechlorination of PCBs and DCB. The incorporation of noble metals (e.g. Cu, Pd, Ag, Ni) are often used in bimetallic system. Another reductive method is known as catalytic hydrodechlorination whereby external hydrogen source is employed as reducing agent. Palladium is found to be the best hydrodechlorination catalyst among other noble and transition metals. An obvious drawback of this technology is the relatively slow reaction rate as degradation process requires a couple of days to reach the desired level of completion. Besides, the reductive dechlorination also faces challenges such as corrosion of metals and passivation of catalyst surface as well as higher processing cost with the use of noble metals and hydrogen source (Ghosh et al., 2012).

Advanced oxidation processes (AOPs) has been suggested as one of the most promising technology for the abatement of chlorinated compounds which includes ozonation, Fenton oxidation and photocatalysis techniques. These methods principally take advantage of the strong oxidation capacity of hydroxyl radical (·OH) to decompose the chlorinated compounds and even complete mineralize of the contaminants to carbon dioxide and water.

The use of ozone in conjunction with UV light has been reported to completely remove chlorinated compounds in water. However, the low solubility of ozone in water is the major limitation in the ozonation process, besides the presence of CO₂ in environment restricts its efficiency in practical application (Kasprzyk-Hordern et al., 2003).

Fenton based oxidation process has attracted a significant amount of attention for the decomposition of chlorinated compound due to its simplicity and efficiency. In Fenton process, mixture of H₂O₂ and Fe²⁺ (Fenton reagent) is used in acidic medium
to generate hydroxyl radicals for the decomposition of pollutants. The generation of hydroxyl radicals are further enhanced by irradiation of UV light, and it is known as photo-Fenton process and could be used at neutral pH. The main drawbacks of this process are the fast consumption of Fe$^{2+}$ in comparison with its regeneration rate, the limited pH range to operate (pH 2.5 - 3), the complications of some iron species and the possible waste of oxidants as well as the inadequacy of dissolved oxygen in aqueous limiting the efficiency of Fenton reaction (Nidheesh & Gandhimathi 2012; Ribeiro et al., 2015).

Photocatalysis technique with the use of heterogeneous photocatalyst has gained much popularity in the degradation of organochlorine in aqueous medium. In photocatalytic oxidation, the hydroxyl radical is generated upon light irradiation on photocatalyst which then decomposes the chlorinated compounds. The choice of suitable photocatalyst is the main concern for selective contaminants. The main advantage of heterogeneous photocatalysis process is its efficiency, fast degradation process and the complete mineralization to CO$_2$ and H$_2$O. In addition, sunlight could also be used as one of the light source in the presence of appropriate photocatalyst. This method is economic and has sustainability advantages in comparison with processes involving ozone or oxidant which requires high operational costs. Another advantage is the possible disinfection of water contaminated with pathogenic microorganisms (McCullagh et al., 2007). The drawback of this method is the recovery of catalysts used in slurry batch system and regeneration that incur additional cost.

1.3 Semiconductor Photocatalysis

Semiconductor based photocatalysis has received increasing attention because of its promising applications in energy generation and environmental purification. Usually semiconductor metal oxides including TiO$_2$, Fe$_2$O$_3$, WO$_3$, ZnO, CeO$_2$, CdS, Fe$_2$O$_3$, ZnS, MoO$_3$, ZrO$_2$, and SnO$_2$ are selected as photocatalysts due to their band gaps. In general, when a semiconductor metal oxide is irradiated by an input light with energy equal or higher than the band gap ($h\nu > E_g$), an electron (e^-) from valence band
(VB), is excited to the conduction band (CB), leaving behind a photogenerated hole (h⁺) at the VB (Figure 1.2 and Eq. 1.1).

![Figure 1.2](image_url) Absorption of photon energy by semiconductor and formation of electron-hole pairs

Consequently, the produced e⁻/h⁺ pairs migrates to the surface of the semiconductor leading to several reactions that generates active species as hydroxyl radical (·OH) and superoxide radical (·O₂⁻). In aqueous medium, H₂O and OH⁻ that adsorbed on photocatalyst surface are oxidized by photogenerated h⁺ to form ·OH radicals while dissolved oxygen is reduced by the photogenerated e⁻ to form ·O₂⁻ radical (Refer Eq. 1.2 - 1.5). Protonation of ·O₂⁻ yields hydroperoxide radical ·OOH (Eq. 1.6) which is then further decomposed to produce ·OH radicals (Eq. 1.7 – 1.9). The ·OH, ·OOH and ·O₂⁻ play an important role in initiating oxidation reactions, especially for substance that adsorb weakly on the semiconductor surface and facilitate the photodegradation of the pollutants (Eq. 1.10). The oxidation-reduction reaction that occurs at the photo-activated surface of photocatalyst has been broadly proposed as following (Dong et al., 2015):

\[
\text{Photocatalyst} + h\nu \rightarrow h^+ + e^- \quad (1.1)
\]
\[
h^+ + H_2O \rightarrow \cdot OH + H^+ \quad (1.2)
\]
\[
h^+ + OH^- \rightarrow \cdot OH \quad (1.3)
\]
\[
h^+ + \text{pollutant} \rightarrow (\text{pollutant})^+ \quad (1.4)
\]
\[
e^- + O_2 \rightarrow \cdot O_2^- \quad (1.5)
\]
\[
- + H^+ \rightarrow \cdot OOH \quad (1.6)
\]
\[
2\cdot OOH \rightarrow O_2 + H_2O_2 \quad (1.7)
\]
\[
H_2O_2 + \cdot O_2^- \rightarrow \cdot OH + OH^- + O_2 \quad (1.8)
\]
\[
H_2O_2 + h\nu \rightarrow 2\cdot OH \quad (1.9)
\]
\[
\text{Pollutant} + (\cdot OH, \cdot OOH \text{ or } \cdot O_2^-) \rightarrow \text{degradation product} \quad (1.10)
\]
It has to be noted that the separated photogenerated electrons and holes have characteristic lifetimes on the order of nanoseconds and could easily recombine after their generation in the absence of electron or hole scavengers. In this regard, the presence of specific scavengers or surface defects is vital in suppressing the charge recombination rates and in enhancing the efficiency of photocatalysis (Chong et al., 2010).

1.4 Photocatalyst

The use of metal oxides as catalysts for the degradation of DCB and PCBs showed the increasing attraction because of their relatively low costs and high level of activity. TiO$_2$ is one of the most widely used semiconductor metal oxide with lowered activation energy and higher oxygen uptake that has significant effect on photocatalytic reaction. Commercial TiO$_2$ (Degussa P25) with mixture of anatase and rutile has been mostly utilized in the degradation of DCB and PCBs (Lin et al., 2002; Zhu et al., 2012) in gas phase and aqueous medium. However better photocatalytic activity was observed by the doping or coupling of titanium dioxide with other semiconductor metal oxides.

In this context, a series of transition metal oxides (Cr$_2$O$_3$, V$_2$O$_5$, MoO$_3$, Fe$_2$O$_3$ and Co$_3$O$_4$) supported on TiO$_2$ have been tested in catalytic oxidation of DCB by Krishnamoorthy (2000), and among them Cr$_2$O$_3$ and V$_2$O$_5$ supported TiO$_2$ catalyst showed the best activity in gas phase. However these metal oxides are highly toxic. Considerable catalytic activity was reported with the utilization of TiO$_2$/WO$_3$ and TiO$_2$/SnO$_2$ in gas phase (Bertinchamps et al., 2006). Noble metals based catalysts such as Pd, Pt, Rh or Au, on the other hand could be easily poisoned by chloride ion during the decomposition process (Krishnamoorthy et al., 1998). Thus, the type of semiconductor material used for coupling/doping with titanium dioxide is particularly important in term of the redox reaction which determines the overall efficiency of the photocatalyst. Extensive studies on the catalysts focused on the dispersion, surface structure and oxidation state of the supported catalyst and these properties have been correlated with the oxidation reactions.
Recently, surface modifications to the electronic structure of titanium dioxide in order to shift the absorption into the visible range and to reduce the charge recombination are under intense study in the photocatalysis field. The most common type of alteration involves structural defects with exposed facets and surface defects, which could be achieved by modifying the preparation method and calcination temperature. On this basis, the most studied metal oxides with exposed facets and surface defects are TiO$_2$, WO$_3$, SnO$_2$, and ZnO which have contributed to high catalytic activity by improved charge carrier separation. Wang et al. (2015a) reported that the presence of Ti$^{3+}$ in anatase TiO$_2$ with (001) exposed facet demonstrated higher degradation of 4-chlorophenol under visible light irradiation. The efficient photocatalytic degradation of methylene blue by utilizing ZnO nanorods with higher aspect ratio and surface defects was reported by Zhang et al. (2014). Wang et al. (2015b) revealed that the enhanced photocatalytic performance of SnO$_2$ on photodegradation of Rhodamine B was attributed to the presence of high oxygen vacancies as surface defect.

Even though the toxicity of DCB and PCBs is of great concern and photocatalysis been known as an effective decomposition technique, yet research on these pollutants in aqueous medium is still in scarce. Most of the research works conducted on DCB was in gas phase using catalytic oxidation method while PCBs decomposition in soil and sediment was of higher interest. In view of this, semiconductor metal oxide TiO$_2$, WO$_3$, SnO$_2$ and ZnO have been explored for their efficiency in the degradation of DCB and PCBs in aqueous medium with the appliance of bimetallic and trimetallic systems.

Tungsten with narrow band gap is widely known to absorb visible light and its high surface acidity would enhance the adsorption of water molecule and organic pollutant (Grabowska et al., 2012). Meanwhile SnO$_2$ was reported to be active under visible light when doped with TiO$_2$ and the most important is that it could avoid the poisoning of chloride ion (Sasikala et al., 2009; Li et al., 2014). On the other hand, doping of TiO$_2$ with ZnO has been widely used in photocatalytic study yet has not been reported for the degradation of DCB. Besides, this would be the first instance of trimetallic oxide been investigated for the photodegradation of DCB and PCB in aqueous medium. In addition the influence of the preparation method used to
synthesize the bimetallic and trimetallic oxides photocatalysts indicates the effects on the structure and active phase.

1.5 Response Surface Methodology

Response surface methodology (RSM) is a widely accepted statistical-based method for designing experiments, evaluating the individual and interaction effects of independent variables, and optimizing the process parameters with limited number of experiments. Chemometric techniques such as central composite design (CCD) and Box-Behnken design (BBD) have been proven to be useful techniques to evaluate optimal conditions in the photocatalysis process, as reported by Hamed et al. (2014) and Chaibakhsh et al. (2015). With the aid of this experimental design, results are quantitatively correlated to several experimental factors, and optimum conditions are achievable with savings of time and cost, since few distinctly varied experiments are carried out. In comparison, BBD was preferred due to the lesser number of experiments involved, yet provides good evaluation analysis. However most of the photocatalytic optimization was done on slurry mode using powder photocatalyst. Consequently, in this study, BBD was employed for optimization of DCB degradation in aqueous medium with immobilized photocatalyst.

1.6 Mechanistic Study

In semiconductor photocatalysis, there are three main path of reactions that occur during the reaction; adsorption of pollutant on the catalyst surface, desorption of the pollutant and diffusion of the by-products. These are the fundamental steps which are in accordance to Langmuir-Hinshelwood (LH) mechanism. It has to be noted that the catalysts has different surface properties which would lead to different reaction pathways. Therefore the study of the detailed processes of reaction mechanisms is important, including in understanding the reaction pathways as well as validation of the overall process. Several mechanistic studies have been conducted on catalytic oxidation of DCB in gas phase (Krishnamoorthy, 1999; Wang et al., 2015). The
photocatalytic degradation mechanism of DCB in aqueous utilizing supported photocatalyst has not been reported. Thus, this present study might provide an underlying insight on the mechanism of DCB decomposition on immobilized photocatalyst.

1.7 Statement of Problem

Environmental pollutant has raised much concern towards its remediation techniques. Organochlorine pollutants such as DCB and PCBs are highly lipophilic, stable and persistence which facilitate their accumulation in the environment and aquatic ecosystem. As shown in Table 1.1, studies have reported the occurrence of DCB and PCBs contaminant in drinking water, fish and mussels which led to the detection of these compounds in human body. Despite of their low concentration, these contaminants have raised substantial health effect which emphasizes the necessity for further research on the removal and degradation of trace contaminants in water and fishery products to minimize their detection according to the EC standards.

Photocatalysis has been considered as sustainable and green chemistry technique for water treatment which leads to total mineralization of the pollutants. Nevertheless, up to now few research studies were done on the removal of DCB and PCBs from water using photocatalysis technique. One of the reasons could be due to the deactivation of the catalyst by chloride ion released during the reaction. As such, the selection of catalyst is crucial to avoid deactivation by the released chloride ion during the reaction. From the previous reports, high catalytic activity was not achieved by using TiO₂ alone. However, coupling with other semiconductor improved its performance. Besides, most of these studies utilized UV light source in the photocatalytic reaction which consume large amount of energy. Therefore, the development of visible light active photocatalyst with high efficiency and stability is desired. The synergistic effect by formation of heterojunction through coupling of two or more metal oxides has been shown to enhance the catalytic activity. This inspired the utilization of multi component semiconductor metal such as WO₃, SnO₂ and ZnO in this study which leads to the formation of multi-heterostructure SnO₂/WO₃/TiO₂
and ZnO/WO\(_3\)/TiO\(_2\) photocatalyst which are active under visible light. These photocatalysts have not been reported yet elsewhere and therefore they were studied in this research as based on previous studies, this type of co-catalyst have capability to mineralize the pollutants into harmless species such as H\(_2\)O and CO\(_2\). In addition, the development of supported photocatalyst is crucial in this study for practical application. Several support materials have been reported, among which immobilization on glass plate, chitosan bead and PVC film has increased the photocatalytic activity. Thus this support material is employed with slight modification in the immobilization technique.

Meanwhile until now, there is no literature published on the removal of PCBs from the dietary intake as shellfish and fishery products. Instead study on PCBs remediation was done on sediments in order to reduce the accumulation of these contaminants in the aquatic life. However, the large area coverage incurs high cost and might not be efficient. The detection of toxic PCBs in fishery products not only cause health problem but also affect seafood business. Due to the high contaminant in fishery product, European United (EU) had banned the import of fishery product from Malaysia on year 2008 to year 2009 which had resulted in a huge loss of business for Malaysian seafood processors (Retnam \textit{et al.}, 2013; EC No 1252/2008). Due to inadequate risk measurement on the contaminant levels, the Malaysian seafood industry is facing another challenge as the EU has withdrawn its generalised system of preferences for Malaysian seafood exporters in January 2014 (David, 2013). In view of this, research on in-situ removal and degradation of PCBs from fishery product is essential on the effort to minimize the contaminant in food intake. In this regard, photocatalysis technique which is known as environmental friendly and sustainable treatment technology has been explored by employing immobilized photocatalyst and visible light.
1.8 Objectives of the Study

Based on the problem statement, the main goal of this research was to develop a potential visible light active photocatalyst for the decomposition of DCB and PCB in aqueous medium. Thus, the objectives of this research are:

i. To study the effect of calcination temperature on structural defects and towards the degradation of 1,2-dichlorobenzene (DCB) using monometallic oxides (TiO$_2$, WO$_3$, SnO$_2$ and ZnO), bimetallic oxides (WO$_3$/TiO$_2$, SnO$_2$/TiO$_2$, ZnO/TiO$_2$) and trimetallic oxides (SnO$_2$/WO$_3$/TiO$_2$ and ZnO/WO$_3$/TiO$_2$) under UV light.

ii. To investigate the influence of preparation methods (sol-gel, sol-immobilization, mechanical mixing) of bimetallic and trimetallic oxides; with further evaluation on potential photocatalysts using hydrothermal and hydrogenation method.

iii. To determine the optimum working conditions for the degradation of DCB in aqueous phase over the best immobilized photocatalyst under visible light and to optimize the photocatalytic degradation by using Response Surface Methodology (RSM) via Box-Behnken Design (BBD).

iv. To propose mechanism for the decomposition of DCB in aqueous using the best immobilized photocatalyst under visible light.

v. To apply the photocatalytic technology for in-situ removal and degradation of PCBs from green mussels by employing the best immobilized photocatalyst and visible light.

1.9 Scope of the Study

This research was aimed at developing a potential visible light photocatalyst for application in aqueous medium. A comprehensive study was conducted on degradation of 1,2-dichlorobenzene (DCB) and was then opted for study on polychlorinated biphenyl (PCBs) removal and decomposition in aqueous medium. In line with this, the efficiency of TiO$_2$, WO$_3$, SnO$_2$ and ZnO photocatalyst prepared by sol-gel method were explored under monometallic, bimetallic and trimetallic oxide
system for the degradation of DCB under UV light. The percent degradation of DCB was determined from the absorbance obtained using UV spectrophotometer. The effect of calcination temperature was exploited throughout the study while deviation in ratios was investigated on bimetallic and trimetallic oxides. As preparation method was known to cause physical modification on the catalyst, several preparation techniques (sol-gel, surface immobilization and mechanical mixing) were examined on bimetallic and trimetallic oxides. The effect of hydrothermal method was scrutinized on the potential photocatalysts. Stimulation of surface defects by hydrogenation and its effect on photocatalytic activity was inspected. Efficiency of the potential photocatalysts was then tested under visible light. The best photocatalyst subsequently was immobilized on several support materials (PVC film, chitosan beads and glass plate) to determine the suitable support material. The immobilized photocatalyst was then utilized for optimization study by the aid of response surface methodology technique. The reusability of the immobilized photocatalyst was also evaluated.

In order to study the physical properties of the photocatalysts, characterization analysis were carried out using Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray (EDX), X-ray Diffraction (XRD), Nitrogen Adsorption (NA), UV-Vis Diffuse Reflectance (DRUV), Photoluminescence (PL), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM). The by-products obtained from DCB degradation were determined using gas chromatograph with mass spectrometer (GC-MS). A mechanism for DCB degradation in aqueous using immobilized photocatalyst was then proposed by using information from Fourier Transform Infra-Red (FTIR) spectroscopy. In the final stage of the study, the aptness of photocatalysis technique for in-situ removal and degradation of PCBs were conducted using green mussels collected from Sungai Melayu. The removal of PCB from mussels was done using food grade polyethylene glycol (PEG) and simultaneous decomposition with the presence of photocatalyst and visible light. The decomposition of five PCBs (PCB 15, 28, 52, 138 and 153) that are usually detected in fishery products according to EU directive was monitored using gas chromatograph with electron capture detector (GC-ECD).
1.10 Significance of the Study

Most of the water treatment plant uses biodegradation and adsorption method to remove/reduce the pollutants; however these methods are time consuming and not cost effective. Furthermore, organochlorine pollutants that exist in water are not easily degraded. In view of that, a simple photocatalysis technique with suitable catalyst was employed which leads to the degradation of chlorinated compound. The reactions could be conducted with a potential photocatalyst which is immobilized on suitable support material, under visible light and at ambient temperature and pressure. In addition, in this reaction other materials as oxidant or ozone are not necessary since they are not cost effective. The photocatalyst could be easily prepared using cheap metal oxides that are highly stable in aqueous and not easily poisoned. This potential technology was also explored on fishery product, which in fact is the first attempt in this field and has proven to be viable in removal of toxic compound as PCB. Accordingly, the novelties of this research study could be listed as following:

1. The development of new hybrid trimetallic oxide photocatalyst SnO\(_2\)/WO\(_3\)/TiO\(_2\) in the ratio of 10:10:80 which are active in visible light region.
2. The significant appliance of immobilized photocatalyst on PVC in photodegradation of DCB in aqueous under visible light.
3. The proposed mechanism of DCB decomposition in aqueous under visible light using immobilized photocatalyst.
4. The application of photocatalytic technique for in-situ removal and degradation of PCB from green mussels which is environmental friendly method.
REFERENCES

decolorization of Rhodamine B dye using novel mesoporous SnO$_2$-TiO$_2$ nano
mixed oxides prepared by sol-gel method. *Journal of Photochemistry and

compounds (VOCs) in drinking water of Peninsular Malaysia. *Sains

selected heavy metals from green mussel via catalytic oxidation. *The

Vishnu, V.R.M. and Bhatnagar, V. (2016). Accumulation of polychlorinated
biphenyls in fish and assessment of dietary exposure: a study in Hyderabad
City, India. *Environmental Monitoring and Assessment*. 188(2): 94.

The role of acidity in the decomposition of 1,2-dichlorobenzene over TiO$_2$-

Amano, F., Yasumoto, T., Prieto-Mahaney, O.O., Uchida, S., Shibayama, T and
mesoparticles of anatase titanium(IV) oxide. *Chemical Communications*.
2311–2313.

Amano, F., Ishinaga, E. and Yamakata, A. (2013). Effect of Particle Size on the
Photocatalytic Activity of WO$_3$ Particles for Water Oxidation. *The Journal of

combustion of 1,2-dichlorobenzene over CeO$_2$–TiO$_2$ mixed oxide catalysts. *Applied Catalysis B: Environmental*. 181: 848–861.

Dwiyitno, Dsikowitzky, L., Nordhaus, I., Andarwulan, N., Irianto, H.E., Lioe, H.N.,

Hernandez-Alonso, M.D., Tejedorb, I.T., Coronada, J.M., Soriaa, J. and Anderson,

Liu, L., Zhao, C. and Li, Y. (2012). Spontaneous dissociation of CO₂ to CO on

Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R.C., Wang, C.,

Yong, X. and Schoonen, M.A. (2000). The absolute energy positions of conduction

