PALM OIL BASED EMULSION LIQUID MEMBRANE FORMULATION FOR SUCCINIC ACID EXTRACTION PERFORMANCE

NORELA BINTI JUSOH

UNIVERSITI TEKNOLOGI MALAYSIA
PALM OIL BASED EMULSION LIQUID MEMBRANE FORMULATION FOR SUCCINIC ACID EXTRACTION PERFORMANCE

NORELA BINTI JUSOH

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemical Engineering)

Faculty of Chemical and Energy Engineering
Universiti Teknologi Malaysia

AUGUST 2017
To my beloved parents, family, and friends
ACKNOWLEDGEMENTS

First and foremost, all praise be to Allah, the Almighty, the Benevolent for His blessings and guidance for giving me the inspiration to embark on this research and instilling in me the strength to see that this thesis becomes a reality. Many people have contributed to the creation and completion of this thesis.

I am especially indebted and grateful to my family members, especially my parents, Mr. Jusoh and Mrs. Mariam for their support and prayers during the years I pursued my PhD. Thank you so much for understanding me and always support whatever decision I have made.

I would like to express my gratitude to my supervisor, Associate Prof Dr. Norasikin binti Othman; her wide knowledge, her logical way of thinking, and her professional guidance provided a good basis for the present thesis. She provided refreshing insight, critical questions and common sense, which were vital for this project. Thank you for your patience, for pushing me to see beyond the results and for teaching me to be independent in my research. Thank you also for your advice which keeping me in the right path. I am also very thankful to my co-supervisor, Prof. Dr. Ani Idris for her kind guidance.

My sincere gratitude also goes to my colleagues: Raja Norimie, Norul Fatiha, Ooi Zing Yi, Nur Alina, Muhammad Bukhari, and Hilmi for their moral support in this research. To those who directly or indirectly assist me in this research, your kindness means a lot to me. Thank you very much. Not to forget, Mr. Mohd Latfi for helping me out during the HPLC analysis.

Last but not least, I would also like to extend my appreciation to Universiti Teknologi Malaysia for providing the facilities vital to the completion of this thesis. Besides, the financial support from Ministry of Higher Education are gratefully acknowledged.
Emulsion liquid membrane (ELM) process has received significant attention due to its simple operation and high selectivity to the target solute. One of the potential applications of ELM is in the separation and purification of succinic acid from fermentation process. The most important aspects for a successful ELM process are liquid membrane formulation and emulsion stability. In this study, the formulation of ELM was investigated to find a suitable carrier, diluent and stripping agent. The stability of water-in-oil (W/O) emulsion was studied by investigating the ratio of organic to internal phase, homogenizer speed, emulsifying time, and surfactant concentration. The stability of water-in-oil-in-water (W/O/W) was investigated by varying sorbitan monooleate (Span 80) and polyoxyethylene sorbitan monooleate (Tween 80) concentrations, agitation speed, and agitation time. Experiments on the effect of stripping agent concentration, treat ratio, carrier concentration, pH of external phase, modifier concentration, extraction time, and agitation speed were carried out in batch process to find the most influencing parameters for succinic acid extraction. The optimum recovery of succinic acid was studied using response surface methodology (RSM). The favourable conditions for ELM application in the succinic acid recovery was determined by varying the external feed concentration and potential of liquid membrane recycling. The results show that palm oil as a diluent, Amberlite LA2 as a carrier, and sodium carbonate (Na₂CO₃) as a stripping agent were selected in liquid membrane formulation. The most stable condition of W/O emulsion was obtained at 3:1 organic to internal phase ratio, 7000 rpm of homogenizer speed, 5 minutes of emulsification time, and 3% (w/v) of Span 80 concentration. The most stable W/O/W emulsion was obtained at 5% (w/v) Span 80, 1% (w/v) Tween 80, 300 rpm agitation speed, and 3 minutes agitation time. At the best condition of 0.01M Na₂CO₃, 1:3 treat ratio, 0.7M Amberlite LA2, 10% modifier, pH 2, and 3 minutes of extraction time, the extraction of succinic acid was up to 70%. The most significant parameters of stripping agent and carrier concentrations, and treat ratio were selected for RSM optimization study and the results show that 38.9% and 36.3% of succinic acid was recovered from aqueous solution and fermentation broth respectively. The ELM purification of succinic acid showed that at favourable condition, 84% of succinic acid was recovered with almost 100% purity and the liquid membrane is good up to the second cycle. The findings of this study show that ELM process is a promising technology to extract and recover succinic acid from bio-based production.
ABSTRAK

Proses membran cecair emulsi (ELM) telah mendapat perhatian yang sewajarnya berikutkan prosesnya yang mudah dan kememilikan yang tinggi terhadap bahan larut. Salah satu potensi aplikasi ELM ialah dalam proses pemisahan dan penulenan asid suksinik daripada proses penapaian. Perkara yang paling penting bagi menajakakan proses ELM adalah rumusan membran cecair dan kestabilan emulsi. Dalam kajian ini, rumusan ELM dikaji bagi mencari agen pembawa, pelarut, dan agen pelucutan yang sesuai. Kestabilan emulsi air-dalam-minyak (W/O) telah diselidik dengan mengkaji nisbah nisbah organik kepada fasa dalaman, kelajuan penghomogenan, masa pengemulsian, dan kepekatan surfaktan. Kestabilan air-dalam-minyak-dalam-air (W/O/W) telah disiasat dengan mengubah kepekatan kepekatan Span 80 dan Tween 80, kelajuan pengadukan, dan masa pengadukan. Eksperimen untuk kes kepekatan agen pelucutan, nisbah rawatan, kepekatan pembawa, pH fasa suapan, kepekatan pengubahsuai, masa pengelumpok, dan kelajuan pengadukan telah diajarkan dalam proses berkelompok untuk mencari parameter yang paling mempengaruhi terhadap pengekstrakan asid suksinik. Perolehan optimum asid suksinik telah dikaji dengan menggunakan kaedah gerak permukaan (RSM). Keadaan yang sesuai bagi aplikasi ELM bagi perolehan asid suksinik telah ditentukan dengan mengubah kepekatan suapan luaran dan keupayaan kitar semula membaca cecair. Keputusan menunjukkan bahawa minyak sawit sebagai bahan pencair, Amberlite LA2 sebagai pembawa, dan natrium karbonat (Na₂CO₃) sebagai agen pelucutan telah dipilih dalam rumusan membaca cecair. Keadaan W/O yang paling stabil didapati pada nisbah 3:1 bagi fasa organik kepada fasa dalaman, 7000 rpm kelajuan penghomogenan, 5 minit masa pengemulsian, dan 3% (w/v) kepekatan Span 80. Emulsi W/O/W yang paling stabil telah diperoleh pada 5% Span 80, 1% (w/v) Tween 80, 300 rpm kelajuan pengadukan, dan 3 minit masa pengadukan. Pada keadaan terbaik, iaitu 0.01M Na₂CO₃, 1:3 nisbah rawatan, 0.7M Amberlite LA2, 10% kepekatan pengubahsuai, pH 2, dan 3 minit masa pengelumpok, 70% asid suksinik telah diekstrak. Parameter yang paling mempengaruhi iaitu kepekatan agen pelucutan, pembawa, dan nisbah rawatan telah dipilih dalam kajian pengoptimuman menggunakan RSM, dan keputusan menunjukkan 38.9% dan 36.3% asid suksinik masing-masing telah diperoleh daripada larutan akuues dan air penapaian. Pada keadaan yang bersesuaian, penulenan asid suksinik menunjukkan 84% asid suksinik telah diperoleh dengan hampir 100% ketulenan dan membran cecair boleh digunakan sehingga kitar kedua. Penemuan kajian ini menunjukkan proses ELM adalah teknologi yang berpotensi untuk mengekstrak dan memperoleh asid suksinik daripada pengeluaran berasaskan bio.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research Background 1
1.2 Problem Statement 3
1.3 Objectives of Study 5
1.4 Research Scopes 5
1.5 Significance of Study 7
1.6 Research Outline 7

2 LITERATURE REVIEW

2.1 Succinic Acid 9
 2.1.1 Succinic Acid Market and Applications 10
 2.1.2 Production of Succinic Acid 13
 2.1.3 Downstream Processing of Bio-Based Succinic Acid 15
2.2 Emulsion Liquid Membrane

- **2.2.1 Emulsion Liquid Membrane Process**
- **2.2.2 Mass Transfer Mechanism of Liquid Membrane and Driving Forces**
 - 2.2.2.1 Type I Emulsion Liquid Membrane System
 - 2.2.2.2 Type II Emulsion Liquid Membrane System
- **2.2.3 Emulsion Liquid Membrane Component Selection**
 - 2.2.3.1 Extractant/Carrier
 - 2.2.3.2 Diluent/ Solvent
 - 2.2.3.3 Emulsifier/ Surfactant
 - 2.2.3.4 Stripping Agent
 - 2.2.3.5 Modifier
- **2.2.4 Demulsification**

2.3 Green Emulsion Liquid Membrane

2.4 Stability of Emulsion Liquid Membrane

2.5 Factor Affecting ELM Extraction Process

2.6 Optimization using Response Surface Methodology (RSM)

3 MATERIALS AND METHODS

- **3.1 Introduction**
- **3.2 Chemicals and Reagents**
- **3.3 Experimental Procedures**
 - 3.3.1 Preparation of Simulated Feed Solution
 - 3.3.2 Liquid Membrane Component Screening
 - 3.3.2.1 Carrier Screening
 - 3.3.2.2 Diluent Screening
 - 3.3.2.3 Stripping Agent Screening
 - 3.3.3 Preparation of Water in Oil (W/O) Emulsion
 - 3.3.4 Stability Study of Primary Emulsion (W/O)
3.3.5 Stability Study of Double Emulsion (W/O/W) 64
3.3.6 Emulsion Liquid Membrane Stability, Extraction and Recovery Study 65
3.3.7 Optimization using Response Surface Methodology 67
 3.3.7.1 Design of Experiment (DOE) 67
 3.3.7.2 Data Analysis and Optimization 68
3.3.8 Succinic Acid Fermentation 69
 3.3.8.1 Strain and Inoculum Preparation 70
 3.3.8.2 Fermentation Process 70

3.4 Analytical Procedures 71
 3.4.1 Succinic Acid Concentration Analysis 71
 3.4.2 pH measurement 72
 3.4.3 Emulsion Droplets Diameter measurement 73
 3.4.4 Viscosity Measurement 74

4 RESULTS AND DISCUSSION 75
4.1 Introduction 75
4.2 Liquid Membrane Formulation 76
 4.2.1 Carrier Selection 76
 4.2.2 Diluent Selection 79
 4.2.3 Stripping Agent Selection 81
 4.2.6 ELM Transport Mechanism of Succinic Acid 83
4.3 Stability of Emulsion 84
 4.3.1 Stability of Water-in-Oil Emulsion 85
 4.3.1.1 Effect of Organic to Internal (O/I) Ratio 86
 4.3.1.2 Effect of Homogenizer Speed 88
 4.3.1.3 Effect of Emulsification Time 91
 4.3.1.4 Effect of Surfactant Concentration 93
 4.3.2 Stability of Water-in-Oil-in-Water Emulsion 97
 4.3.2.1 Effect of Span 80 Concentration 97
4.3.2.2 Effect of Tween 80 concentration 99
4.3.2.3 Effect of Agitation Speed 101
4.3.2.4 Effect of Agitation Time 103

4.4 Emulsion Liquid Membrane Extraction 105
4.4.1 Effect of Stripping Agent Concentration 106
4.4.2 Effect of Treat Ratio 108
4.4.3 Effect of Carrier Concentration 110
4.4.4 Effect of pH of Feed Phase 113
4.4.5 Effect of Modifier 116
4.4.6 Effect of Extraction Time 118
4.4.7 Effect of Agitation Speed 120

4.5 Recovery Optimization using RSM 122
4.5.1 Analysis of Variance (ANOVA) for Response and Regression Model 124
4.5.2 Interaction Effect of Parameter 127
4.5.3 Optimization Response and Verification Test 133

4.6 Prospect of Recycling and Recovery Process 135
4.6.1 Effect of Feed Phase Concentration 135
4.6.2 Liquid Membrane Recycling 138

5 CONCLUSIONS AND RECOMMENDATIONS 139
5.1 Conclusion 139
5.2 Recommendations 140

REFERENCES 141
Appendices A – G 161 – 190
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Physical properties of succinic acid</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Market demand and applications of succinic acid</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Performance of various succinic acid purification methods</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Various carrier, diluent, stripping agents, and surfactants used in ELM study</td>
<td>33</td>
</tr>
<tr>
<td>2.5</td>
<td>Basic group amine carriers</td>
<td>37</td>
</tr>
<tr>
<td>2.6</td>
<td>Selection of HLB values of surfactant with appropriate application</td>
<td>40</td>
</tr>
<tr>
<td>2.7</td>
<td>Studies conducted on vegetable oil-based liquid membrane</td>
<td>46</td>
</tr>
<tr>
<td>2.8</td>
<td>Properties of some vegetable oils and conventional petroleum based diluents</td>
<td>47</td>
</tr>
<tr>
<td>2.9</td>
<td>Emulsion stability study performance</td>
<td>52</td>
</tr>
<tr>
<td>3.1</td>
<td>Chemical used in ELM and its properties</td>
<td>58</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical used in fermentation process</td>
<td>59</td>
</tr>
<tr>
<td>3.3</td>
<td>Emulsification condition for investigating primary emulsion stability</td>
<td>63</td>
</tr>
<tr>
<td>3.4</td>
<td>Dispersion condition for double emulsion stability study</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>Experimental range and levels of operating parameters</td>
<td>68</td>
</tr>
<tr>
<td>3.6</td>
<td>Overall design of experiment</td>
<td>68</td>
</tr>
<tr>
<td>3.7</td>
<td>Condition for organic acid HPLC measurements</td>
<td>72</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of diluent type on the extraction of succinic acid</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>The droplet size at various parameter study</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>Best condition from primary emulsion stability study</td>
<td>97</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of Span 80 concentration on W/O/W emulsion stability</td>
<td>98</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of Tween 80 concentration on W/O/W emulsion stability</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of agitation speed on W/O/W emulsion stability</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of agitation time on W/O/W emulsion stability</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Best condition for W/O/W stability study</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>pH of internal and external phases at different Na$_2$CO$_3$ concentration</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of Na$_2$CO$_3$ concentration on internal droplet breakage</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of treat ratio on emulsion breakage</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Effect of carrier concentration on emulsion breakage</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Effect of pH on emulsion breakage</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Effect of octanol concentration on emulsion breakage</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>Effect of extraction time on emulsion breakage</td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>Effect of extraction speed on emulsion breakage</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>Best operating condition in ELM extraction study</td>
<td></td>
</tr>
<tr>
<td>4.18</td>
<td>Box-Behnken design matrix along with the experimental results and the predicted values of succinic acid recovery using ELM</td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td>Analysis of variance (ANOVA) for quadratic model of succinic acid recovery by ELM</td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>The significance of the parameters in the model</td>
<td></td>
</tr>
<tr>
<td>4.21</td>
<td>Verification of optimized data for recovery study</td>
<td></td>
</tr>
<tr>
<td>4.22</td>
<td>Purity of succinic acid in the internal phase</td>
<td></td>
</tr>
<tr>
<td>4.23</td>
<td>Effect of re-use times on percentage recovery of succinic acid</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Molecular structure of succinic acid</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Various chemicals that can be derived from succinic acid by chemical conversion</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Reaction pathway from n-butane to maleic anhydride</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>A simplified scheme for downstream processing of fermentation products</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>A schematic flow diagram of an ELM process</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic of benzoic acid extraction by Type I ELM</td>
<td>26</td>
</tr>
<tr>
<td>2.7</td>
<td>Schematic of zinc extraction by Type II ELM</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>The mechanism of coupled transport in ELM</td>
<td>28</td>
</tr>
<tr>
<td>2.9</td>
<td>Types of carrier</td>
<td>36</td>
</tr>
<tr>
<td>2.10</td>
<td>Span 80 molecular structure</td>
<td>41</td>
</tr>
<tr>
<td>2.11</td>
<td>World production rate of major vegetable oils from 2010 to 2016</td>
<td>47</td>
</tr>
<tr>
<td>2.12</td>
<td>Vegetable oil yields per hectare per year in tonnes</td>
<td>48</td>
</tr>
<tr>
<td>3.1</td>
<td>Overall flowchart of experimental procedures</td>
<td>57</td>
</tr>
<tr>
<td>3.2</td>
<td>Flowchart of liquid membrane component screening</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td>Flowchart for emulsion liquid membrane extraction</td>
<td>66</td>
</tr>
<tr>
<td>3.4</td>
<td>Flowchart of succinic acid fermentation</td>
<td>71</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of carrier types for succinic acid extraction</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of Amberlite LA2 concentration on succinic acid extraction</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>Stoichiometric plot of equilibrium extraction of succinic acid using Amberlite LA2</td>
<td>79</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of stripping agent types on succinic acid extraction</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of Na₂CO₃ concentration on succinic acid extraction</td>
<td>83</td>
</tr>
</tbody>
</table>
4.6 Transport mechanism for succinic acid extraction in ELM

4.7 Effect of organic phase to internal phase ratio on emulsion stability

4.8 Microscopic images of emulsion at different organic phase to internal phase ratio (O/I) at 10 minutes

4.9 Effect of homogenizer speed on emulsion stability

4.10 Microscopic images of the emulsion for different homogenizer speed at 10 minutes

4.11 Effect of emulsification time on emulsion stability

4.12 Microscopic images of the emulsion at different emulsification time

4.13 Effect of surfactant concentration on emulsion stability

4.14 Microscopic images of the emulsion for different surfactant concentration (% w/v)

4.15 Microscopic image of emulsion at different Span 80 concentration at 10 minutes

4.16 Microscopic images of emulsion for different surfactant concentration at 10 minutes

4.17 Microscopic image of emulsion for different agitation speed at 10 minutes

4.18 Microscopic images of emulsion for different agitation time at 10 minutes

4.19 Effect of Na$_2$CO$_3$ concentration towards the performance of succinic acid extraction

4.20 Effect of treat ratio towards the performance of succinic acid extraction

4.21 Effect of carrier concentration towards the performance of succinic acid extraction

4.22 Emulsion viscosity at different carrier concentration

4.23 Effect of pH on succinic acid extraction

4.24 Concentration of succinic acid and ion at different pH

4.25 Effect of octanol concentration on succinic acid extraction

4.26 Two types of succinic anion

4.27 Emulsion viscosity at different octanol concentration

4.28 Effect of extraction time on succinic acid extraction

4.29 Effect of agitation speed on succinic acid extraction
4.30 Comparison of experimental and RSM predicted response values for the recovery of succinic acid

4.31 Pareto chart of each parameter coefficient for succinic acid recovery

4.32 The 3D surface plot of interaction between carrier concentration and stripping agent concentration for succinic acid recovery

4.33 The 3D surface plot of interaction between stripping agent concentration and treat ratio for succinic acid recovery

4.34 The 3D surface plot of interaction between carrier concentration and treat ratio for succinic acid recovery

4.35 HPLC chromatogram for succinic acid fermentation broth

4.36 Effect of external phase concentration on succinic acid recovery
LIST OF SYMBOLS

\([A]_f\) - Final acid concentration in the external phase
\([A]_i\) - Initial acid concentration in the external phase
\([A]_{\text{int}}\) - Acid concentration in the internal phase
\(c_i\) - Solute concentration
\(D_i\) - Diffusion coefficient of solute I
\(J_i\) - Diffusive mass transport flux of solute I
\(U_T\) - Rotor speed
\(V_{e,f}\) - Volume of external phase after extraction
\(V_{e,i}\) - Volume of external phase before extraction
\(V_{\text{int}}\) - Volume of internal phase
\(X_1, X_2, X_3\) - Independent variables
\(d_{32}\) - Sauter mean diameter
\(d_i\) - Droplet diameter
\(k_i\) - The corresponding mass transport coefficient
\(y_{i,\text{exp}}\) - Experimental response value
\(y_{i,\text{cal}}\) - Calculated response value
\(\beta_{i,i}, \beta_{i,j}\) - Regression coefficient
\(D\) - Dissociation constant
\(M\) - Molar
\(\text{pH}\) - Logarithmic measure of hydrogen ion concentration
\(\text{pKa}\) - Acid dissociation constant at logarithmic scale
\(\text{R}\) - Coefficient of correlation
\(\text{R}^2\) - Coefficient of determination
\(T\) - Temperature
\(w/v\) - Weight per volume
\(x\) - Direction of diffusion
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ</td>
<td>Gamma</td>
</tr>
<tr>
<td>δ</td>
<td>Hildebrand solubility parameter</td>
</tr>
<tr>
<td>Y</td>
<td>Predicted response</td>
</tr>
<tr>
<td>n</td>
<td>Number of sample</td>
</tr>
<tr>
<td>δ</td>
<td>Thickness of the diffusional layer</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>AARD</td>
<td>Absolute average relative deviation</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>BBD</td>
<td>Box-Behnken design</td>
</tr>
<tr>
<td>BLM</td>
<td>Bulk liquid membrane</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical oxygen demand</td>
</tr>
<tr>
<td>CAS</td>
<td>Chemical Abstracts Service</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>DOE</td>
<td>Design of Experiment</td>
</tr>
<tr>
<td>ELM</td>
<td>Emulsion liquid membrane</td>
</tr>
<tr>
<td>HLB</td>
<td>Hydrophilic-lipophilic balance</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
</tr>
<tr>
<td>LLE</td>
<td>Liquid-liquid extraction</td>
</tr>
<tr>
<td>LM</td>
<td>Liquid membrane</td>
</tr>
<tr>
<td>O/W</td>
<td>Oil-in-water</td>
</tr>
<tr>
<td>OFAT</td>
<td>One-factor-at-a-time</td>
</tr>
<tr>
<td>PB</td>
<td>Placket-Burman</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>SCP</td>
<td>Single cell protein</td>
</tr>
<tr>
<td>SLM</td>
<td>Supported liquid membrane</td>
</tr>
<tr>
<td>SSSF</td>
<td>Solid state fermentation</td>
</tr>
<tr>
<td>TR</td>
<td>Treat ratio</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>W/O</td>
<td>Water-in-oil</td>
</tr>
<tr>
<td>W/O/W</td>
<td>Water-in-oil-in-water</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Publications</td>
<td>161</td>
</tr>
<tr>
<td>B</td>
<td>Standard Curve for Concentration of Succinic Acid</td>
<td>162</td>
</tr>
<tr>
<td>C</td>
<td>Liquid Membrane Component Selection</td>
<td>163</td>
</tr>
<tr>
<td>D</td>
<td>W/O Emulsion Stability Study</td>
<td>164</td>
</tr>
<tr>
<td>E</td>
<td>W/O/W Emulsion Stability Study</td>
<td>181</td>
</tr>
<tr>
<td>F</td>
<td>Succinic Acid Extraction Study</td>
<td>183</td>
</tr>
<tr>
<td>G</td>
<td>Step by Step of Succinic Acid Extraction Procedures</td>
<td>187</td>
</tr>
<tr>
<td>H</td>
<td>F Critical Values</td>
<td>188</td>
</tr>
<tr>
<td>I</td>
<td>HPLC Chromatogram</td>
<td>190</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Liquid membranes (LMs) are liquids that separate two aqueous phases of the source (feed) and the receiving (product) phases and are immiscible in these phases. These separation systems are being explored widely in many fields such as organic and inorganic chemistry, wastewater treatment, chemical engineering, biomedical engineering, and biotechnology. Research and development activities within these fields involve various applications of LM technology, such as removal of organic compounds, recovery of precious metals, removal of toxic metals, gas separations, and recovery of pharmaceutical compounds and fermentation products.

Liquid membrane technology can be divided into three types which are bulk liquid membrane (BLM), emulsion liquid membrane (ELM), and supported liquid membrane (SLM). Currently, ELM is introduced as an alternative technique to the separation process. ELM process consist of four main stages which are emulsification, dispersion and extraction, settling, and demulsification. Firstly, water-in-oil (W/O) emulsion is formed by emulsifying strip solution and liquid membrane phase in the presence of surfactant. After that, the emulsion is dispersed into an external feed phase containing the solute of interest. When the extraction is complete, the emulsion phase is separated from the external phase, and demulsified to recover the membrane phase and the internal phase.
ELM fulfils the promise of providing several attractive characteristics such as relatively low energy consumption due to it is operated at ambient temperature and pressure (Othman et al., 2006; Chakrabarty et al., 2010), fast extraction and high efficiency due to large available mass transfer area (Kaminski and Kwapinski, 2000; Rajasimman and Karthic, 2010), potential for removing various toxic substances down to very low levels (Frankenfeld and Li, 1987; Skelland and Meng, 1999), high selectivity particularly with the use of carrier agents in the liquid membrane phase that react exclusively with the target solutes (Frankenfeld and Li, 1987; Bartsch and Way, 1996), and easy regeneration of the spent emulsions by a demulsification process (Li and Calo, 1992). With these advantages the ELM process becomes an alternative and a promising technology to apply in research and industry. ELM was invented by Li (1968) for hydrocarbon separations. Since then, the ELM process was widely studied for industrial separations such as in removing various types of metal ions (Zhao et al., 2010; Ahmad et al., 2012; Bjorkegren and Karimi, 2012; Othman et al., 2016), organic compounds (Yordanov and Boyadzhiev, 2004; Mortaheb et al., 2008; Ng et al., 2010; Lee and Kim, 2011; Jiao et al., 2013; Fang et al., 2016), and inorganic compounds (Marr and Koncar, 1993; Anitha et al., 2015; Zhang et al., 2016).

Recent development in the ELM process of organic compound is in downstream process of bio-succinic acid separation. This is due to the increasing demand of succinic acid as a building block chemical such as poly (1,3-propylene succinate), 1,4-butanediol, n-methyl pyrrolidinone, γ-butyrolactone, and tetrahydrofuran (Ranucci et al., 2000; Lee and Hyun, 2010; Lee, 2011). On the other hand, there are various types of application of succinic acid as a specialty chemical such as plant growth stimulants, food ingredients, detergents, chelators, and corrosion inhibitors (Zeikus et al., 1999). Therefore, with a wide range of applications, succinic acid demand is estimated to increase considerably. The current global production of succinic acid is 30,000 to 50,000 tons annually. In addition to that, the market price of succinic acid is US$ 2,400 – 3,000 per ton (Cheng et al., 2012).

However, the main drawback related to ELM is the emulsion instability which is governed by emulsion breakage. Membrane breakage in ELM systems involves the rupture of the emulsion and leakage of internal phase and extracted solute to the
external phase. This causes the decrease in the volume of the stripping phase (Ho and Kamalesh, 1992). As a result, the driving force for mass transfer, which is concentration gradient is reduced and increases the external feed concentration, thereby lowering the extraction efficiency. The instability can be attributed to the emulsion formulation in terms of the choice of carrier, diluent, surfactant, stripping agent, emulsification procedure, and process condition. The carrier should be selective to the target succinic acid solute while the stripping agent and the type of surfactant must be properly chosen to minimize the co-transport of water during the extraction process.

The diluent is very important, since it is the major component of the membrane phase and is crucial for emulsion stability. Diluent should have a low solubility in water in order to create the membrane phase, it should also provide high carrier solubility, high-boiling point, non-toxic and relatively cheap (Chakraborty et al., 2010; Othman et al., 2011). Most studies have commonly used kerosene as an organic diluent due to its low viscosity, readily available and non-polar character. However, kerosene is not considered environmentally friendly and harmful to human. Alternatively, palm oil (cooking oil) can be chosen as a renewable organic diluent, as it is readily available and may contain natural surface-active agents, which improve the stability of an emulsion (Chow and Ho, 1996). Besides that, palm oil possesses a low melting point, low specific gravity, high flash point and non-volatile. Most importantly, palm oil has a low dielectric constant (~3) which makes them non-polar and their aliphatic property allows them to be immiscible in the external phase. In addition, palm oil was proven to work well in extraction of heavy metal, dye, acetic acid, and phenol (Narayanan and Palanivelu, 2008; Muthuraman and Teng, 2009; Badgujar and Rastogi, 2011; Bjorkegren and Karimi, 2012).

1.2 Problem Statement

The ELM process is very unique and promising in the extraction of the targeted species due to high interfacial area for mass transfer, economical, low energy
consumption, simultaneous extraction and stripping process, efficient for low solute concentration, and requirement of small quantity of solvent (Hong et al., 2001; Othman et al., 2005; Gupta et al., 2013). Nevertheless, the various advantages of the ELM process still have been limited for industrial applications due to the emulsion globules are unstable against fluid shear.

The prepared emulsion should be sufficiently stable during the dispersion for solute extraction. Unstable emulsion resulted in emulsion breakage or swelling. Emulsion breakage cause release of the internal stripping solution and the extracted solute which reduce the extraction performance (Ho and Kamalesh, 1992; Wan and Zhang, 2002). Meanwhile, emulsion swelling resulting in destructive effect to the system because it can reduce membrane thickness, diluting the recovered solute, and decreasing the driving force for the extraction (Kulkarni et al., 2002; Park et al., 2004). On the contrary, too stable emulsion may result in difficulties during demulsification for solute recovery.

Many studies were carried out to investigate the emulsion liquid membrane stability (Gheorghe et al., 2008; Othman et al., 2009; Sulaiman et al., 2013; Bjorkegren and Karimi, 2015). Their study found that the primary emulsion can be stable, ranging from a few minutes to 24 days, depending on the emulsion formulation and condition of emulsification. Besides that, an appropriate condition also crucial to maintain the emulsion stability during the extraction process. Worst condition can result in 80% of emulsion breakage which is very undesirable (Othman et al., 2009; Hasan et al., 2009). Therefore, the effects of several factors on liquid membrane and emulsion stability were investigated in this study.

On the other hand, an important component of ELM, which is diluent must be properly chosen to promote an environmentally friendly process. An alternative vegetable oil diluent such as palm oil can be used to replace kerosene due to its readily available and possessing the characteristics of a good diluent. Therefore, the possibility of using palm oil as ELM component was investigated in the liquid membrane formulation for the extraction of succinic acid.
In order to obtain a stable emulsion and high performance of succinic acid extraction, the selectivity of the ELM formulation, including the carrier, stripping agent, and diluent is very important. Investigation of process parameters during the extraction also important in order to understand the process of succinic acid extraction using the ELM process. Besides that, the optimization process was carried out using response surface methodology (RSM) method to find the relation between the parameter of succinic acid recovery. In addition, for the prospects of economical process, the capability of recycling liquid membrane was also investigated.

1.3 Objectives of Study

The main focus of this study is to determine the possibility of developing the ELM purification of succinic acid using green formulation. In summary, the objectives of this study are:

i. To formulate green emulsion liquid membrane for succinic acid extraction;
ii. To study and optimize the factors affecting stability of emulsion liquid membrane;
iii. To investigate the affecting parameter of succinic acid extraction using an emulsion liquid membrane followed by recovery optimization using RSM.

1.4 Research Scopes

The aim of this study is to develop green ELM system for the extraction of succinic acid from fermentation broth. First of all, an emulsion liquid membrane was formulated to extract succinic acid. In order to formulate the ELM process, suitable components in the system are required for selectively extract succinic acid from the mixture. Therefore, the formulation was initiated by the screening of liquid membrane components, where liquid-liquid extraction (LLE) was carried out with few types of carriers (TOA, Amberlite LA-2, TDA), diluents (kerosene and palm oil) and stripping agents (NaOH, Na₂CO₃). This screening process can determine the appropriate
condition range for extraction of succinic acid from simulated solution. The composition of simulated solution is based on the actual fermentation broth.

Then, the stability of the ELM system was investigated by manipulating the organic to internal ratio (1 to 3), homogenizer speed (5000 to 12000 rpm), emulsifying time (3 to 15 minutes), and concentration of surfactant (1 to 10% w/v) during the emulsification stage. Span 80 was used as the surfactant in this study. Besides that, the stability of water-in-oil-in-water (W/O/W) was also studied by varying Span 80 concentration (1 to 7% w/v), Tween 80 concentration (0 to 4% w/v), agitation speed (200 to 500 rpm), and agitation time (1 to 7 minutes). The influence of these parameters on the emulsion droplets and globules size distribution was determined under the microscope.

Next, the application of liquid membrane for succinic acid extraction was studied. The parameters investigated were the effect of stripping agent concentration (0.005 – 0.01M), emulsion to external treat ratio (1:1 – 1:7), concentration of carrier (0.3 – 1.0M), pH of the external solution (1 – 7), modifier concentration (0 – 15%), extraction time (1 – 7 minutes), and effect of extraction speed (100 – 400 rpm). The influences of different parameters were examined using traditional one-factor-at-a-time (OFAT) approach. These parameters were investigated to determine the optimum condition of ELM process for succinic acid extraction. Meanwhile, the range of the most significant parameters was determined for the next objective.

Research on application of ELM for succinic acid covered the extraction study but very limited in product recovery aspect. Therefore, this study extend the research of ELM by considering recovery and enrichment ratio. Response surface methodology (RSM) was applied to optimize the influencing parameter on the succinic acid recovery. A set of statistical experimental design was created to optimize the process parameters including stripping agent concentration (0.005 – 0.035M), carrier concentration (0.5 – 0.9M), and treat ratio (1:1 – 1:5). A total of 15 experimental runs were required based on a three variable Box Behnken design created using Statistica 8.0 (Stat Soft). Equations of model obtained were validated through statistical tests known as the analysis of variance (ANOVA). Response surfaces were plotted to
determine individual and interactive effects of the test variables on the percentage recovery of succinic acid. The optimum condition obtained from RSM study was applied for succinic acid recovery from simulated and real broth.

In addition, to establish a favourable procedure for succinic acid recovery, the experiment was conducted to determine recovery performance and purity of simulated succinic acid from different external feed concentration (10 – 80 g/l) and real fermentation broth. On the other hand, the capability of recycling liquid membrane was carried out for the prospect of an economical process.

1.5 Significance of Study

Due to the increasing demand of succinic acid in many applications, it is essential to extract and recover succinic acid from biological production. ELM was implemented as promising alternative separation technology to the existing conventional process. It provides tremendous advantages of high transport efficiency due to the large interfacial area for mass transfer, simple operation, low energy consumption, simultaneous extraction and stripping process, efficient for low solute extraction, and low operating cost. Besides, the use of palm oil as diluent can promote a more environmental friendly process.

1.6 Research Outline

This thesis contains five chapters, which are presented in a sequential order. As an introduction, Chapter 1 presents a brief introduction of the research background, problem statement, research objectives and scopes, and significance of the study. Chapter 2 provides a review of succinic acid characteristics and applications, ELM technology, green ELM, ELM stability, ELM extraction of succinic acid, and optimization using RSM. In Chapter 3, the materials and methods including chemical
and reagents used, experimental procedure for liquid membrane component screening, emulsion liquid membrane extraction, RSM optimization, succinic acid fermentation, and analytical procedures were provided. Meanwhile, data obtained were analysed and discussed in Chapter 4. Finally, Chapter 5 suggests the conclusion and recommendation for future work.
REFERENCES

Permeation and Stripping. Separation and Purification Technology, 63(1), 231-238.

