MODELLING ATMOSPHERIC WET REFRACTIVITY PROFILE USING
GROUND AND SPACE-BASED GLOBAL POSITIONING SYSTEM

OPALUWA YUSUF DRISU

UNIVERSITI TEKNOLOGI MALAYSIA
MODELLING ATMOSPHERIC WET REFRACTIVITY PROFILE USING GROUND AND SPACE-BASED GLOBAL POSITIONING SYSTEM

OPALUWA YUSUF DRISU

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Satellite Navigation)

Faculty of Geoinformation and Real Estate
Universiti Teknologi Malaysia

JULY 2017
DEDICATION

With much glory to Allah S.W.T for the gift of life, grace and wisdom, this work is dedicated to my late Father, Idrisu Opaluwa of blessed memory.
ACKNOWLEDGEMENTS

I give all praises and adoration to Allah S.W.T for his grace to embark on this surgeon.

My foremost appreciation goes to my indefatigable supervisors; Dr. Tajul Ariffin Bin Musa and Assoc. Prof. Kamaludin Mohd Omar for your immeasurable contributions academically, morally and otherwise, which has greatly enhanced the horizon of my scientific reasoning, given me strength and courage to withstand the challenges of this highly demanding exploration into the knowledge-based world. In fact working with you in the course of my study is quiet fulfilling.

I am also very grateful to Dr. Witold Rohm (Wroclaw University of Life and Environmental Science, Poland) for giving me access to your GPS tomography software and attending to me each time I have issues, Dr. Dudy D. Wijaya (Institute of Technology Bandung, Indonesia) for all your scientific supports on fundamental geodesy, GPS meteorology and Matlab coding. You are both wonderful as you respond to any question posed by me, no matter how trivial.

Furthermore, I would like to express my sincere gratitude to the management of Federal University of Technology (FUT) Minna and the Nigerian Tertiary Education Trust Fund (TETFund) for giving me this great opportunity by respectively releasing me for the study at Universiti Teknologi Malaysia (UTM) and providing the intervention fund in support of my programme. I also appreciate the Surveyors Council of Nigeria (SURCON) for supporting me financially. My thanks further goes to the former Dean (Prof. O. O. Morenikeji) and the immediate past Dean (Prof. Y.A. Sanusi) of School of Environmental Technology (SET), the Head
of Department (HOD), Surveying & Geoinformatics; Dr. I. C. Onuigbo as well as my colleagues in the department for all your supports.

I also deeply appreciate all my colleagues in Geomatic Innovation Research Group (GnG) UTM, for all the supports and cooperation, especially during my early days of learning Bernese software for GPS data analysis. Even within my limited space, I must recognise the contributions of Messrs Leong, Yong, Wan Anom, Suryati Shariff, Jespal Sing and Muhammad Faiz Norazmi; not forgetting the care, friendship and understanding enjoyed from them including Nazirah Muhamad Abdullah, Anim Zannariah, Shahrizan Muhammad, Surayatul Atikah and the host of others for giving me home away from home in GnG, each and every one of you is indeed more than just a friend.

I am particularly indebted to Mr. James S. Ibrahim, Adejumo S. T. and Dantani Danlami for continuously being there for me in times of critical needs throughout this programme as well as Late Mr. Paul Zhiri, Surv. O. O. Odentunde and Prof. L. M. Ojigi for their academic/professional mentorship all these while.

As for my Parents (late Pa. Idrisu Opaluwa and Mrs. Amina Egbunu Opaluwa), Brothers and Sisters, I can never thank you enough for giving me the platform to be educated, your show of love, care, prayers and consistent support that has brought me thus far; I appreciate you all mightily. I would also like to extend my appreciation to my in-laws for their support and prayers; special thanks also goes to Mrs Grace Ubah and family, Mal. Ibrahim Mudi and family (Lambata), Mr & Mrs Shaibu Abdul and host of others for standing by me and my family in prayers, love and care throughout the period of this study; and the last of the inheritors, Mrs. Linda Ngozi Izah and family (Auchi Polytechnic), meeting you at the last minutes of my programme has been very rewarding, thanks for your prayers and kindness.

Finally, my utmost heartfelt appreciation is to the love of my heart; Mrs. Hauwa Opaluwa and my lovely daughter; Amina Onçe Opaluwa for their unalloyed support, patience, love and prayers all through these years of my study in Malaysia. Accepting to bear the pains of loneliness and all the associated burdens of my
absence for all these years is a great sacrifice and you are indeed my great source of inspiration. Words cannot say it all, thank you very much my Angels; I love you greatly!!
ABSTRACT

Precise measurement of atmospheric water vapour has been very challenging due to some limitations of the conventional meteorological systems. Hence, there is a need for Global Positioning System (GPS) for meteorology or GPS meteorology. Therefore, the ground-based GPS meteorology and the space-based GPS Radio Occultation (GPS RO) techniques have been used. The major challenges of ground-based GPS meteorology approach include the lack of surface meteorological data collocating with the location of the ground-based GPS receivers as well as its inability to profile the atmosphere. Whereas the GPS RO technique has a problem of generating profile for the lower tropospheric region which holds the largest amount of water vapour. This research investigates an approach for estimating wet refractivity profile using GPS data. Three specific objectives were set for the study which was conducted in three phases. The first objective assessed GPS Integrated Water Vapour (GPS IWV) in which GPS IWV from interpolated meteorological data and the applicability of Global Pressure and Temperature (GPT2w) model for GPS meteorology was evaluated. The results revealed that the GPS IWV from Automatic Weather Station (AWS) presents good correlation with the radiosonde IWV, the standard deviation of the biases vary spatially from 3.162 kg/m² to 3.878 kg/m². The actual influence of the errors of GPT2w meteorological parameters on GPT2w-based GPS IWV lies between 2 kg/m² and 3 kg/m², translating to an average relative accuracy of 1.2%. Meanwhile, the sensitivity of the GPS RO data to equatorial water vapour trend was evaluated to achieve second objective. It was found that the GPS RO IWV is highly comparable with the ground-based GPS IWV, having average bias of 1.8 kg/m². Finally, a methodology for GPS wet refractivity retrieval was developed towards achieving the third objective of this research. The Modified Single Exponential Function (MSEF) model for retrieving wet refractivity profile from ground-based GPS Zenith Wet Delay (ZWD) was realised. The output validation using profile from radiosonde and GPS RO observations showed high correlation in each case. In order to improve the performance of the MSEF model, an approach for integrating the ground-based and the space-based GPS data (GIWRef) was formulated. The GIWRef profile is highly correlated with the GPS RO profile, which showed an average improvement of 41% over the initial MSEF method with average correlation coefficient of 0.99. It can be concluded from the foregoing results of the study that the MSEF and GIWREF concepts developed in this work, presents a potential for augmenting weather forecasting and monitoring water vapour system.
ABSTRAK

Pengukuran kandungan wap air di atmosfera yang jitu adalah begitu mencabar disebabkan oleh keterbatasan sistem meteorologi secara konvensional. Maka, sistem penentududukan sejagat (GPS) untuk meteorologi atau GPS meteorologi ini menjadi satu keperluan. Oleh itu, teknik GPS meteorologi kawalan di bumi dan GPS radio hijaban di angkasa (GPS RO) telah digunakan. Cabaran utama bagi kaedah GPS meteorologi kawalan di bumi adalah kekurangan data meteorologi permukaan khususnya di lokasi penerima GPS dan seterusnya menyebabkan ketidakupayaannya untuk menjana profil atmosfera. Manakala teknik GPS RO mempunyai masalah untuk menjana profil meteorologi bagi lapisan troposfera rendah yang mengandungi jumlah wap air yang tinggi. Kajian ini menyiasat suatu pendekatan untuk menganggar profil kebiasan basah dengan menggunakan data GPS. Tiga objektif khusus telah ditetapkan untuk kajian ini dan dilaksanakan dalam tiga fasa. Objektif pertama adalah menilai integrasi wap air berasaskan GPS (GPS IWV) dengan menggunakan GPS IWV di mana hasil daripada interpolasi data meteorologi dan kesesuaian model tekanan dan suhu sejagat (GPT2w) untuk GPS meteorologi telah dinilai. Hasil kajian mendapati bahawa GPS IWV daripada stesen kajicuaca automatik (AWS) menunjukkan korelasi yang baik dengan IWV daripada radiosond dengan sisihan piawai bias berbeza secara spatial sebanyak 3.162kg/m² hingga 3.878kg/m². Punca sebenar yang mempengaruhi ralat parameter meteorologi pada GPT2w terhadap GPT2w yang berasaskan GPS IWV adalah di antara 2kg/m² dan 3kg/m² diterjemahkan sebagai ketepatan purata relatif sebanyak 1.2%. Sementara itu, sensitiviti data GPS RO terhadap arah aliran kondungan wap air di kawasan Khatulistiwa telah dinilai untuk mencapai objektif kedua. Kajian mendapati bahawa GPS RO IWV yang dibandingkan dengan GPS IWV kawalan di bumi adalah hampir sama iaitu dengan purata bias sebanyak 1.8kg/m². Akhirnya, metodologi untuk memperolehi kebiasan basah daripada GPS telah dibangunkan bagi mencapai objektif ketiga. Model fungsi eksponen tunggal (MSEF) untuk mendapatkan profil kebiasan basah daripada lengah basah zenit (ZWD) berasaskan GPS kawalan di bumi telah direalisasikan. Hasil pengesahsahian menggunakan profil daripada cerapan radiosonde dan GPS RO menunjukkan korelasi yang tinggi dalam setiap kes. Bagi meningkatkan prestasi model MSEF ini, suatu pendekatan dengan integrasi data GPS kawalan di bumi dan di angkasa (GIWRef) telah dirumuskan. Profil GIWRef menunjukkan korelasi yang tinggi dengan profil GPS RO, yang memberikan kadar purata peningkatan sebanyak 41% berbanding kaedah awalan MSEF dengan kadar purata pekali korelasi sebanyak 0.99. Kesimpulannya, hasil kajian ini menunjukkan bahawa konsep MSEF dan GIWREF yang dibangunkan oleh kajian ini berpotensi untuk membantu sistem ramalan kajicuaca dan sistem pemantauan kondungan wap air.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xix</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxx</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxxiii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of Study 1

1.1.1 GNSS Geodesy and the Atmospheric Dynamics 4

1.1.2 GPS Meteorology 6

1.2 Problem Statement 8

1.3 Aim and Objectives of the Study 11

1.4 Scope and Limitations of the Study 11

1.5 Contributions and Significance of the Study 12

1.6 The Structure of the Thesis 14

2 GPS OBSERVATION FOR SENSING ATMOSPHERIC WATER VAPOUR 16

2.1 Introduction 16

2.2 Atmospheric Effects on GPS Signal 17
2.2.1 The Overview of Atmospheric Excess Path Delay of GPS Signal
2.2.2 Tropospheric Delay Estimation in GPS Data Analysis
2.2.3 The Estimation of Integrated Water Vapour from GPS ZWD

2.3 The Ground-based GPS Meteorology
2.3.1 Trend in Ground-based GPS Meteorology
2.3.2 Surface Meteorological Data for GPS Meteorology
2.3.2.1 The Global Pressure and Temperature (GPT) Model
2.3.2.2 Modelling the Impact of Errors in Interpolated Surface Meteorological Data on GPS IWV Estimates

2.4 Space-based GPS Radio Occultation Measurements for Water Vapour Estimation
2.4.1 The Background of GPS Radio Occultation
2.4.1.1 The COSMIC RO System
2.4.2 The Principle of GPS RO Measurements and Processing
2.4.2.1 Derivation of the Atmospheric Bending Angle
2.4.2.2 Retrieval of Refractivity Profiles
2.4.2.3 Retrieval of Atmospheric Parameters

2.5 Ground-Based GPS Tropospheric Profiling
2.5.1 GPS Tropospheric Tomography
2.5.2 Ground-based GPS Site-specific Tropospheric Profiling
2.5.3 The Concept of Exponential Distribution Function for Site-specific GPS Tropospheric Profiling
3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Ground-based GPS IWV Estimation using surface meteorological data interpolated from AWS observation and GPT2w model over Peninsular Malaysia

3.3 Investigation into IWV Retrieval from Space-based GPS RO Data over Peninsular Malaysia

3.3.1 Materials and Methods

3.3.1.1 Data Used

3.3.1.2 Data Processing for GPS RO IWV Estimation

3.3.2 Evaluation and Assessment

3.4 A New Approach for GPS Wet Refractivity Profiling

3.4.1 The Conceptual Design

3.4.2 Adoption of a Single Exponential Model for Ground-Based GPS Wet Refractivity Profiling

3.4.2.1 Theoretical framework of the algorithm

3.4.2.2 Background of the Problem

3.4.2.3 Model Assumption and formulations

3.4.2.4 Wet Refractivity Retrieval Strategy

3.4.2.5 Assessment and Validation of MSEF Wet Refractivity Estimates

3.4.3 Integration of Ground- and Space-Based GPS Data for Improved MSEF Profiling

3.4.3.1 The Philosophy of the GIWRef Approach

3.4.3.2 The GIWRef Model Formulation
3.4.3.3 Evaluation

3.5 Summary

4 GROUND AND SPACE-BASED GPS IWV ASSESSMENT

4.1 Introduction

4.2 Ground-based GPS IWV Assessment

4.2.1 Ground-based GPS IWV Estimate from AWS Observations

4.2.1.1 The Estimated GPS ZPD

4.2.1.2 The Estimated GPS IWV from Interpolated AWS Observations

4.2.2 The Assessment of GPT2w Model for GPS Meteorology

4.2.2.1 GPT2w Model Pressure and Temperature

4.2.2.2 Predicted Influence of GPT2w Model Pressure and Temperature Errors on ZHD and IWV

4.2.2.3 GPS IWV Using Surface Meteorological data from GPT2w Model

4.3 The Sensitivity of the Space-based GPS RO Data to Water Vapour Trend

4.3.1 GPS RO-Based ZWD and IWV

4.3.2 Diurnal Variations of GPS RO IWV

4.3.3 GPS RO IWV and the Malaysian Tropical Monsoon Oscillation

4.4 Summary

5 GPS WET REFRACTIVITY PROFILE RETRIEVAL

5.1 Introduction

5.2 Wet Refractivity Profile Retrieval using the MSEF Model
5.2.1 The Wet Refractivity Profile and Gradient 154
5.2.2 Altitude-Time Evolution of the Wet Refractivity Field 161
5.2.3 Assessment and Validation of MSEF Wet Refractivity Estimates 166
 5.2.3.1 Surface Wet Refractivity Assessment 166
 5.2.3.2 MSEF Wet Refractivity Profiles Assessment using Radiosonde Profiles 168
 5.2.3.3 Assessment of MSEF Model Profile using GPS RO Profile 180
5.3 The GIWRef Approach for Improved MSEF Profiling 185
 5.3.1 Validation of the GIWRef Model 185
5.4 Summary 193

6 CONCLUSION AND FUTURE OUTLOOK OF THE STUDY 194
 6.1 Conclusion 194
 6.2 Future Outlook of the Study 197

REFERENCES 199

APPENDICES A-I 230-267
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Broadcast Values and IGS Combined Orbit and Clock Products (International GNSS Service, 2013).</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>List of Radio Occultation Missions and their Total Annual Occultation Events (UCAR COSMIC Education Program Office, 2013).</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>Benefits of GPS RO to Scientific Researches (UCAR COSMIC education programme office, 2013).</td>
<td>40</td>
</tr>
<tr>
<td>2.3</td>
<td>Coordinate of Tangent Points of Available Occultation Events, the GPS Station (BANT) and Radiosonde Station (KLIA).</td>
<td>64</td>
</tr>
<tr>
<td>2.5</td>
<td>Summary of literature on GPS troposphere profiling</td>
<td>70</td>
</tr>
<tr>
<td>3.1</td>
<td>Spatial Relationship between the GPS and the Corresponding Radiosonde Stations (Musa et al., 2011).</td>
<td>77</td>
</tr>
<tr>
<td>3.2</td>
<td>Parameter Settings and Models for the Data Processing Strategy</td>
<td>79</td>
</tr>
<tr>
<td>3.2</td>
<td>Rainfall data for the selected days in July and November 2008.</td>
<td>105</td>
</tr>
<tr>
<td>4.1</td>
<td>Statistical Properties of the ZPD Differences (ZPD IGS–ZPD est.).</td>
<td>116</td>
</tr>
<tr>
<td>4.2</td>
<td>Statistics of GPS IWV Bias (GPS IWV – Radiosonde IWV).</td>
<td>118</td>
</tr>
<tr>
<td>4.3</td>
<td>Statistics of GPT2w Model Pressure and Temperature Biases.</td>
<td>122</td>
</tr>
<tr>
<td>4.4</td>
<td>Influence of GPT2w Pressure Error on ZHD.</td>
<td>123</td>
</tr>
</tbody>
</table>
4.5 Influence of GPT2w Interpolated Surface Meteorological Data on IWV.
4.6 Statistics of GPT2w-based GPS IWV Bias (GPT2w-based GPS IWV – Radiosonde IWV).
4.7 Statistics of GPT2w-based GPS IWV Bias (GPT2w-based GPS IWV – Interpolated AWS-based GPS IWV).
4.8 Summary of statistics of the GPS IWV using GPT2w.
4.9 GPS RO ZWD Bias Statistics.
4.10 The IWV bias Statistics.
4.11 Day and night time IWV Estimates from SONDE, GPS and GPS RO.
4.12 The bias Statistics for day and night GPS and GPS RO IWV.
5.1 Summary of monthly estimates of MSEF wet refractivity.
5.2 Surface Wet refractivity Residuals Statistics.
5.3 Bias Statistics for the MSEF Wet Refractivity Profile.
5.4 Summary of Statistics for the MSEF Approach.
5.5 The GIWRef and MSEF statistics showing the level of improvement in the GIWRef method and its correlation with GPS RO profiles
5.6 The statistics of GIWRef and MSEF wet refractivity profiles with respect to radiosonde profile.
<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>GPS Constellation (University of Colorado, 2015).</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Global Distribution of IGS Tracking Stations (International GNSS Service, 2013).</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>GPS-based Meteorological Observing Platforms.</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Slant and Zenith Path of GPS Signals Over a GPS Station.</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>GPS Signal Propagation in the Atmosphere. The actual ray path (in solid black line) is the path of the received signal from GPS satellite, while the idealised ray path (in red dotted line) is the path of the ideal signal in a no atmosphere situation.</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>Deduction of Temperature and Pressure at MSL Levels from Weather Stations to GPS Stations (Modified after Musa et al., 2011).</td>
<td>32</td>
</tr>
<tr>
<td>2.3</td>
<td>The configuration of FORMOSAT3/COSMIC Constellation (left) and 3 hrs GPS Radio Occultation coverage from COSMIC RO Mission (right) on 23rd February, 2013 (Modified after Yen et al., 2012).</td>
<td>37</td>
</tr>
<tr>
<td>2.4</td>
<td>Historical Development of GPS Occultation Missions (Guerova, 2013).</td>
<td>39</td>
</tr>
<tr>
<td>2.5</td>
<td>The Concept of GPS Radio Occultation.</td>
<td>41</td>
</tr>
</tbody>
</table>
2.6 Double Differencing Processing flow
Atmospheric/Ionospheric Excess Phase Estimation
(Schreiner et al., 2010).

2.7 GPS RO Observation Geometry.

2.8 A schematic Diagram Defining the Geometrical Variables
for a GPS Transmitter and a Receiver on-board LEO.

2.9 Bending Angle Processing from Excess Phase to
Atmospheric Parameter Retrieval.

2.10 Radio Occultation Retrieval Algorithm (Gobiet et al., 2003).

2.11 The concept of 2-D GPS tomography.

2.12 3D view of a GPS signal transecting a voxel. \(N_{\phi,\lambda,k}\) is the
wet refractivity at any point of spatial index (latitude (\(\phi\)),
longitude (\(\lambda\)) and altitude (\(k\))) (modified after Huang et al.,
2005).

2.13 Golden Section Search Method (GSSM) Algorithm
(modified after Lin et al., 2011).

2.14 Wet Refractivity Profiles from Radiosonde (red), GPS RO
(green) and Ground-based GPS (blue) Data at BANT on
DOY 02/08 epoch 00hr (left figure) and 12hr (right figure).

2.15 Scatter-plot for Comparing the GPS-derived \(N_w\) Against the
Radiosonde-derived \(N_w\).

3.1 The framework of the Research methodology

3.2 MyRTKnet Stations in Peninsular Malaysia. The bold-face
stations (written on white background) are GPS stations
with close meteorological stations (modified after Nordin et
al., 2009).

3.3 The Location Map of Selected MyRTKnet CORS,
Radiosonde and the IGS Stations.

3.4 The Study Approach.

3.5 A 24 hours (1-day) COSMIC Global Sounding Points
(green). The red points are the global radiosonde stations
(UCAR, 2014).

3.6 Map of the Study Area Showing the COSMIC Occultation
3.7 The Model-based Design for the GPS wet refractivity profiling.
3.8 The framework for GPS wet refractivity profiling
3.9 The Ground- and Space-based GPS Observation Domain.
3.10 Tropospheric Profiling Strategy.
3.11 The flow of Algorithm for the Modified Single Exponential Function (MSEF) Model.
3.12 The Process flow of the GIWRef Methodology for Wet Refractivity profile Retrieval.
4.1 Time Series of ZPD at BANT, GETI and PEKN.
4.2 Difference between ZPD_{IGS} and ZPD_{est} for the IGS Stations.
4.3 Mean daily Time Series of IWV from Interpolated AWS Meteorological Data at the three GPS Stations (BANT, GETI and PEKN respectively).
4.4 Time Series of the Interpolated (red) and the GPT2w Model (green) pressure (left panel) and temperature (right panel) at the three (3) AWS and the Corresponding GPS Stations (BANT, GETI and PEKN) respectively.
4.5 Time Series of the RMS Errors (blue) and Mean Daily Biases (red) of pressure (left panel) and temperature (right panel) at the three (3) GPS Stations (BANT, GETI and PEKN).
4.6 Daily Time Series of IWV from Radiosonde observation at KLIA, KTBR and KUAN (blue), GPS using interpolated surface meteorological data (red) and GPS using GPT2w Model (green) at the three GPS stations respectively.
4.7 Scatter Plots Comparing the IWV from GPT2w Model with the IWV from radiosonde Observation at the three Stations (BANT, GETI and PEKN).
4.8 Mean Daily Difference of the Estimated IWV.
4.9 Scatter Plots Comparing the IWV from GPT2w Model with the IWV from Interpolated AWS Observation at the three Stations (BANT, GETI and PEKN).
4.10 Lomb-Scargle Periodograms showing the GPS IWV Evolution in Peninsular Malaysia for 2008; the left and right spikes respectively represent the diurnal and the semi-diurnal signals of GPT2w (red) and interpolated AWS (blue) GPS IWV spectra.

4.11 Monthly Means of the Diurnal GPT2w-based GPS IWV Cycle, During the Southwest Monsoon (June–September; top panel) and the Northeast Monsoon (November–December; down panel).

4.13 Time series of ZWD derived from GPS RO, Radiosonde (KLIA, KUAN and KTBR) and Ground-based GPS (BANT, PEKN and GETI) Data in Peninsular Malaysia.

4.14 Time Series of IWV Derived from GPS RO, Radiosonde (KLIA, KUAN and KTBR) and Ground-based GPS (BANT, PEKN and GETI) Data in Peninsular Malaysia.

4.15 Scatter Plot for IWV Inter-comparison between GPS RO and Radiosonde (left) as well as Ground-based GPS (right) derived IWV.

4.16 Daily IWV Difference between GPS RO and each of the three Collocated Radiosonde as well as the Ground-based GPS Stations in Peninsular Malaysia.

4.17 Day (right panels) and Night (left panels) Variability of the Estimated IWV from GPS RO (red dots), the Ground-based GPS (blue line) and radiosonde (green line) Data.

4.18 Day (right panels) and Night (left panels) trend of the GPS RO (red dots) and the Ground-based GPS (blue dots) IWV biases from SONDE IWV.

4.19 The Time Series of Mean Daily Rainfall purple (bars), IWV from Radiosondes (green line), Ground-based GPS (blue line) and GPS RO (red dots) for 2008 over Peninsular Malaysia.

4.20 Time Series of Monthly Mean of Ground-based GPS (lines)/GPS RO (knotted lines) IWV and the Monthly
Cumulative Rainfall (bars) for 2008 over Peninsular Malaysia.

5.1a An extract of hourly Site-specific Wet Refractivity Profile from ground-based GPS data at the three MyRTKnet (GPS) Sites (BANT, GETI and PEKN) in Peninsular Malaysia for the months of January to March 2008.

5.1b An extract of hourly Site-specific Wet Refractivity Profile from ground-based GPS data at the three MyRTKnet (GPS) Sites (BANT, GETI and PEKN) in Peninsular Malaysia for the months of April to June 2008.

5.2a Hourly profiles of Site-specific Wet Refractivity Gradients from ground-based GPS data at the three MyRTKnet (GPS) Sites (BANT, GETI and PEKN) in Peninsular Malaysia for the months of January to March 2008.

5.2b Hourly profiles of Site-specific Wet Refractivity Gradients from ground-based GPS data at the three MyRTKnet (GPS) Sites (BANT, GETI and PEKN) in Peninsular Malaysia for the months of April to June 2008.

Figure 5.3a The Wet Refractivity profile map showing the Altitude-time Evolution of atmospheric water vapour over Station BANT for January to June 2008.

5.3b The Wet Refractivity profile map showing the Altitude-time Evolution of atmospheric water vapour over Station GETI for January to June 2008.

5.3c The Wet Refractivity profile map showing the Altitude-time Evolution of atmospheric water vapour over Station PEKN for January to June 2008.

5.4 Comparison of GPS-based and AWS-based Surface Wet Refractivity in Peninsular Malaysia.

5.5 Wet Refractivity Profile comparison for selected days in July and November 2008 at GPS Station BANT.

5.6 Wet Refractivity Profile comparison for selected days in July and November 2008 at GPS Station GETI.
5.7 Wet Refractivity Profile comparison for selected days in July and November 2008 at GPS Station PEKN.

5.8 Day and Night mean bias of the MSEF model for selected days in July and November 2008 at the three GPS Stations.

5.9 Scatter Plot for Wet Refractivity Profile Comparison for July 2008 at the three GPS Stations.

5.10 Scatter Plot for Wet Refractivity Profile Comparison for November 2008 at the three GPS Stations.

5.11 Wet Refractivity Gradient from MSEF day time (blue), Radiosonde day time (red), MSEF night time (green) and Radiosonde night time (purple) at the three GPS Stations.

5.12 Wet Refractivity bias Profile for selected days at 08hr and 20hr MST in July and November 2008 at the three GPS Stations.

5.13 MSEF Model and GPS RO Wet Refractivity Profile Comparison at BANT, GETI and PEKN in January 2008.

5.14 MSEF Model and GPS RO Wet Refractivity Gradient Comparison at BANT, GETI and PEKN.

5.15 MSEF Model Wet Refractivity Bias Profile at BANT and PEKN for various DOY and Epochs in January 2008.

5.16 GIWRef vs GPS RO Wet Refractivity Comparison at BANT, GETI and PEKN.

5.17 GIWRef vs GPS RO Wet Refractivity Gradient Comparison at BANT, GETI and PEKN.

5.18 GIWRef vs Radiosonde Wet Refractivity Comparison during Epochs 08hr MST (A) and 20hr MST (B) at BANT, GETI and PEKN.

5.19 GIWRef vs radiosonde Wet Refractivity Gradient Comparison during Epochs 08hr MST (A) and 20hr MST (B) at BANT, GETI and PEKN.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS</td>
<td>Automatic Weather Station</td>
</tr>
<tr>
<td>BDSS</td>
<td>BeiDou Satellite System</td>
</tr>
<tr>
<td>CDAAC</td>
<td>Cosmic Data Analysis and Archival Centre</td>
</tr>
<tr>
<td>CHAMP</td>
<td>Challenging Mini Payload</td>
</tr>
<tr>
<td>CORS</td>
<td>Continuous Operating Reference Station</td>
</tr>
<tr>
<td>COSMIC</td>
<td>Constellation Observing System for Meteorology, Ionosphere and Climate</td>
</tr>
<tr>
<td>DSMM</td>
<td>Department of Survey and Mapping Malaysia</td>
</tr>
<tr>
<td>ECMWF</td>
<td>European Centre for Medium Weather Forecast</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>GIWRef</td>
<td>GPS data Integration for Wet Refractivity</td>
</tr>
<tr>
<td>GLONASS</td>
<td>Globalnaya Navigatsionnaya Sputnikovaya Sistema</td>
</tr>
<tr>
<td>GM</td>
<td>Gravitational Constant</td>
</tr>
<tr>
<td>GMF</td>
<td>Global Mapping Function</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Navigation Satellite System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GPT</td>
<td>Global Pressure and Temperature</td>
</tr>
<tr>
<td>GRACE</td>
<td>Gravity Recovery and Climate Experiment</td>
</tr>
<tr>
<td>GWRMS</td>
<td>GPS wet refractivity monitoring system</td>
</tr>
<tr>
<td>IGS</td>
<td>International GPS Service</td>
</tr>
<tr>
<td>InSAR</td>
<td>Interferometry Synthetic Aperture Radar</td>
</tr>
<tr>
<td>IRNSS</td>
<td>Indian Regional Navigational Satellite System</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>IWV</td>
<td>Integrated Water Vapour</td>
</tr>
<tr>
<td>LEO</td>
<td>Low Earth Orbiter</td>
</tr>
<tr>
<td>LSP</td>
<td>Lomb-Scargle Periodogram</td>
</tr>
<tr>
<td>MMD</td>
<td>Malaysia Meteorological Department</td>
</tr>
<tr>
<td>MSEF</td>
<td>Modified Single Exponential Function</td>
</tr>
<tr>
<td>MyRTKnet</td>
<td>Malaysia Real-Time Kinematic network</td>
</tr>
<tr>
<td>NMF</td>
<td>Neill Mapping Function</td>
</tr>
<tr>
<td>NWM</td>
<td>Numerical Weather Model</td>
</tr>
<tr>
<td>NWP</td>
<td>Numerical Weather Prediction</td>
</tr>
<tr>
<td>PCO</td>
<td>Phase Centre Offset</td>
</tr>
<tr>
<td>PCV</td>
<td>Phase Centre variation</td>
</tr>
<tr>
<td>POD</td>
<td>Precise Orbit Determination</td>
</tr>
<tr>
<td>PPP</td>
<td>Precise Point Positioning</td>
</tr>
<tr>
<td>PWV</td>
<td>Precipitable Water Vapour</td>
</tr>
<tr>
<td>QZSS</td>
<td>Quasi-Zenith Satellite System</td>
</tr>
<tr>
<td>SAC-C</td>
<td>Satellite de Aplicaciones Cientificas-C</td>
</tr>
<tr>
<td>SHD</td>
<td>Slant Hydrostatic Delay</td>
</tr>
<tr>
<td>SPD</td>
<td>Slant Path Delay</td>
</tr>
<tr>
<td>SWD</td>
<td>Slant Wet Delay</td>
</tr>
<tr>
<td>TACC</td>
<td>Taiwan Analysis Centre for Cosmic</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UTLS</td>
<td>Upper Troposphere Lower Stratosphere</td>
</tr>
<tr>
<td>UTM</td>
<td>Universiti Teknologi Malaysia</td>
</tr>
<tr>
<td>VLBI</td>
<td>Very Long Baseline Interferometry</td>
</tr>
<tr>
<td>VMF</td>
<td>Vienna Mapping Function</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
</tbody>
</table>
WVR - Water Vapour Radiometer
ZHD - Zenith Hydrostatic Delay
ZWD - Zenith Wet Delay
ZPD - Zenith Path Delay
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Refractive index</td>
</tr>
<tr>
<td>c</td>
<td>Speed of light</td>
</tr>
<tr>
<td>v</td>
<td>Velocity</td>
</tr>
<tr>
<td>K_1, K_2, K_3</td>
<td>Refractivity constants</td>
</tr>
<tr>
<td>P_d</td>
<td>Partial pressure of dry atmosphere</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>Z_d^{-1}</td>
<td>Compressibility factors for dry components</td>
</tr>
<tr>
<td>Z_w^{-1}</td>
<td>Compressibility factors for wet component</td>
</tr>
<tr>
<td>R</td>
<td>Specific gas constant</td>
</tr>
<tr>
<td>R_v</td>
<td>Gas constant for water vapour</td>
</tr>
<tr>
<td>ρ</td>
<td>Partial pressure of gas</td>
</tr>
<tr>
<td>e, p_w, p_v</td>
<td>Partial pressure of water vapour (mbar)</td>
</tr>
<tr>
<td>L_1</td>
<td>GPS frequency of 1575.42 MHz</td>
</tr>
<tr>
<td>L_2</td>
<td>GPS frequency of 1227.60 MHz</td>
</tr>
<tr>
<td>d^S_t</td>
<td>Satellite clock delay</td>
</tr>
<tr>
<td>d_{tR}</td>
<td>Receiver clock delay</td>
</tr>
<tr>
<td>g_m</td>
<td>Mean gravity</td>
</tr>
<tr>
<td>dB</td>
<td>Signal strengths in decibel</td>
</tr>
<tr>
<td>$d^{ion}L_1$</td>
<td>Ionospheric delay on L<sub>1</sub> frequency</td>
</tr>
<tr>
<td>$d^{ion}L_2$</td>
<td>Ionospheric delay on L<sub>2</sub> frequency</td>
</tr>
<tr>
<td>d^{trop}</td>
<td>Tropospheric delay</td>
</tr>
<tr>
<td>dH_R</td>
<td>Receiver hardware delay</td>
</tr>
<tr>
<td>dH^S</td>
<td>Satellite hardware delay</td>
</tr>
</tbody>
</table>
\(d_{\text{mp}} \) - Multipath
\(d_{\text{sys}} \) - Synchronisation effect
\(d_{\text{rel}} \) - Relativistic effect
\(d_{\text{orien}} \) - Receiver and transmitter orientation correction
\(d_{\text{pcv}} \) - Antenna phase centre offset
\(\lambda \) - Wavelength
\(N \) - Carrier phase integer ambiguity
\(\varepsilon \) - Carrier phase signal noise
\(L_3 \) - Ionospheric-free linear combination
\(L_4 \) - Geometry-free linear combination
\(L_w \) - Wide-lane linear combination
\(S \) - Observed path
\(G \) - Geometry path
\(\nu \) - GPS signal propagation
\(\Delta L \) - Excess phase
\(\Delta L_1 \) - Excess path on \(L_1 \) frequency
\(\Delta L_2 \) - Excess path on \(L_2 \) frequency
\(\theta \) - Satellite elevation angles
\(m_{f_h}(\theta) \) - Hydrostatic (dry) mapping function
\(m_{f_w}(\theta) \) - Wet (non-hydrostatic) mapping function
\(H_S \) - Orthometric height of GPS station
\(h_t \) - Height correction
\(P_S \) - Surface pressure
\(\phi \) - Latitude
\(h \) - Ellipsoidal height
\(\Delta l_{f,a,b} \) - The difference of two observation equations from two (2) GPS stations
\(T_d \) - Dew temperature
\(T_m \) - Weighted mean temperature of the atmosphere
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_s</td>
<td>Surface temperature</td>
</tr>
<tr>
<td>K</td>
<td>Water vapour scale factor</td>
</tr>
<tr>
<td>H_w</td>
<td>Water vapour scale height</td>
</tr>
<tr>
<td>H_{tropo}</td>
<td>Troposphere height</td>
</tr>
<tr>
<td>H_p</td>
<td>Height of neutral atmosphere</td>
</tr>
<tr>
<td>RH</td>
<td>Relative humidity</td>
</tr>
<tr>
<td>e_s</td>
<td>Saturated vapour pressure</td>
</tr>
<tr>
<td>α</td>
<td>Signal bending angle</td>
</tr>
<tr>
<td>a</td>
<td>Atmospheric impact parameter</td>
</tr>
<tr>
<td>N</td>
<td>Refractivity</td>
</tr>
<tr>
<td>N_h</td>
<td>Refractivity for hydrostatic</td>
</tr>
<tr>
<td>N_w</td>
<td>Refractivity for wet</td>
</tr>
<tr>
<td>$N_w(h)$</td>
<td>Vertical profile of wet refractivity</td>
</tr>
<tr>
<td>ΔN_w</td>
<td>Wet refractivity gradient</td>
</tr>
<tr>
<td>nr</td>
<td>Fractional radius</td>
</tr>
<tr>
<td>q</td>
<td>Specific humidity in g/kg</td>
</tr>
<tr>
<td>P_f</td>
<td>Pressure at the top of troposphere</td>
</tr>
<tr>
<td>A_d</td>
<td>Diurnal anomaly of water vapour</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Overview of GPS observations</td>
<td>231</td>
</tr>
<tr>
<td>B</td>
<td>MATLAB Script for Ground-based GPS Wet Refractivity Profile using the Modified Single Exponential Function (MSEF) Model</td>
<td>242</td>
</tr>
<tr>
<td>C</td>
<td>MATLAB Script for Reading Zenith Tropospheric Delays and Calculates the Zenith wet Delays</td>
<td>245</td>
</tr>
<tr>
<td>D</td>
<td>Sub-Program to Generate Surface Pressure Using GPT2w and Calculate zenith wet delay</td>
<td>247</td>
</tr>
<tr>
<td>E</td>
<td>The monthly site-specific wet refractivity and gradient profiles from the ground-based GPS data using the MSEF model</td>
<td>248</td>
</tr>
<tr>
<td>F</td>
<td>Altitude-Time Evolution of the Wet Refractivity Field over Peninsular Malaysia</td>
<td>254</td>
</tr>
<tr>
<td>G</td>
<td>The linear correlation trend between the MSEF and radiosonde wet refractivity profiles</td>
<td>258</td>
</tr>
<tr>
<td>H</td>
<td>The wet refractivity gradients comparison at the three GPS station in Peninsular Malaysia</td>
<td>264</td>
</tr>
<tr>
<td>I</td>
<td>List of publications</td>
<td>267</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Atmospheric water vapour plays a crucial role in Earth’s energy and hydrological cycles due to its high instability. In general, as the air gets warmer, more water vapour is trapped in the atmosphere (Musa, 2007) and such vapour can be transported over a large spatial extent before releasing its latent heat during condensation of water vapour into precipitation, which dominates the structure of the tropospheric adiabatic heating (Lutz, 2008). This phenomenon gives the tropical climate dynamics much of its distinct flavour and complexity (Giannini et al., 2008). Due to its large variability both temporally and spatially, accurate measurement of atmospheric water vapour has been very challenging in meteorology, according to Wang et al. (2012), it can vary vertically on three orders of magnitudes from ~10 g/kg to less than 0.01 g/kg in mixing ratio.

Measurements of water vapour may be expressed in terms of the precipitable water vapour (PWV) or integrated water vapour (IWV). Atmospheric scientists have developed a variety of means for measuring the vertical and horizontal distribution of atmospheric water vapour. Figure 1.1 shows the various conventional meteorological platforms for measuring atmospheric water vapour. The radiosonde, a balloon-borne instrument package that sends temperature, humidity, and pressure data to the ground by radio signal, is the cornerstone of the operational analysis and prediction system at most operational weather forecast centres worldwide. Contemporary radiosonde instruments measure temperature and relative humidity with accuracies of ~0.2°C.
and ~3.5%, respectively, with diminishing performance in cold, dry regions (Rocken et al., 1993).

![Figure 1.1 Conventional Water Vapour Measurement Platforms and Sensors (MetService, 2013).](image)

Although the radiosonde measurements have been known to provide good vertical resolution of atmospheric profile, it still presents some serious disadvantages which include:

1. **Cost ineffectiveness:** Radiosondes are expensive, and this restricts the number of launches to twice daily at a limited number of stations.

2. **Poor spatio-temporal resolution:** Because of these restrictions, radiosonde measurements inadequately resolve the temporal and spatial variability of water vapour, which occurs at scales much finer than the spatial and temporal variability of temperature or winds (Deng, 2012).
Two other techniques used to routinely measure the atmospheric water vapour other than radiosonde, are Ground-based and Space-borne remote sensing (Bevis et al., 1992).

(i) Ground-based radiometry measures the background radiation emitted by atmospheric constituents. A water vapour radiometer (WVR) measures the intensity of the water vapour spectral line centred at 22,235 GHz, which can be converted into line-of-sight IWV. The WVR can provide high temporal resolution. However the WVR also has limitations because during heavy rainfall or observation close to sun, the WVR cannot measure the sky brightness temperature, in addition, it is also expensive (Deng, 2012). Hence only a few of these instruments are used today (Pacione et al., 2001).

(ii) Downward-looking WVRs are also found on board satellites to measure microwave emissions from the atmosphere and the Earth's surface. The application of downward-looking WVRs is greatly affected by the complications of the background surface brightness temperature and the results are limited to cloud-free conditions (Deng, 2012; Bevis et al., 1992). Otherwise satellite-based radiometry provides good spatial but poor temporal resolution.

These drawbacks suggest that traditional water vapour measurements are very coarse in time and space, thus, quality problems are usually prevalent with some being systematic. In view of this, the capability of observing or modelling water vapour in sufficient detail is limited (Bevis et al., 1992; Vedel, et al., 2008; De Haan et al., 2009; Bursinger, 2009; Anthes, 2011). Therefore, the search for a robust measurement system that could augment these limitations became essential hence, the use of Global Navigational Satellite System (GNSS) for meteorology.
1.1.1 GNSS Geodesy and the Atmospheric Dynamics

The GNSS consists of a constellation of satellites orbiting at about 20,200km above Earth’s surface, continuously transmitting signals that enable users to determine their three-dimensional (3D) position with global coverage. These include; the United State of America’s Global Positioning System (GPS), Russian’s Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS), European’s Galileo, Japanese Quasi-Zenith Satellite System (QZSS), China’s Beidou Satellite System (BDSS), Indian Regional Navigational Satellite System (IRNSS) and a host of others (Li et al., 2015).

However, GPS being the first type of GNSS infrastructure developed, first for military purpose and later made partly accessible to civilian users has been widely used by many professionals all over the world to support various applications such as navigation, surveying, mapping and engineering, due to its capability as an all-weather satellite-based positioning tool. Figure 1.2 represents the GPS constellation, which consists of 24 space vehicles (SVs) at 20,200 km altitude distributed in six circular orbital planes inclined at 55o to the equator and having four operational satellites in each plane.

![GPS Constellation](image)

Figure 1.2 GPS Constellation (University of Colorado, 2015).

The GPS tracking network was established to provide high precision navigation and geodetic positioning. Four satellites are visible anywhere in the
world, at any time. The network uses GPS receivers (which constitute the user segment) to track and decode the transmitted signals from the satellites. High quality dual frequency receivers are essentially needed for accurate estimation of tropospheric delay and in order to effectively eliminate ionospheric propagation delay (Li et al., 2015).

A global network of GNSS stations equipped with such high quality receivers is maintained by the International GNSS Service (IGS), Figure 1.3 depicts the global distribution of the network. The IGS, formerly referred to as the International GPS Service, presently has about four hundred and twenty seven (427) sites and three hundred and sixty (360) active stations worldwide equipped with dual frequency receivers as well as about two hundred (200) data processing and analysis centres (ACs) spread in over ninety (90) countries worldwide (Rizos, 2012). Using data from this global network of continuously operating GNSS stations, each AC computes products such as precise GPS ephemerides and adjusted clock parameters and recently, global ZPD product has been added for GPS meteorology. A list of IGS products is shown in Table 1.1.

Figure 1.3 Global Distribution of IGS Tracking Stations (International GNSS Service, 2013).
<table>
<thead>
<tr>
<th>Products Type</th>
<th>Orbit RMS</th>
<th>Orbit Interval</th>
<th>Clock RMS</th>
<th>Clock Interval</th>
<th>Latency Update intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broadcast</td>
<td><100cm</td>
<td>Daily</td>
<td><5ns</td>
<td>Daily</td>
<td>Real time</td>
</tr>
<tr>
<td>IGU Ultra-Rapid predicted half</td>
<td><5cm</td>
<td>15 min</td>
<td><5ns</td>
<td>15 min</td>
<td>Real time</td>
</tr>
<tr>
<td>IGU Ultra-Rapid observed half</td>
<td><3cm</td>
<td>15 min</td>
<td>>150ps</td>
<td>15 min</td>
<td>3-9 h</td>
</tr>
<tr>
<td>IGU Rapid</td>
<td><2.5cm</td>
<td>15 min</td>
<td><75ps</td>
<td>5 min</td>
<td>17-41 h Daily</td>
</tr>
<tr>
<td>IGU Final</td>
<td><2.5cm</td>
<td>15 min</td>
<td><75ns</td>
<td>30 s</td>
<td>12-18 days Weekly</td>
</tr>
</tbody>
</table>

Furthermore, the last decade of the 20th century witnessed the development of Low Earth Orbiting (LEO) satellite such as the German Challenging Mini-satellite Payload (CHAMP), Gravity Recovery and Climate Experiment (GRACE), for other geodetic applications such as gravity field determination (Hofmann-Wellehof and Moritz, 2005). The LEO satellites are equipped with GPS receiver to enable them track GPS satellite at a higher orbit in order to fix their in-orbit location, thus the concept of satellite-to-satellite tracking.

1.1.2 GPS Meteorology

The use of GPS to measure water vapour in the atmosphere for the application of weather predictions and study of climate change is currently referred to as GPS meteorology. The principle behind GPS meteorology was first introduced by Bevis *et al.* (1992) and has gained wide acceptability and usage since then with more areas of applications emerging. The continuous availability of GPS satellites and the increasing spatial distribution of the Continuously Operating Reference Stations (CORS) worldwide, coupled with the deployment of numerous Low Earth Orbiting (LEO) satellites carrying GPS receivers on-board have tremendously enhanced this concept of GPS atmospheric measurement platform. Figure 1.4 depicts the GPS meteorology platform.
GPS meteorology is sensitive to the total atmospheric delay of GPS radio signals and hence can provide atmospheric information (e.g. Hajj et al., 1997; Liou et al., 2007; 2010, Lin, 2010; Rizos, 2012). There are two main categories of GPS meteorology (Berbeneva et al., 2001; Bai, 2004), based on the reception of the GPS signals, these are the ground-based GPS meteorology (Figure 1.4, left column) and the space-based GPS radio occultation (Figure 1.4, right column).

Basically, in GPS data analysis, the total delay of GPS radio signals along the line of sight from each satellite are conventionally mapped to the zenith direction to yields a single average parameter known as the zenith total delay or zenith path delay (ZPD). Figure 1.5 shows the slant ray path in relation to the zenith direction.

The ZPD is a crucial parameter for meteorological and climatological study; for instance, it serves as an additional input parameter in NWP models for synoptic
meteorology, while for now-casting; it is a standard real time product used as a measure of the state of the atmosphere (Awange, 2012; Bosy et al. 2010). Nevertheless, the vertical variation of atmospheric refractivity is most desirable to meteorologists and atmospheric scientists. Realising this through GPS meteorology concepts has remained a subject of research over the last few years.

1.2 Problem Statement

The equatorial region (low latitude or tropical region), is exposed to intensive sunlight all year round due to the relatively low zenith distance of the sun in the region, with temperatures in the ranges of 20°c to 35°c (Musa et al., 2011). Since water vapour is responsible for atmospheric stabilisation, the warmer the air, the more water vapour it can hold to form droplets that eventually produce rain. This circumstance is responsible for the peculiar atmospheric dynamics and climatic uncertainty in the tropics (Lystad, 2011; Deng, 2012). This great uncertainty has hitherto limited the ability of global circulation models to properly resolve the atmospheric dynamics in the tropical region.

The need to address the challenges of GPS radio signal attenuation and its attendant effects on various applications due to the presence of water vapour in the atmosphere cannot be over emphasised. Application of GPS meteorology concept to study the variability of the water vapour to allow for proper modelling of its effects on positioning and navigation, as well as for weather and climate applications have been advanced in the last two decades. As a requirement for GPS meteorology, surface meteorological data (e.g. temperature and pressure) should be preferably obtained from in-situ measurements co-locating with or close to the GPS antenna (Bai, 2004; Musa et al., 2011; Norazmi, 2016). Availability of meteorological data in such a manner still remain a challenge especially in the data sparse equatorial region.

To address this challenge, gridded meteorological data are interpolated from NWP models, but this facility is yet to be adopted in most developing countries due to its cost. However, Böhm et al. (2015) has developed the Global Pressure and
Temperature (GPT2_1w) model for generating approximate meteorological information for GPS meteorology application. A detail study on the applicability of the model as recommended is yet to be explored. Investigation into the use of this model for GPS meteorology may not only benefits meteorological application but also geodesy to improve the up-component of GPS positioning.

Furthermore, the benefits of the ground-based GPS meteorology to weather and climate applications have been highlighted in the previous section. But the major challenge lies in the mapping of the slant observations to the zenith direction which has hindered its ability to adequately generate profiles of atmospheric refractivity. This explains why most meteorological institutions prefer assimilation of only the ZPD parameters from GPS data analysis. Therefore, how to generate atmospheric refractivity profile from GPS data analysis still remains a challenge.

Although, the technique of GPS tomography remain the most potent option, but the problem with the tomography solution as stated earlier, ranges from the imposition of constraint to the use of NWP models refractivity as a-priori in order to handle the ill-conditionness and rank deficiency of the coefficient matrix. This introduces errors of unknown sources and the solution is not an independent GPS solution.

In addition, the concept of site specific tropospheric profiling has been developed. The concept is still being investigated as a result of instability of the solutions as well as heavy computational task. There is the need to search for an approach that could deliver stable solution and be easily implemented. Therefore, Hurter and Maier (2013) have reconstructed atmospheric wet refractivity profiles and humidity by combining ZPD obtained from surface meteorological data, GPS, radiosonde profiles as well as wet refractivity from radio occultation profiles using least square colocation approach. Although the methodology was said to compare considerably well with radiosonde profiles but it is a solution from heterogeneous data background. It is essential to still investigate a GPS-only solution for retrieval of refractivity profile.
Fortunately, the space-based GPS radio occultation technique has been developed to provide the profiles of the atmosphere at a global scale, but the degradation of the L2 signal in the lower troposphere region due to high atmospheric moisture gradients, which causes atmospheric ducting, atmospheric multipath of GPS signals and low signal-to-noise ratios (Scherllin-Pirscher et al., 2011) also limit the capability of the occultation profiles to penetrate the lower troposphere. However, the bulk of atmospheric water vapour is located within the lower tropospheric region and this is responsible for the atmospheric variability which is known to be very high in the equatorial region. Furthermore, the spatio-temporal distribution of GPS RO events in equatorial region is still very sparse. Interestingly, recent improvements in retrieval models has enhanced the penetration of the GPS RO soundings to the nearest 1km layers hence, profiles are now available at altitudes as low as 100m in the lower troposphere (Huang et al., 2013). It will be remarkable therefore, to seek how best to utilise the GPS RO infrastructure in order to improve the ground-based GPS meteorology output.

Therefore, the key challenge drawn from the foregoing issues is how to adequately measure the vertical structure of tropospheric column water vapour and its spatial distribution. It is thus, essential to ascertain the extent to which GPS meteorology can be reliable for retrieving atmospheric wet refractivity profile especially in the data sparse equatorial region.

As this research attempt to address these challenges, a combination of the space-based GPS RO and ground-based GPS data may be beneficial to that effect. Thus, the following questions need to be properly addressed:

(i) How can GPS observations be utilised for sensing the variability of atmospheric water vapour?
(ii) Can ground-based GPS meteorology be used for wet refractivity profile retrieval without combining with data from other conventional meteorological systems or using tomography concept?
(iii) How may data from surface network of GPS receivers be combined with the space-based GPS radio occultation (RO) data for optimum estimation of atmospheric water vapour?

1.3 Aim and Objectives of the Study

The overall aim of this research is to investigate a methodology for GPS-based retrieval of atmospheric water vapour profile. Therefore, the following specific objectives were set towards achieving this aim:

(i) To evaluate ground-based GPS IWV while investigating alternative sources of surface meteorological data for GPS meteorology.

(ii) To investigate the sensitivity of space-based GPS RO data to water vapour trend.

(iii) To develop a GPS-based wet refractivity retrieval model through integration of the ground- and space-based GPS observations.

1.4 Scope and Limitations of the Study

This study focuses mainly on assessing the effects of tropospheric variability on GPS positioning so as to explore the potential of GPS meteorology in understanding the tropospheric dynamics and its uncertainty in equatorial region. Therefore, this research utilised data from GPS; focusing on measurements from L1 and L2 frequency bands only. However, measurements from other GNSS infrastructure such as GLONASS, Galileo, BDSS etc. was not considered in this study.

The study was conducted using GPS observations over Peninsular Malaysia. Surface meteorological data based on Automatic Weather Station (AWS)
measurements was obtained as auxiliary information; Radiosonde observations was acquired for benchmarking the GPS derived atmospheric parameters.

The ground-based GPS data was processed using Bernese version 5.0 software, while Matlab programming codes was developed to handle other processing strategies that are not supported by Bernese software. The RO data was accessed at the online archive of GPS radio occultation mission centres (e.g. Cosmic Data Analysis and Archival Centre (CDAAC) and the Taiwan Analysis Centre for Cosmic (TACC)).

Finally, a methodology for GPS-based wet refractivity retrieval using a combination of data from the ground-based GPS and the GPS RO was developed; the performance of the method developed was statistically evaluated. However, this study does not cover the application of the model in a specified case study (to study water vapour events).

1.5 Contributions and Significance of the Study

This research has investigated approaches for GPS-based wet refractivity retrieval. Thus, the applicability of GPT 2w model for GPS meteorology as well as the sensitivity of GPS RO data to water vapour variation in Peninsular Malaysia has been conducted.

A new approach for GPS wet refractivity profile retrieval have been realised in this study. This is the Modified Single Exponential Function (MSEF) model for site-specific ground-based GPS wet refractivity profile. In addition, the concept of GPS data Integration for Wet Refractivity (GIWRef) profile retrieval have also been realised towards improving the MSEF methodology. These constitute the key contribution of the research. This achievement could aid the development of GPS Wet Refractivity Monitoring System (GWReMS). The realisation of such system would be remarkable for understanding the equatorial monsoon system and also
contributes towards development of residual tropospheric error reduction model for improved positioning/navigation solutions.

Therefore, the significance of this study can be viewed from a tripodal perspective of geodesy/space science, meteorology/atmospheric science and hydrology/environmental science applications. This is envisaged from the following possible benefits derivable from the outcome of this study:

(i) Tropospheric ducting has remained a serious challenge in space infrastructure deployment and reception. The MSEF/GIWRef approaches realised in this study will allow the use of GPS CORS for tropospheric characterisation in space applications and telecommunication.

(ii) Also, the site-specific GPS approach (MSEF) would be of great need in air space management system. This is because; it has the potential for operational implementation for providing continuous information about water vapour distribution at the airport environments.

(iii) Furthermore, the new GPS wet refractivity model can be used to generate apriori refractivity values for GPS tomography. This will address the challenges of using external observations to tune tomography solution. It can also be useful for developing residual wet delay field to support precision GPS positioning.

(iv) The wet refractivity from the MSEF/GIWRef method could be useful for assimilation into NWP model for improved weather forecasting and possible early warning of severe events such as flood.

(v) The study outcome can support monitoring of equatorial water vapour system and of course the tropical monsoon system.
1.6 The Structure of the Thesis

This thesis is organised into six chapters. The introduction to the study and research definition has been detailed in Chapter 1; meanwhile, the summary of the remaining chapters is outlined subsequently.

Chapter 2 reviewed literatures on GPS observation for sensing atmospheric water vapour, it starts with an overview of atmospheric delay on GPS signals. Relevant studies on ground-based GPS meteorology, covering GPS observations and data processing strategies for accurate estimation of ZPD, the space-based GPS RO technique detailing the processing strategy for accurate estimation of atmospheric excess phase and the subsequent inversion to generate refractivity profiles were covered. Then, the approaches for ground-based GPS tropospheric profiling is also discussed before presenting a preliminary study on GPS wet refractivity profile retrieval

Chapter 3 presents the research methodology. Thus, a methodology for assessing GPS-derived IWV over Peninsular Malaysia is discussed, including the use of empirical tropospheric model (GPT2w) to generate approximate meteorological information for GPS meteorology. this is to achieve the Objective 1 of this study. Then, a methodology to evaluate the GPS RO-derived IWV was discussed. This is towards achieving the Objective 2 of this research. The chapter also detailed the formulation and retrieval strategy for the Modified Single Exponential Function (MSEF) approach for ground-based GPS wet refractivity retrieval, while the method for integrating the ground- and space-based GPS observations for tropospheric profiling was covered to achieve Objective 3 of the research.

Chapter 4, dwells on the results and discussions for the first two objectives. Thus, the results of the evaluation of ground-based GPS IWV as well as the space-based GPS RO IWV were discussed.
Chapter 5 presents the MSEF profile results and its performance evaluation. The validation of the GIWREF approach for improving MSEF wet refractivity profile retrieval is also covered.

Finally, Chapter 6 presents the conclusion and future outlook of the study.
REFERENCES

Bosy, J, W. Rohm and J. Sierny (2010). The Near-Real-Time Atmosphere Model Based on the GPS and the Meteorological Data From the Ground-based Augmentation System ASG-EUPOS International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 8, Kyoto Japan.

Cucurull, L., F. Vandenbergh, D. Barker, E. Vilaclara and A. Rius (2004). Three-Dimensional Variational Data Assimilation of Ground-Based GPS ZTD and

Kirchengast, G (2013). Space-based GPS data (Radio Occultation) and Climate. Gfg2 2nd Summer School, 1-3 July, GFZ Potsdam, DE Germany.

Lin, H. (2010). Assimilation of Hyperspectral Satellite Radiance Observations within Tropical Cyclones. A PhD Dissertation, Department of Meteorology, the Florida State University College of Arts and Sciences, USA.

