MINIMIZATION OF TWO-PHASE FLOW FRICTIONAL PRESSURE DROP IN SMALL CHANNEL WITH ENVIRONMENTALLY FRIENDLY REFRIGERANT

QAIS ABID YOUSIF

UNIVERSITI TEKNOLOGI MALAYSIA
MINIMIZATION OF TWO-PHASE FLOW FRICTIONAL PRESSURE DROP IN SMALL CHANNEL WITH ENVIRONMENTALLY FRIENDLY REFRIGERANT

QAIS ABID YOUSIF

A thesis submitted in fulfilment of the requirement for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

FEBRUARY 2018
I would like to thank my family for unlimited support with sympathetically aware of
tolerance and understanding to complete my research despite the difficult conditions
experienced by our dear. I hope they can forgive me for all the time that I spent far
instead of being with them.

I have fully realized that the promise is to complete the study while you still capable
and unrelated to other responsibilities and projects that prevent the focus on the study
because the focus and time are the backbone to complete what you started and the
most difficult is to find them, especially when the years pass.

Johor, Johor Bahru, Malaysia

DECEMBER 2017

Qais A. Yousif
Praise be to Allah, the Cherisher and Sustainer of the World's; Most Gracious, Most Merciful; Master of the Day of Judgment. This study has been carried out under the supervision of Prof. Dr. Normah Mohd Ghazali. The project has been supported by the Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, which is gratefully acknowledged. Also, the project has been supported by the Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia which are gratefully acknowledged for the facilities of doing experiment.

I would like to thank Prof. Dr. Normah for her advices and guidance and giving me the opportunity and motivation to undertake this research. All the time she was available for fruitful research discussions and her guidance and encouragement during the period were of a great benefit of contribution to this study.

I would also like to thank my co-supervisor Assoc. Prof. Dr. Robiah for the discussions and for encouraging me always, and to thank my co-supervisor Dr. Pamitran for the support and facilities provided by him in order to overcome all difficulties and to conduct experiments in the laboratories of the University of Indonesia

Finally, I must offer special thanks to my wife for her graciously support throughout my study.
ABSTRACT

Accurate prediction of the friction factor and consequently the pressure drop in small two-phase flow channels are still lacking with large disagreements. In addition, the environmental concerns associated with industrial refrigerants currently used have further posed a challenge to find thermally and hydrodynamically compatible and environmentally friendly alternatives. The goal of this study is to determine the optimal friction factor and frictional pressure drop using single-objective and multi-objective genetic algorithms. A total of 53 friction factor models/correlations have been reviewed from which eight were utilized to address discrepancies. Then, minimization of the frictional pressure drop by implementing single-objective genetic algorithm (SOGA) was carried out. In the multi-objective genetic algorithm (MOGA), the conflicting objectives of friction factor and pressure drop have been minimized simultaneously. Finally, the analysis was carried out on a small horizontal tube of 7.6 mm inner diameter utilizing experimental data for the refrigerant R-22 and the natural refrigerant R-290. It has been shown that the disagreements occur due to (i) the use of fluid data from different sources, (ii) utilization of different correlations on viscosity, and consequently on predicting the friction factor, and (iii) the applications of different friction factor correlations on predicting the frictional pressure drop. It has been proven that the Blasius friction factor correlation for turbulent flow in smooth pipe can be used by experimental researchers to determine their frictional pressure drop or/and matching of data and predicted values due to the coincidently good agreement obtained. The optimal outcomes using MOGA are found to be closest to the experimental data. The percentage difference between the predicted and experimental frictional pressure drop is up to 1.93% and 0.25% when the Blasius friction factor equation is used with the McAdams and Dukler viscosity equations for R-22 and R-290 respectively.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Introduction | 1 |
1.2 Flow Patterns and Flow Pattern Maps | 2 |
1.3 Pressure Drop in Two-Phase Flow | 3 |
1.4 Background and Rational of the Research | 4 |
1.5 Problem Statement | 5 |
1.6 Research Objectives | 6 |
1.7 Scope of the Research | 7 |
2 LITERATURE REVIEW

2.1 Introduction 14
2.2 Related Studies on Pressure Drop 15
2.3 Related Studies on Friction Factor 26
 2.3.1 Laminar Flow Regime 30
 2.3.2 Transition Flow Regime 32
 2.3.3 Turbulent Flow Regime 34
 3.3.3.1 Turbulent Flow in Smooth pipes 34
 3.3.3.2 Turbulent Flow in Rough Pipes 39
 2.3.4 Colebrook Equation Approximations 41
 2.3.5 Void Fraction Correlations/Models 57
2.4 Genetic Algorithms and Pressure Drop 72
2.5 Summary of the Chapter 81

3 METHODOLOGY

3.1 Introduction 89
3.2 Refrigerants R-290 and R-22 91
3.3 Experimental Approach 92
 3.3.1 Data Reduction 96
3.4 Theoretical Approach 98
 3.4.1 Mathematical Modeling 99
 3.4.2 Parameters Affecting the Pressure Drop 103
3.5 Genetic Algorithms
 3.5.1 Genetic Algorithms Optimization
 3.5.2 Optimization Procedure
3.6 Summary of the Chapter

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>Genetic Algorithms</td>
<td>109</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Genetic Algorithms Optimization</td>
<td>111</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Optimization Procedure</td>
<td>112</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary of the Chapter</td>
<td>118</td>
</tr>
</tbody>
</table>

4 RESULTS AND DISCUSSIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>120</td>
</tr>
<tr>
<td>4.2</td>
<td>Parametric Results</td>
<td>120</td>
</tr>
<tr>
<td>4.2.1</td>
<td>The Effect of Using Data from Different Sources</td>
<td>121</td>
</tr>
<tr>
<td>4.2.2</td>
<td>The Effect of Using Different Viscosity Equations</td>
<td>123</td>
</tr>
<tr>
<td>4.2.3</td>
<td>The Effect of Using Different Friction Factor Equations</td>
<td>124</td>
</tr>
<tr>
<td>4.3</td>
<td>Genetic Algorithm Analysis</td>
<td>132</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Single-Objective Optimization (SOGA)</td>
<td>133</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Multi-Objective Optimization (MOGA)</td>
<td>157</td>
</tr>
<tr>
<td>4.3.2.1</td>
<td>Analysis MOGA Results</td>
<td>161</td>
</tr>
<tr>
<td>4.4</td>
<td>Chapter Summary</td>
<td>177</td>
</tr>
</tbody>
</table>

5 CONCLUSIONS AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>179</td>
</tr>
<tr>
<td>5.2</td>
<td>Conclusions</td>
<td>180</td>
</tr>
<tr>
<td>5.3</td>
<td>Recommendations</td>
<td>182</td>
</tr>
</tbody>
</table>

REFERENCES

Appendices A – B

Appendices A – B
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The proposed equations for friction factor in laminar flow regime</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>The friction factor correlations for turbulent flow regime in smooth circular channels</td>
<td>37</td>
</tr>
<tr>
<td>2.3</td>
<td>The friction factor correlations and Colebrook`s equation approximations for turbulent flow in rough channels</td>
<td>43</td>
</tr>
<tr>
<td>2.4</td>
<td>The two-phase flow viscosity equations</td>
<td>54</td>
</tr>
<tr>
<td>2.5</td>
<td>The void fraction models/correlations</td>
<td>60</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary of the investigation on two-phase boiling flow pressure drop in horizontal channel</td>
<td>83</td>
</tr>
<tr>
<td>3.1</td>
<td>Thermal physical properties and environmental and safety characteristics of R-22 and R-290 (Linde Gases AG)</td>
<td>91</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental conditions of measuring two-phase flow frictional pressure drop</td>
<td>96</td>
</tr>
<tr>
<td>3.3</td>
<td>Selected friction factor equations in present research</td>
<td>101</td>
</tr>
<tr>
<td>3.4</td>
<td>Physical properties of the refrigerants R-22 and R-290 used in present research at inlet saturation temperature of 10°C</td>
<td>102</td>
</tr>
<tr>
<td>3.5</td>
<td>Selected parameters in optimization tool box of MATLAB (2016a)</td>
<td>112</td>
</tr>
<tr>
<td>3.6</td>
<td>Parameters setup in optimization Toolbox of MOGA in MATLAB (2016a)</td>
<td>115</td>
</tr>
<tr>
<td>3.7</td>
<td>Upper and lower limits of the mass flux for refrigerants R-22 and R-290</td>
<td>116</td>
</tr>
</tbody>
</table>
4.1 The percentage of difference in viscosity values using different viscosity equations and data of the refrigerants R-22 and R-290 from different sources

4.2 The percentage of difference in viscosity values of refrigerants R-22 and R-290 when using different viscosity equations and data from different sources

4.3 The percentage of difference between the friction factor values determined using different friction factor and viscosity equations with experimental data of the refrigerants R-22 and R-290 and calculated experimental friction factor

4.4 The percentage of difference between the calculated experimental frictional pressure drop and frictional pressure drop determined using different friction factor and viscosity equations with experimental data of R-22 and R-290

4.5 The percentage of difference between the two-phase flow viscosity, friction factor, and frictional pressure drop values using Blasius equation for estimating friction factor with different viscosity equations and experimental data of the refrigerants R-22 and R-290

4.6 The percentage of difference between the two-phase frictional pressure drop values using different friction factor equations with the McAdams viscosity equation and experimental data of the refrigerants R-22 and R-290

4.7 The percentage of difference between the optimal values of the friction factor using different friction factor and viscosity equations as well as data of the refrigerant R-22 from different sources utilizing SOGA optimization method
4.8 The percentage of difference between the optimal values of the friction factor using different friction factor and viscosity equations as well as data of the refrigerant R-290 from different sources utilizing SOGA optimization method

4.9 The percentage of difference between the optimal values of the friction factor using data of the refrigerant R-22 from different sources and different friction factor and viscosity equations utilizing SOGA optimization method

4.10 The percentage of difference between the optimal values of the friction factor using data of the refrigerant R-290 from different sources and different friction factor and viscosity equations utilizing SOGA optimization method

4.11 The percentage of difference between the optimal values of the friction factor using different friction factor and viscosity equations with data of the refrigerant R-22 from different sources utilizing SOGA optimization method, and calculated experimental friction factor

4.12 The percentage of difference between the optimal values of the friction factor using different friction factor and viscosity equations with data of the refrigerant R-290 from different sources utilizing SOGA optimization method, and calculated experimental friction factor

4.13 The minimum values of the frictional pressure drop in [Pa] using different friction factor and viscosity equations as well as data of the refrigerant R-22 from different sources utilizing SOGA optimization method

4.14 The minimum values of the frictional pressure drop in [Pa] using different friction factor and viscosity equations as well as data of the refrigerant R-290 from different sources utilizing SOGA optimization method
4.15 The optimized values of the variables at which the optimal minimum values of the friction factor and frictional pressure drop obtained using different friction factor and viscosity equations with experimental data of the refrigerants R-22 and R-290 and utilizing SOGA optimization method

4.16 The optimized values of the variables at which the optimal values of the friction factor and frictional pressure drop obtained using different friction factor and viscosity equations with experimental data of the refrigerants R-22 and R-290 utilizing MOGA optimization method

4.17 The results of the comparisons between the selected optimal values of the friction factor and frictional pressure drop using different friction factor and viscosity equations with experimental data of the refrigerants R-22 and R-290 utilizing MOGA optimization method and calculated friction factor and frictional pressure drop
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Methodical stages of the study</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>Graphical representation of the Lockhart and Martinelli (1949) correlation</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Schematic diagram of the closed loop in test rig</td>
<td>93</td>
</tr>
<tr>
<td>3.2</td>
<td>photograph of the test rig</td>
<td>94</td>
</tr>
<tr>
<td>3.3</td>
<td>The effect of mass flux on two-phase flow Pressure drop of the refrigerant R22 for different values of vapor quality</td>
<td>103</td>
</tr>
<tr>
<td>3.4</td>
<td>The effect of vapor quality on two-phase flow pressure drop of the refrigerant R-22 for different values of mass flux</td>
<td>104</td>
</tr>
<tr>
<td>3.5</td>
<td>The effect of inner diameter on two-phase flow pressure drop of the refrigerant R-22 for different values of mass flux</td>
<td>105</td>
</tr>
<tr>
<td>3.6</td>
<td>The effect of heat flux and saturation temperature on two-phase flow pressure drop of the refrigerant R-290 at mass flux of 150 kg/m3s inside tube of 3 mm inner diameter</td>
<td>106</td>
</tr>
<tr>
<td>3.7</td>
<td>The effect of the relative roughness Rr of the channel inner surface on (a) friction factor and (b) two-phase flow frictional pressure drop of the refrigerant R-22 inside pipe of 7.6 mm inner diameter at mass flux of 615.48 kg/m3s for different values of vapor quality using Fang et al. (2011) equation for friction factor in</td>
<td></td>
</tr>
</tbody>
</table>
rough pipe with McAdams viscosity equation and experimental data

3.8 The procedure of the GA optimization process

3.9 Steps of performing the search

4.1 The two-phase flow viscosity values of the refrigerants R-22 from different data sources and different viscosity equations

4.2 The two-phase flow viscosity values of the refrigerants R-290 from different data sources and different viscosity equations

4.3 The two-phase flow frictional pressure drops values using different friction factor equations and McAdams viscosity equation with experimental data of the refrigerant R-22

4.4 The two-phase flow frictional pressure drops values using different friction factor equations and McAdams viscosity equation with experimental data of the refrigerant R-290

4.5 The two-phase flow frictional pressure drop values using different friction factor equations with the McAdams viscosity equation and experimental data of the refrigerants R-22 and R-290

4.6 The best and mean values of the friction factor and frictional pressure drop of the refrigerant R-22 using Fang et al. (2011) friction factor equation in rough tube with (a) McAdams viscosity equations; (b) Cicchitti viscosity equations; and (c) Dukler viscosity equations

4.7 Pareto optimal points of solutions using different friction factor equations with McAdams et al. (1942) viscosity equation and experimental data of the refrigerants R-22 and R-290
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>Pareto optimal points of solutions using different friction factor equations with Cicchitti et al. (1960) viscosity equation and experimental data of the refrigerants R-22 and R-290</td>
</tr>
<tr>
<td>4.9</td>
<td>Pareto optimal points of solutions using different friction factor equations with Dukler et al. (1964) viscosity equation and experimental data of the refrigerants R-22 and R-290</td>
</tr>
<tr>
<td>4.10</td>
<td>Pareto optimal points of solutions using Hagen-Poiseuille friction factor equation with different viscosity equations and experimental data of the refrigerants R-22 and R-290</td>
</tr>
<tr>
<td>4.11</td>
<td>Pareto optimal points of solutions from Blasius friction factor equation with different viscosity equations and experimental data of the refrigerants R-22 and R-290</td>
</tr>
<tr>
<td>4.12</td>
<td>Pareto optimal points of solutions from Fang et al. (smooth) friction factor equation with different viscosity equations and experimental data of the refrigerants R-22 and R-290</td>
</tr>
<tr>
<td>4.13</td>
<td>Pareto optimal points of solutions from Colebrook friction factor equation with different viscosity equations and experimental data of the refrigerants R-22 and R-290</td>
</tr>
<tr>
<td>4.14</td>
<td>Pareto optimal points of solutions from Swamee-Jain friction factor equation with different viscosity equations and experimental data of the refrigerants R-22 and R-290</td>
</tr>
<tr>
<td>4.15</td>
<td>Pareto optimal points of solutions from Haaland friction factor equation with different viscosity equations and experimental data of the refrigerants R-22 and R-290</td>
</tr>
</tbody>
</table>
4.16 Pareto optimal points of solutions from Serghides friction factor equation with different viscosity equations and experimental data of the refrigerants R-22 and R-290

4.17 Pareto optimal points of solutions from Fang et al. (2011) (rough) friction factor equation with different viscosity equations and experimental data of the refrigerants R-22 and R-290
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADM</td>
<td>Adomian Decomposition Method</td>
</tr>
<tr>
<td>AGC</td>
<td>Automatic Generation Control</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial neural network</td>
</tr>
<tr>
<td>CFCs</td>
<td>Chlorofluorocarbons</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational fluid dynamics</td>
</tr>
<tr>
<td>Ci</td>
<td>Cicchitti</td>
</tr>
<tr>
<td>CW</td>
<td>Colebrook-White equation</td>
</tr>
<tr>
<td>Du</td>
<td>Dukler</td>
</tr>
<tr>
<td>EA</td>
<td>Evolutionary Algorithm</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>HFCs</td>
<td>Hydrofluorocarbons</td>
</tr>
<tr>
<td>Mc</td>
<td>McAdams</td>
</tr>
<tr>
<td>MOGA</td>
<td>Multi-objective optimization Genetic Algorithm</td>
</tr>
<tr>
<td>NSGA-II</td>
<td>Non-Dominated Sorting Genetic Algorithm</td>
</tr>
<tr>
<td>NTU</td>
<td>Number of Heat Transfer Units</td>
</tr>
<tr>
<td>ODP</td>
<td>Ozone Depleting Potential</td>
</tr>
<tr>
<td>PD</td>
<td>Percentage of Difference</td>
</tr>
<tr>
<td>RADM</td>
<td>Restarted Adomian Decomposition Method</td>
</tr>
<tr>
<td>SOGA</td>
<td>single-objective optimization Genetic Algorithm</td>
</tr>
<tr>
<td>UI</td>
<td>Universitas Indonesia</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>A, B, C, K, K_1, K_2</td>
<td>Constants</td>
</tr>
<tr>
<td>D</td>
<td>Internal diameter, [m]</td>
</tr>
<tr>
<td>D_h</td>
<td>Hydraulic diameter, [m]</td>
</tr>
<tr>
<td>f</td>
<td>Fanning friction factor</td>
</tr>
<tr>
<td>f_D</td>
<td>Darcy friction factor</td>
</tr>
<tr>
<td>$f_{D,exp}$</td>
<td>Experimental Darcy friction factor</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational acceleration, [m/s2]</td>
</tr>
<tr>
<td>G_{tp}</td>
<td>Two-phase flow mixture mass flux, [kg/m2s]</td>
</tr>
<tr>
<td>He</td>
<td>Hedstrom number</td>
</tr>
<tr>
<td>h_f</td>
<td>Head loss, [m]</td>
</tr>
<tr>
<td>i</td>
<td>Two-phase flow mixture specific enthalpy, [J/kg]</td>
</tr>
<tr>
<td>i_l</td>
<td>Enthalpy of saturated fluid [J/kg],</td>
</tr>
<tr>
<td>$i_{l,i}$</td>
<td>Enthalpy at the inlet temperature, [J/kg]</td>
</tr>
<tr>
<td>i_{ig}</td>
<td>Latent heat of vaporization [J/kg]</td>
</tr>
<tr>
<td>L</td>
<td>Length, [m],</td>
</tr>
<tr>
<td>\dot{m}</td>
<td>Mass flow rate, [kg/s]</td>
</tr>
<tr>
<td>q</td>
<td>Heat flux, [W/m2]</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>Re_{mod}</td>
<td>Modified Reynolds number</td>
</tr>
</tbody>
</table>
\(R_r \) - Relative roughness

\(S \) - Slip ratio

\(v \) - Average flow velocity, [m/s]

\(v_{g,j} \) - Drift velocity, [m/s]

\(v_l \) - Liquid-phase velocity, [m/s]

\(v_g \) - Gas-phase velocity, [m/s]

\(W \) - Electric power, [W]

\(X \) - Martinelli parameter

\(x \) - Vapor quality

\(x_o \) - Outlet vapor quality

\(Z_{sc} \) - Subcooled length, [m]

\(\Delta P \) - Pressure drop [Pa]

\(\Delta P_f \) - Frictional pressure drop [Pa]

\(\Delta P_{f,exp} \) - Experimental frictional pressure drop [Pa]

Greek symbols

\(\alpha_l \) - Liquid-phase void fraction

\(\alpha_g \) - Gas-phase void fraction

\(\alpha_{tp} \) - Two-phase flow mixture void fraction

\(\alpha_{tp,H} \) - Homogeneous two-phase flow mixture void fraction

\(\varepsilon \) - Absolute roughness, [mm]

\(\lambda \) - Friction coefficient

\(\mu_l \) - Liquid-phase viscosity, [\(\mu \text{Pa.s} \)]

\(\mu_g \) - Gas-phase viscosity, [\(\mu \text{Pa.s} \)]
\(\mu_{tp} \) - Two-phase flow mixture viscosity, [Pa.s]

\(\rho_l \) - Liquid-phase density, [kg/m\(^3\)]

\(\rho_g \) - Gas-phase density, [kg/m\(^3\)]

\(\rho_{tp} \) - Two-phase flow mixture density, [kg/m\(^3\)]

Subscripts

- \(f \) - Friction
- \(g \) - Gas-phase
- \(l \) - Liquid-phase
- \(t \) - Turbulent
- \(tt \) - Turbulent – turbulent flow regime
- \(tv \) - Turbulent – viscous flow regime
- \(v \) - Viscous (laminar)
- \(vt \) - Viscous – turbulent flow regime
- \(vv \) - Viscous – viscous flow regime
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Optimization program codes</td>
<td>204</td>
</tr>
<tr>
<td>B</td>
<td>List of publications</td>
<td>209</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Two-phase flow phenomenon has gotten increased interest in recent years, attracting researchers to conduct more studies due to their higher heat transfer coefficient in comparison with single-phase flow (Jacopo, 2010). In general, the rate of the heat transfer rate during phase change can be higher than four to twenty-five times compared to the single-phase equivalent convection (Incropera et al., 2007). Contrasted with the flow inside traditional channels, the flow of the refrigerants during boiling in smaller channels has distinct characteristics as a result of the chemical and physical properties of the refrigerants and the measurements of the channels. Therefore, the accuracy of the pressure drop prediction is of a great importance and occupies the forefront place in design and improvement of the systems for its close association with the power required to drive fluid inside channels.

The 1950s were marked by the fact that air conditioners were available to almost every family, especially in developed countries. The makers of these gadgets supplantied poisonous refrigerant gasses with manufactured refrigerants called chlorofluorocarbons (CFCs). The 1970s were marked by the terrible discovery that CFCs, used in refrigeration units as well as various devices, were one of the factors leading to the depletion of the ozone layer responsible for reducing the harmful effects of solar radiation. The Montreal Protocol signed by most countries in 1987, a global agreement, attempts to replace the Chlorofluorocarbons (CFCs) products with other products such as Hydrofluorocarbons (HFCs) like R-410A and R-134a.
(Mironov, 1968), that are environmentally friendly, natural, and have low or zero ozone depleting potential (ODP) and global warming potential (GWP). Currently, there are still inadequate studies on environmentally friendly natural refrigerants in small channels available in the literature. Preliminary results from these studies provided viable options but there is insufficient data on the properties of these refrigerants, especially with regard to heat transfer and pressure drop.

Appearance and disappearance of the phases during the two-phase flow makes the analysis of the flow systems very complex because of the characteristics of the intermittent fluids at the phase boundary, as well as the relative movement of the phases, mass and energy and the transfer of momentum between phases. Besides, void distribution in a two-phase channel has special importance. The flow patterns get more complex in small channels due to the increased frictional losses between the fluid layers as well as between the fluid and channel walls.

The advantages that can be found using small channels is the high heat transfer coefficient due to the high ratio between heat transfer surface and fluid flow volume. Also, their small size makes the need for less material and reduces the weight, fluid stock, installation costs and power reserve. However, despite these advantages, they are also characterized by an increase in wall friction which leads to increased pressure drop. Therefore, there is a need to understand the basic aspects of flow in two phases with regard to pressure reduction and heat transfer for accurate prediction leading to better design of compact heat exchangers and greater efficiency in industrial processes.

1.2 Flow Patterns and Flow Pattern Maps

The flow pattern in two-phase flow can be influenced by various parameters such as density and viscosity of the gas and liquid phases, surface tension, mass flow rate of each phase, and geometrical measurements of the flow channel. In addition, competition between forces such as inertia force, viscosity force, gravitational force, and surface tension force controls the order of specific flow patterns in the channel. It is, therefore, a necessary to predict these flow regimes as the basis for performing
arithmetic operations on two-phase flow. The usual procedure is to draw data in the form of a flow pattern map.

Thus, flow pattern maps can be defined as an operation of separating space into areas on a two-dimensional graph corresponding to the different flow patterns. They are a construct of two coordinates, where the liquid superficial velocity is plotted against the gas superficial velocity. The boundaries between the flow patterns are plotted by lines. Using these maps for predicting the local flow regime in both horizontal and vertical pipes are very useful. Additionally, most of the flow pattern maps have been developed for adiabatic two-phase flows, which may not yield reliable results when used in the case of diabatic.

1.3 Pressure Drop in Two-Phase Flow

The pressure drop is defined as the difference in pressure between two interesting points in the flow system. Total pressure drop usually occurs owing to friction because of the viscosity of the liquid and gas in motion. Where in the case of the laminar flow pressure loss occurs as a result of the momentum transfer between the particles, while in the turbulent flow occurs when the individual particles move at different velocities between the adjacent fluid layers. In addition, pressure losses also can be caused by the local pressure loss due to sudden changes in flow area, shape, and flow direction; and pressure losses due to acceleration, caused by changes in elevation (gravity effect), flow area or by changes in the fluid density.

In view of the design and operational issues caused due to the simultaneous flow of liquid and vapor and forming various two-phase flow patterns, makes the calculation of the pressure drop in these conditions a crucial in order to assist the piping designer to succeed in achieving the optimal line size and better design of the piping system. Most of the studies on pressure drop proved that the frictional component was dominant and the contribution of the accelerational and gravitational component is small (Saitoh et al., 2005). Frictional pressure drop commonly comes from the friction between the flowing fluid and pipe wall. In two-phase flows, there
is an additional frictional pressure loss comes from the interphase friction between phases.

In general, calculation of the frictional pressure drop requires knowing either the two-phase friction factor or the two-phase frictional multiplier. Where, calculating friction factors can be done using implicit Colebrook equation which requires iterative procedure, an inconvenience and needs time for computation. Therefore, many explicit equations were developed to rid of the iterations. The main disadvantage of these explicit approximations is the relatively high percentage of error compared to the solution to the implicit Colebrook equation (Brkić, 2012).

In the past, five methods have been utilized in solving the Colebrook equation (Colebrook, 1939): (i) graphical method by finding the solution from the Rouse or Moody diagrams (Rouse, 1943; Moody and Princeton, 1944), (ii) implementing iterative process by using spreadsheet solvers, which gives accurate solutions to the Colebrook equation but requires long time (Excel is most suitable tool), (iii) using developed explicit equations of the Colebrook equation which requires less calculation but have higher error percentage (Genić et al., 2011), (iv) make use of the Lambert W function to avoid the iterative calculations with less percentage error (Boyd, 1998; Barry et al., 2000), and (v) applying trial – and – error method which is no longer used.

Today, Colebrook equations can be solved easily and accurately using the Newton-Raphson iterative procedure and common software tools such as Microsoft Excel and MATLAB.

1.4 Background and Rational of the Research

At present, the need for small channels in a variety of compact applications is widespread. Unfortunately, published reports indicate the significant increment in pressure drop to the detriment of heat transfer coefficient increment. Consequently,
there is a requirement for a dependable model with a high degree of accuracy for predicting two-phase flow frictional pressure drop in small channels.

To date, researchers have modified available correlations on pressure drop developed based on conventional systems. Meanwhile, other researchers have invested much time and funds in developing new correlations in search of better agreements across refrigerants, channel diameter, and flow regimes. The issue remains with the many different predicted friction factor correlations used in the determination of the frictional pressure drop. Besides, the different approaches in modelling the flow (homogeneous or separated) introduced further variations in the outcomes. Global concerns for natural and more environmentally friendly refrigerants in practical applications have added a new challenge to the study and investigation of the two-phase flow in small channels.

Experimental studies that have been conducted on boiling heat transfer and pressure drop of refrigerants during two-phase flow in small channels are few in comparison with those in conventional channels. Even less is the focus on optimized conditions for minimal pressure drop. The difficulty of effectively dealing with turbulent flow issues in pipes originates from the truth that friction factor is an intricate function of roughness and Reynolds number. With various correlations/models applicable and performance on alternative refrigerants, there is a need for a study and analyze available correlations/models proposed or modified (many) to identify and address causes of discrepancies. Optimized conditions such as inlet temperature, mass flux, heat flux, and vapor quality in small channels whereby the frictional pressure drop is minimized have to be investigated, with comparisons of the performance between current and environmentally friendly refrigerants as potential alternatives.

1.5 Problem Statement

Two-phase flow pressure drop is a major parameter in designing two-phase flow systems and takes precedence over any other consideration. Past empirical
correlations come with various degrees of disagreements with experimental data, up to and above 100% (Xu and Fang, 2012; Xu et al., 2012; Xu and Fang, 2013). The use of data from different sources and various equations in calculating the viscosity value had a clear effect on the viscosity value estimation. This effect is clearly shown in the calculation of the value of the number of Reynolds, which is a critical element in estimating the friction factor. In addition, the use of various equations for calculation of the friction factor has had a considerable effect on the accuracy of the predicted value of the friction factor and consequently on predicting frictional pressure drop.

In addition, the enormous ecological harm that has happened because of the utilization of halogens pushed the researchers to look for and examine natural refrigerants as replacements to the current used. Thus, in this study the propane (R-290) has been examined simultaneously with HCFC (R-22) as an alternative natural environmentally friendly refrigerant.

Current research investigated the effect of using data from various sources and various viscosity and friction factor equations on estimating viscosity and friction factor values. As well as, this research inspects the effect of the predicted viscosity and friction factor values on predicting frictional pressure drop. Examination has been performed utilizing the genetic algorithm (GA) as a convenient optimization method. The optimal outcomes were compared with experimental data collected from the experiments conducted at the Universitas Indonesia.

1.6 Research Objectives

The objectives of this study are:

i. Perform a critical review of the available implicit and explicit equations for a wide range of Reynolds numbers and relative pipe roughness to establish the accuracy.
ii. Examine the natural environmentally friendly refrigerant R-290 parametrically and under optimized conditions as an alternative refrigerant to the refrigerant R-22 using Genetic Algorithm Optimization.

iii. Show the effects of using data from various sources on estimating the viscosity value and thus on evaluating the friction factor value.

iv. Illustrate the effects of using the different equations on the viscosity value estimate and the effect of this on the value estimation of the friction factor.

v. Demonstrate the effect of using various correlations on estimating the friction factor value and its impact on the accuracy of the prediction of the frictional pressure drop in two-phase flow.

vi. Evaluate the magnitude of all the above-mentioned effects by comparing the results obtained with experimental data to increase the accuracy of the analysis.

1.7 **Scopes of the Research**

Theoretical and experimental approaches were involved in this research. The research focuses on study and evaluation of the effect of using data from different sources and different equations in calculating the value of viscosity on which the Reynolds is dependent on. The Reynolds number is a key element in the calculation of the friction factor which is a critical factor in the evaluation of the frictional pressure drop. In addition, examination of the effect of using various viscosity equations as well as various equations on estimating the friction factor is completed. Consequently, the impact of all these effects on predicting the frictional pressure drop is analyzed. Some of the most commonly used equations were selected to assess the magnitude of all these effects.

An examination of a natural and environmentally friendly refrigerant as a replacement to the currently used refrigerants was accomplished. Genetic algorithm
has been utilized as an effective and convenient optimization method with the aim to identify the source of inconsistency between the predicted frictional pressure drop and experimental results previously reported from a large number of researchers. Comparison of the numerical and optimal outcomes of the measured pressure drop and calculated experimental friction factor from the experiment conducted for this purpose, has made it possible to assess the selected viscosity and friction factor correlations and their effect on the accuracy of the predicted frictional pressure drop. Thus, utilizing these correlations and applying the homogeneous flow model, pressure drop can be more effectively predicted in the design of compact two-phase flow systems.

1.8 Research Contributions

i. A critical review of the implicit and explicit friction factor correlations due to the large number of them that can be found in literature to determine which of them gives results consistent with the experimental results and with high accuracy.

ii. At the same manner, a critical review of the two-phase flow void fraction and viscosity models/correlations that can be found in literature to determine which of them gives results compatible with the experimental results and with high accuracy when substitute in correlation of friction factors.

iii. Demonstrate the effect of using data from various sources and various viscosity correlations on calculating viscosity and friction factor and corresponding on prediction of the frictional pressure drop. Where, the experimental data from published paper of Pamitran et al. (2010), experimental data from Universitas Indonesia (UI), and available data from the National Institute of Standards and Technology (NIST) chemistry webbook (Eric et al., 2013) were used.
iv. Examining natural environmentally friendly refrigerant as an alternative to the one currently in use in order to follow the instructions of the Montreal Conference for the Protection of the Environment.

v. Utilizing genetic algorithm (GA) optimization tools as a convenient optimization method which has not been applied before in the field of the two-phase flow in small channels, to examine the effects mentioned in (iii) in order to reduce the large inconsistency with the experimental results already reported from a large number of researchers to less than what can be.

1.9 Research Systematic Stages

The major steps of this research can be briefed in the following:

i. Critical review on the studies and research available in literature related to the pressure drop prediction methods and correlations in small channels.

ii. Critical review on the studies and research available in literature related to the void fraction and viscosity models/correlations.

iii. Critical review on the studies and research available in literature related to the friction factor implicit and explicit correlations for a wide range of Reynolds numbers and relative pipe roughness to establish the accuracy.

iv. Critical review on the studies and research available in literature related to the pressure drop optimization methods that apply Genetic algorithms.

v. Describing and analyzing the behavior and performance of the two-phase system in small channels through applying homogeneous flow models in laminar and turbulent flow regimes methodically and parametrically.
vi. Applying genetic algorithm optimization based on the homogeneous flow model for optimization the objective functions which are minimum friction factor and minimum frictional pressure drop in small channel of 7.6 mm inner diameter.

vii. Conducting experiments on two-phase flow pressure drop of the refrigerant R-22 and R-290 which significantly added to the available data of pressure drop measurements taken in a horizontal pipe of 7.6 mm inner diameter and length of 1070 mm for two-phase flow.

viii. Analyze and compare the numerical results with experimental data to demonstrate the effect of use different friction factor and viscosity correlations/models as well as data from different sources on prediction of the two-phase flow frictional pressure drop.

ix. Examining the refrigerant R-290 as an alternative natural environmentally friendly refrigerant simultaneously with refrigerant R-22 in laminar and turbulent flow regimes, parametrically and under optimized conditions.

The steps of this research are shown in Figure 1.1.
Figure 1.1 Methodical stages of the current study

1.10 Research Significance

The importance of the research lies in the critical review of the huge number of the void fraction, viscosity, and friction factor correlations available in the literature used for laminar and turbulent flow regimes. In addition to that, the effect of using data from different sources on the viscosity value, the effect of using different viscosity equations in calculating the viscosity value and the subsequent effect on the predicted friction factor has been demonstrated. Furthermore, genetic algorithm optimization tool to optimize the friction factor and frictional pressure drop in a small channel that has not been used previously has been utilized. Thus, the research significance can be summarized in the following points:

i. This research is an effort to comprehend the effect of the frictional pressure drop on two-phase flow boiling in small channels including experiments and applying of different friction factor and viscosity equations.

ii. Demonstrate the effect of using data from various sources in evaluating friction pressure drop and correspondingly on predicting pressure drop.

iii. The critical review discovered some correlations that have not been mentioned before, in addition to the presence of some of the misconceptions about the original developers of these correlations.

iv. Applying genetic algorithms optimization gave a methodical optimization program with less limiting conditions, and can be used by the designers without difficulty or effort.

v. Examination of a natural environmentally friendly refrigerant as a replacement to the currently HCFC used in order to protect the environment, preserve the ozone layer and avoid global warming.
1.11 Thesis Organization

The manuscript is arranged in a systematic way as follows:

Chapter 1 – Introduction: Presents a brief description of two-phase flow and pressure drop issues in small channels and the background of the problem. In addition, offers the objectives, scopes, as well the significance of this study.

Chapter 2 – Review of the Literature: Provides a critical review of the related studies on the two-phase viscosity, void fraction, friction factor, and frictional pressure drop. The review includes correlations, geometries, refrigerants, materials as well the employed genetic algorithms optimization techniques.

Chapter 3 – Methodology: Displays the viscosity and friction factor correlations applied in the study. Offers parametric and genetic algorithms optimization analysis with the assumption of liquid-gas flow into pipes. Homogeneous flow model has been applied using the selected correlations. Genetic Algorithm Optimization and the procedures of implementation of the single and multi-objective genetic algorithms optimization in the present study were discussed and explained.

Chapter 4 – Results and Discussions: displays the outcomes of the parametric analysis and optimization operations, comparisons between the outcomes themselves, and comparisons with experimental data. All outcomes of the comparisons were discussed and explained.

Chapter 5 – Conclusions and Recommendations: Gives the conclusion depending on the analysis and discussion of the comparisons outcomes as well proposes the recommendations.
REFERENCES

MATLAB R2016a Version (9.0.0.341360) 64 Bit (win64), License Number 123456.

NIST 2013. NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixtures. Version 9.1: Computer software, National Institute of Science and Technology, Gaithersburg, MD.

