RADIATION DOSES, CANCER RISKS AND OPTIMIZATION PROCESS OF ROUTINE COMPUTED TOMOGRAPHY (CT) EXAMINATIONS IN JOHOR

MUHAMMAD KHALIS BIN ABDUL KARIM

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Physics)

Faculty of Science
Universiti Teknologi Malaysia

MARCH 2017
DEDICATION

To my beloved parents & wife...
ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious, the most Merciful. All the praises and thanks be to Allah.

First and foremost, I would like to thank my advisor, Assistant Prof. Dr Suhairul bin Hashim. I am extraordinarily fortunate to have Dr. Suhairul as my advisor, mentor and friend. Suhairul has endlessly encouraging, patient and supportive with me throughout my graduate education and I have no doubt that he will continue to serve as a mentor and guide through my future endeavours.

I would also like to thank all of the ‘radiation’ staff in Department of Diagnostic Imaging of public hospital in Johor especially Hospital Sultanah Aminah and Hospital Permai. My special thanks exclusively to Head Radiologist of Johor state, Dr Hjh Khatijah binti Abu Bakar for preparing me with the knowledge to undertake this research. Working with theComputed Tomography team and the QA group was truly enriching experience. The clinical teams truly have a diverse knowledge base and collaborative mind-set that was an invaluable asset to my research works. I would especially like to extent my sincere gratitude to Izwan Che Pi and Diyana Shariff for their unwavering support, encouragement and guidance.

I am grateful to my research group in UTM, co-authors and friends: Nur Ashiqin, Ang Wee Chin, Nasuha, Afiq, Omeje Maxwell, Mhareb, Yahaya, Hayder, Ali Ageel, Akhmal and many more. And the trainees in the lab who endured endless hours of analysing organ dose on behalf of my research; Afiq Radzwan, Kamarul, Azhar and Hafiz. I would also like to thank Prof Dr David Bradley and Dr Akmal Sabaruddin, as my imaging mentor and lead me to finish my final stage of the research. My deepest thanks to Medical Physics group in Agensi Nuklear Malaysia, Mr Bazli, Mrs Norizza, Miss Asmaliza and Mrs Yati for guiding me throughout the process of calibrating TLDs.

And lastly, I would like to thank my family for their steadfast belief that despite their incomprehension about what I do, which is to change the world. I am indebted to my parents and parents-in law, Abdul Karim, Roshayati and Roaini for their tenacious encouragement. I am grateful to my wife, Nurul Farehah for always supporting me, for being always taking care of our childrens; Faris, Harith, Hasif and Umair and for continuously asking me to complete my research quickly. I am eternally grateful for their love and encouragement throughout my life. And for all my dearie siblings, Khairul Anuar, Nor Suhaila, and Zulkhairi, I know they would have been proud of their big brother. Thank you for the endless support.
ABSTRACT

The concerns towards radiation–induced cancer from Computed Tomography (CT) examinations have led to the encouragement of CT dose monitoring and further optimization of the scanning parameters. Therefore, in this study, radiation dose from CT scan and its related risks to the patients from current CT practice were analysed. In the first stage, this thesis started the discussion on the level of current knowledge among radiology personnel towards CT radiation risk and its optimization. There is no significant difference of the current knowledge of CT optimization between the two professions of interest herein, the medical and the allied health groups. A CT dose survey was conducted in 8 CT facilities for a 6-month period, encompassing data for 1024 patients with various CT examinations that included regions of the abdomen, brain and thorax. CT-EXPO (Version 2.3.1, Germany) software was used to validate the dose information such as CT Dose Index (CTDI) and dose-length product (DLP). The proposed Diagnostic Reference Levels (DRLs) were indicated by rounding off the third quartiles (Q3s) of whole dose distributions for weighted CTDI (CTDIw) (in mGy), volume CTDI (CTDIvol) (in mGy) and DLP (in mGy.cm) and their values were; 16, 17, and 650 respectively for CT abdomen; 70, 70, and 1030 respectively for CT Brain and 15, 16, and 670 respectively for CT thorax. In the second stage, the cancer risks of the CT examinations were estimated and the calculation was based on International Commission on Radiation Protection (ICRP) Publication 103 Report and Biological Effects of Ionizing Radiation (BEIR) VII Report. Based on BEIR VII recommendation, the study discovered that the lifetime attributable risks (LARs) of 100,000 populations who underwent abdominal CT examinations for stomach cancer were 2.3 for male and 1.0 for female; while for colon cancer the LARs were 2.3 for male and 0.7 for female. The effectiveness of optimization of CT parameters and application of shielding in routine CT procedures were evaluated. Of 7 protocols (P1 – P7), the k factors were constant for all protocols and decreased by ~8% compared to the universal k factor. It is of interest that k factors from CT-EXPO were found to vary between 0.010 for protocol P5 and 0.015 for protocol P3 due to inconsistency in tube potential and pitch factor. The application of breast shielding to routine CT thorax protocols reduced by 14% the breast’s equivalent dose. Hence, this study supports the importance of initiating protection and optimization processes of routine CT examinations in order to offer safer imaging practices.
Kebimbangan terhadap kanser teraruh sinaran daripada pemeriksaan tomografi berkomputer (CT) mengarahkan kepada penggalakan pemantauan dos CT dan pengoptimuman parameter imbasan. Oleh itu, dalam kajian ini, dos sinaran daripada imbasan CT dan risiko yang berkaitan kepada pesakit daripada amalan CT semasa telah dianalisis. Pada peringkat pertama, tesis ini memulakan perbincangan mengenai tahap pengetahuan dan kesedaran di kalangan kakitangan radiologi terhadap risiko sinaran CT dan pengoptimumannya. Tidak ada perbezaan yang signifikan mengenai pengetahuan semasa bagi pengoptimum CT antara dua profesion yang berkaitan, perubatan dan kesihatan bersekutu. Kajian dos CT telah dijalankan di 8 kemudahan CT untuk tempoh 6 bulan, merangkumi data bagi 1024 pesakit dengan pelbagai pemeriksaan CT yang termasuk kawasan abdomen, kepala dan toraks. Perisian CT-EXPO (Versi 2.3.1, Jerman) telah digunakan untuk kesahan maklumat dos seperti indeks dos CT (CTDI) dan hasil darab panjang dos (DLP). Aras Rujukan Diagnostik (DRLs) yang dicadangkan telah ditunjukkan dengan membandingkan kuartil ketiga (Q3) taburan dos keseluruhan bagi pemberat CTDI (CTDIw) (dalam mGy), isipadu CTDI (CTDIvol) (dalam mGy) dan DLP (dalam mGy.cm) dan nilainya; masing-masing ialah 16, 17, dan 650 untuk CT abdomen; masing-masing ialah 70, 70, dan 1030 untuk CT otak dan masing-masing ialah 15, 16, dan 670 untuk CT toraks. Di peringkat kedua kajian, anggaran dan kiraan risiko kanser daripada pemeriksaan CT berdasarkan kepada Laporan Suruhanjaya Antarabangsa Perlindungan Sinaran (ICRP) Penerbitan 103 dan Laporan Kesan Biologi Sinaran Mengion (BEIR) ke-VII. Berdasarkan cadangan oleh BEIR-VII, kajian ini merangkumi risiko agihan jangkahayat (LARs) 100,000 populasi yang menjalani pemeriksaan CT abdomen untuk kanser perut ialah 2.3 bagi lelaki dan 1.0 bagi perempuan; sementara LARs bagi kanser kolon ialah 2.3 bagi lelaki dan 0.7 bagi perempuan. Keberkesanan pengoptimuman parameter CT dan aplikasi alat pelindung dalam prosedur CT rutin dinilai. Daripada 7 protokol (P1 - P7), faktor k adalah malar untuk semua protokol dan berkurang ~ 8% berbanding dengan faktor k semesta. Didapati kesemua faktor k daripada CT-EXPO berubah antara 0.010 bagi protocol P5 dan 0.015 bagi protocol P3 disebabkan oleh ketidaksamaan dalam keupayaan tiub dan faktor jarak. Aplikasi pelindung payudara kepada protokol CT toraks rutin berkurang kepada 14% dos setara payudara. Oleh itu, kajian ini menyokong kepentingan memulakan perlindungan dan proses pengoptimuman dalam pemeriksaan CT rutin untuk menawarkan amalan pengimejan yang lebih selamat.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION | | 1 |
1.1 Overview		1
1.2 Background of study		3
1.3 Problem statement and motivation		8
1.4 Research Objectives		10
1.5 Scope of study		10
1.6 Thesis outlines		11

2 LITERATURE REVIEW | | 12 |
2.1 Introduction		12
2.2 The Fundamental physics		12
2.2.1 Production of X-rays		13
2.2.2 Photon-Matter interaction		18
2.2.2.1 Rayleigh scattering		20
2.2.2.2 Compton scattering 20
2.2.2.3 Photoelectric absorption 22
2.2.2.4 Pair production 23
2.2.2.5 Photon interaction in CT imaging 24

2.2.3 X-ray detection in CT 27

2.3 Principles of CT technology 29
2.3.1 Generations of CT scanner 33
2.3.1.1 First generation 34
2.3.1.2 Second generation 34
2.3.1.3 Third generation 35
2.3.1.4 Fourth generation 36

2.3.2 Modes of acquisition 36
2.3.2.1 Axial data acquisition 37
2.3.2.2 Helical data acquisition 38

2.4 Application of CT 38

2.5 Current dosimetry in CT 40
2.5.1 Computed Tomography Dose Index-100 (CTDI_{100}) and Weighted CTDI (CTDI_{w}) 41
2.5.2 Volume CTDI (CTDI_{vol}) 43
2.5.3 Dose-length Product (DLP) and Effective dose (E) 44

2.6 Factors that influence CT exposure 44
2.6.1 Equipment-related factors 45
2.6.1.1 Beam filtration 45
2.6.1.2 Bow-tie filter 46
2.6.1.3 Beam Collimation 46
2.6.1.4 Detector configuration 47

2.6.2 Application-related factors 49
2.6.2.1 Brooks Formula 49
2.6.2.2 Tube Current – Time Product 50
2.6.2.3 Tube Potential 50
2.6.2.4 Reconstructed CT slice thickness 51

2.6.3 Clinical CT considerations 52

2.7 CT optimization techniques 53
2.7.1 Automatic Tube Current Modulation (ATCM) 53
2.7.2 Optimal Tube Potential 55
2.8 CT Image Quality 56
2.9 Computational Anthropomorphic Phantom 57
 2.9.1 XCAT hybrid phantoms 58
 2.9.2 ICRP 110 phantoms 59
 2.9.3 ImPACT stylized phantom 59
 2.9.4 CT-EXPO stylized phantom 60
2.10 CT dose survey 60
 2.10.1 Diagnostic Reference Levels (DRLs) 61
 2.10.2 Tissue weighting factor 64
 2.10.3 Effective dose based DLP method 65
 2.10.4 Organ doses measurement 66
2.11 Radiation risk 68
 2.11.1 Risk models for radiation-induced cancer 69
 2.11.2 Review of radiation risks estimation 71

3 METHODOLOGY 74
3.1 Introduction 74
3.2 CT scanner 75
 3.2.1 SIEMENS (SOMATOM Definition AS+ 76
 3.2.2 SIEMENS (SOMATOM EMOTION) 77
3.3 Patient’s Dosimetry Calculator (CT-EXPO) 78
 3.3.1 Modules of CT-EXPO 80
 3.3.2 Calculation module: Step by step 81
3.4 Survey study 82
 3.4.2 CT Dose Survey 85
 3.4.3 Characterization of CT scanner 86
 3.4.4 Validating CTDI 88
 3.4.5 Data integrity and statistical option 89
3.5 Cancer risk estimation 90
 3.5.1 Cancer risk estimation based ICRP method 91
 3.5.2 Cancer risk estimation based on patient’s weight (CT abdomen) 92
 3.5.3 Estimating LAR of CT abdomen examinations 94
3.5.4 BEIR VII risk coefficient (Third-order polynomial) method 96

3.6 CT Optimization study 97
 3.6.1 Alderson-RANDO® anthropomorphic phantom 98
 3.6.2 Dosimeter for measurement - TLD-100 100
 3.6.3 Modification of CT thorax protocols 101
 3.6.4 Phantom organ dose measurements 103
 3.6.5 GMctdospp for dose simulation 105

4 RADIATION DOSE FROM CURRENT CT PRACTICE 107
 4.1 Introduction 107
 4.2 Radiology personnel survey 108
 4.2.1 Demography of subjects 108
 4.2.2 Awareness and knowledge of CT dose 110
 4.2.3 Knowledge on current CT technology 112
 4.2.4 Conclusion of the survey 114
 4.3 CT Dose survey: An overview 115
 4.3.1 Sample size 116
 4.3.2 Patient characteristics 119
 4.3.3 Scan parameters 120
 4.3.4 Dose output 124
 4.4 Assessing Diagnostic Reference Levels (DRLs) 126
 4.4.1 Dose distribution 126
 4.4.2 Proposing local DRL values 130

5 CANCER RISKS ESTIMATION IN CT 134
 5.1 Introduction 134
 5.2 Cancer risk estimation based ICRP method 135
 5.2.1 Organ doses measurement 137
 5.2.2 Risk assessment based on type of examinations 139
 5.3 The lifetime attributable risk (LAR) of CT abdomen 142
 5.4 Radiation risks from CTU examination 145
 5.4.1 Patient characteristics and dose information 146
 5.4.2 Cancer risk assessment 148
EMERGING DOSE OPTIMIZATION PROCESS IN CT

6.1 Overview

6.2 Evaluation of specific k coefficient

- **6.2.1** Organ doses measurement from TLD-100 and CT-EXPO
- **6.2.2** Effective dose based on ICRP 103, CT-EXPO and DLP method
- **6.2.3** Comparison with GMctdospp calculation
- **6.2.4** Outcome of the results

6.3 Breast dose optimization during CT thorax examination

- **6.3.1** Breast absorbed dose
- **6.3.2** Effectiveness of the optimization process
- **6.3.3** Assessment of Image Quality
- **6.3.4** Summary of the finding

CONCLUSIONS AND SUGGESTIONS

7.1 Conclusions

7.2 Suggestions

- **7.2.1** Size-specific dose estimates
- **7.2.2** Low dose simulation for optimization techniques
- **7.2.3** Iterative reconstruction algorithm

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>History of the progression of CT scans technology</td>
<td>32</td>
</tr>
<tr>
<td>2.2</td>
<td>Brief history on the developments of CT dosimetry</td>
<td>41</td>
</tr>
<tr>
<td>2.3</td>
<td>Current DRLs of Europe, Germany, UK, Malaysia and etc. based on latest national dose survey.</td>
<td>63</td>
</tr>
<tr>
<td>2.4</td>
<td>The comparison of tissue weighting factor from ICRP 106 and ICRP 103 publication.</td>
<td>64</td>
</tr>
<tr>
<td>2.5</td>
<td>Conversion of the k factors for adults and children of various ages based on the region of CT examinations.</td>
<td>66</td>
</tr>
<tr>
<td>2.6</td>
<td>Variation of techniques used by researchers in measuring the organs’ effective dose.</td>
<td>67</td>
</tr>
<tr>
<td>2.7</td>
<td>Selected CT risk modeling studies providing cancer risk estimation from CT examinations.</td>
<td>73</td>
</tr>
<tr>
<td>3.1</td>
<td>Details of facilities, manufacturer, brands and configurations of detector and installation year used in the five hospitals</td>
<td>75</td>
</tr>
<tr>
<td>3.2</td>
<td>Technical specification of SOMATOM Definition AS+ scanner</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>Technical specification of the SOMATOM Emotion 16 scanner</td>
<td>78</td>
</tr>
<tr>
<td>3.4</td>
<td>The description of the toolbar function</td>
<td>81</td>
</tr>
<tr>
<td>3.5</td>
<td>Sample of the questions in the questionnaire survey form</td>
<td>84</td>
</tr>
<tr>
<td>3.6</td>
<td>Details of the hospital used for cancer risk estimation based on ICRP recommendation.</td>
<td>91</td>
</tr>
<tr>
<td>3.7</td>
<td>Cancer risk coefficient based on BEIR VII report</td>
<td>97</td>
</tr>
</tbody>
</table>
3.8 Routine and modified CT thorax acquisition parameters use in this study divided into 5 type including use with and without ATCM function.

4.1 The demographic information obtained from the questionnaire.

4.2 Mean score value of radiation awareness among respondents

4.3 Mean score in percentage concerning knowledge of dose in CXR equivalent for particular procedures

4.4 Percentage of correct answers by respondents regarding ATCM system

4.5 Percentage of correct answers by respondents regarding pitch factor

4.6 Mean score for all correct responses on knowledge of CT technology.

4.7 The number of the sample based on the region of examinations and research site.

4.8 The distribution of samples based on sex and ethnic of patients

4.9 Mean value of the patient characteristics in this survey

4.10 Mean value of computed tomography acquisition parameters for different hospitals and examinations

4.11 Mean computed tomography dose exposure for different hospitals and type of examinations

4.12 Proposed DRLs based on third quartile value of this work.

4.13 A comparison between a proposed DRLs in this study with National DRLs in 2013 and other DRLs.

5.1 Selected CT parameters and radiation dose information

5.2 Estimation of organ cancer risk according to the type of examinations

5.3 Data on patient characteristics of the 60 subjects included in this study.

5.4 Statistical analysis of patient dose information

5.5 LAR of stomach and colon based on gender and age.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>The demographic of patient characteristics in this work</td>
<td>147</td>
</tr>
<tr>
<td>5.7</td>
<td>Statistical information on CT scan radiation dose</td>
<td>148</td>
</tr>
<tr>
<td>6.1</td>
<td>Organ equivalent dose from TLD measurement</td>
<td>157</td>
</tr>
<tr>
<td>6.2</td>
<td>A statistical comparison of effective dose from different protocols and method used.</td>
<td>158</td>
</tr>
<tr>
<td>6.3</td>
<td>A comparison between direct measurement values with GMctdospp simulation values</td>
<td>159</td>
</tr>
<tr>
<td>6.4</td>
<td>Mean absorbed dose and related ratio based on the position of the breast.</td>
<td>163</td>
</tr>
<tr>
<td>6.5</td>
<td>Analysis on measured radiation dose and outlook for the effectiveness of dose reduction</td>
<td>164</td>
</tr>
<tr>
<td>6.6</td>
<td>Analysis on the image quality of ROI (breast) to outlook the image noise</td>
<td>168</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>CT images of a neck. The upper right side is axial images of CT neck and it is followed by coronal images in lower right side. On the left upper side is a 3D image and below on the left side is a sagittal image of CT neck (Workstation images).</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>G. F. Hounsfield with his first commercial CT scanner, EMI Mark I (Buzug et al., 2009).</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>The number of CT scans examinations performed in the US (Smith-Bindman et al., 2009)</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Effective dose values from radiological examinations were based on the type of examinations, modality used and region of scanning (Hayton et al., 2013).</td>
<td>5</td>
</tr>
<tr>
<td>1.5</td>
<td>Patients suffering from epilation due to CT brain perfusion examinations (New York Times Magazine, 2009)</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>The LNT model uses for estimate risk from low dose exposure (National Academy of Sciences, 2006)</td>
<td>7</td>
</tr>
<tr>
<td>1.7</td>
<td>The schematic diagram of thesis problem statement</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>An example of CT spectrum of a tungsten anode at acceleration voltages in the range of $U_a = 80 – 140$ kV. The anode angle is 10° with 2 mm thickness of aluminium filtration has been applied. The intensity versus wavelength plot displays the characteristics line as well as the continuous $bremsstrahlung$. As illustrated, a: indicates $bremsstrahlung$ while b. characteristic emission. It has been observed that CT spectrum may also influence organ absorbed dose in patients (Buzug, 2008).</td>
<td>17</td>
</tr>
<tr>
<td>2.2</td>
<td>The theory of monochromatic X-ray attenuation. The photons are running through an object of thickness $\Delta \eta$ with a constant attenuation coefficient, μ. Equal parts of the absorbing medium attenuate equal fractions of the radiation.</td>
<td>19</td>
</tr>
</tbody>
</table>
2.3 Mass attenuation coefficient for different materials including bone and soft tissues versus the incident radiation energy. For absorption processes above the K-shell, the curve shows a fine line structure (Berger et al., 1998).

2.4 Principles of photon-matter interaction. The Rayleigh and Compton scattering characteristic are illustrated as are the photoelectric and pair production absorption processes (Buzug, 2008).

2.5 Mass attenuation coefficient, \(\mu / \rho \), versus incident photon energy for lead (left) and water (right). As observed, the diagnostic energy range of CT, \(E = 50 \text{ keV} - 140 \text{ keV} \), the photoelectric absorption is dominant for the lead while Compton scattering is dominant for water (Berger et al., 1998).

2.6 Compton scattering becomes dominant in CT systems. Fig.a. schematic shown that the patient becomes a source of radiation himself. Fig.b and Fig.c, so-called scatter diagrams of a CT scan. Dose to the organs outside of the scan range of examination is largely from this interaction. Radiation protection to carers for paediatric must be planned on the basis of scattering diagrams.

2.7 Mass attenuation coefficient for the photon-interaction principles in materials detection. Photoelectric absorption is more than one magnitude higher than scattering processes in xenon (Xe) and the gadolinium oxysulphide \((\text{Gd}_2\text{O}_2\text{S})\) ceramic. The quantum efficiency of the ceramic material is superior due to the mass attenuation coefficient for photoelectric absorption in \(\text{Gd}_2\text{O}_2\text{S}\) higher than xenon. In addition the density of the solid detector also higher than the density of xenon (Berger et al., 1998).

2.8 Sample of the CT detector that enabling up to 256 x 0.5 mm collimation.

2.9 Technical principle of conventional x-ray tomography.

2.10 Conventional kidney tomogram of an adult males (Medscape, 2010)

2.11 The first arrangement of CT. The axial slice through the patient is swept out by the pencil-width X-ray beam with the x-ray tube linked perpendicularly to the detector, both moving across subjects in linear translation and repeated at many angles. The thickness of beam is equivalent to slice thickness (Goldman, 2007).
2.12 The second generation scanners were translate/rotate systems, similar to the first generation.

2.13 Configuration of third generation CT scanner

2.14 Standard CTDI phantom. Most CTDI phantoms have similar design and length but with different diameter of 32 cm and 16 cm, representing body and head respectively (ICRU, 2012).

2.15 An example of a fixed tube current modulation during CT scan examination.

2.16 An example of a CT thorax ATCM function, consisting of both x-y and z-axis modulation of the tube current.

2.17 From left is XCAT male and female reference phantom, followed by ICRP male and female reference phantom (Golem and Laura). CT-Impact used half hermaphrodite phantom and following on the right side are Adam and Eve, CT Expo stylized reference phantom (Zhang et al., 2012).

2.18 Age-time patterns in radiation-induced cancer risk for solid cancer incidence. Curves are sex-averaged estimates of the risk at 1 Sv for people at age 10 (solid line), age 20 (dashed line) and age 30 and above (dotted lines).

2.19 Age-time patterns in radiation-induced cancer risk for solid cancer mortality. Curves are sex-averaged estimates of the risk at 1 Sv for people at age 10 (solid line), age 20 (dashed line) and age 30 and above (dotted lines).

3.1 The SOMATOM Definition AS+ scanner capable of employing a configuration of 128 detectors although built-up only with the 64 set of the detector.

3.2 Phantom of ADAM and EVE. The phantom was used as the main reference for CT-EXPO in determining organ dose.

3.3 The first interface menu of CT-EXPO after starting the software. Noting that, there are four main modules available that can be chosen for CT dosimetry calculation.

3.4 Navigation toolbar: mostly useful for changing features during calculation.

3.5 Schematic procedure of calculations module

3.6 Unfors XI, a multifunction meter was used to measure radiation output.
3.7 A brief setup on measuring CT air kerma by using adapted multifunction meter.

3.8 Box-Whisker plot showing difference range of quartile value.

3.9 Mathematical stylized phantom of ADAM and EVE, shaded region show the range of scanning during CTU examination.

3.10 The cancer incidence risk of stomach and colon cancer for Malaysian population based on registry report of 2007.

3.11 A Rando phantom was setup first before use for study.

3.12 Mid-lung axial images of Alderson phantom. Small holes that fill the TLD were distributed over the phantom.

3.13 Encapsulated TLD was numbered before use for direct measurement

3.14 A bismuth breast shielding (AttenuRad®) was put on the top of the breast. This applies in protocols P6 and P7 of this study.

3.15 DICOM images showing holes for TLD placement in slab 23

3.16 Both breasts were divided into 4 quadrants where initiated with the superior aspect of the lateral breast. Each quadrant was named as R/L quadrants (Egg RQ1 = right quadrant 1)

3.17 The framework of GMctdospp; simulations are controlled by the HTCondor server that manages the user code and EGSnrc environment (Schmidt et al., 2015).

3.18 GMctdospp interface compatibility with GUI from DicomRT struct format

4.1 Bar-chart graph showing the number of samples based on specific age group and region of examinations.

4.2 Boxplot showing the distribution of CTDI\(_{w}\) (mGy) for four main regions of examinations in this study.

4.3 Boxplot showing the distribution of CTDI\(_{\text{vol}}\) (mGy) for four main regions of examinations in this study.

4.4 Boxplot showing the distribution of DLP (mGy.cm) for four main regions of examinations in this study.
4.5 Boxplot showing the distribution of E (mSv) for four main regions of examinations in this study.

5.1 The distributions of the equivalent dose to the relevant organs for CT brain examination

5.2 The distributions of the equivalent dose to the relevant organs for CT thorax examination

5.3 The distributions of the equivalent dose to the relevant organs for CT abdomen examination

5.4 The distribution of estimated organ dose values among subjects

5.5 Distribution of cancer risk per 100,000 population based on age.

5.6 Scatter plot graph of cancer risk per 100,000 population based on gender and age

5.7 Scatter plot graph of cancer risk per 100,000 population based on organ site

5.8 Distribution of cancer risk per 100,000 population based on gender.

5.9 Distribution of cancer risk per 100,000 population based on organ-specific dose

6.1 Organ absorbed dose measured using CT-EXPO and TLD

6.2 Total cumulative effective dose of 5 optimization protocols

6.3 Mean breast absorbed dose obtained for selected parameters

6.4 Region of interest (ROI) of ~100 mm x 10 mm in circle form was specified on lung, breast, and heart.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPM</td>
<td>American Association of Physicist in Medicine</td>
</tr>
<tr>
<td>AEC</td>
<td>Automatic Exposure Control</td>
</tr>
<tr>
<td>ATCM</td>
<td>Automatic Tube Current Modulation</td>
</tr>
<tr>
<td>BEIR</td>
<td>Biological Effects of Ionizing Radiation</td>
</tr>
<tr>
<td>BMI</td>
<td>Body-Mass Index</td>
</tr>
<tr>
<td>BSS</td>
<td>Basic Safety Standard</td>
</tr>
<tr>
<td>CME</td>
<td>Continuous Medical Education</td>
</tr>
<tr>
<td>CNR</td>
<td>Contrast-to-Noise Ratio</td>
</tr>
<tr>
<td>CT</td>
<td>Computed Tomography</td>
</tr>
<tr>
<td>CTDI</td>
<td>CT Dose Index</td>
</tr>
<tr>
<td>CTDI-100</td>
<td>CT Dose Index from 100 mm</td>
</tr>
<tr>
<td>CTDI(_w)</td>
<td>Weighted CTDI</td>
</tr>
<tr>
<td>CTDI(_\text{vol})</td>
<td>Volume CTDI</td>
</tr>
<tr>
<td>CTU</td>
<td>CT Urography</td>
</tr>
<tr>
<td>CXR</td>
<td>Chest X-ray</td>
</tr>
<tr>
<td>DLP</td>
<td>Dose-Length Product</td>
</tr>
<tr>
<td>DDREF</td>
<td>Dose and Dose-Rate Effectiveness Factor</td>
</tr>
<tr>
<td>EAR</td>
<td>Excess Absolute Risk</td>
</tr>
<tr>
<td>ERR</td>
<td>Excess Relative Risk</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full-Width at Half-Maximum</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HPA</td>
<td>Health Protection Agency, United Kingdom</td>
</tr>
<tr>
<td>ICRP</td>
<td>International Commission on Radiation Protection</td>
</tr>
<tr>
<td>IVU</td>
<td>Intravenous-Urography</td>
</tr>
<tr>
<td>IAEA</td>
<td>International Atomic Energy Agency</td>
</tr>
<tr>
<td>LAR</td>
<td>Lifetime Attributable Risk</td>
</tr>
<tr>
<td>LNT</td>
<td>Linear Non-Threshold model</td>
</tr>
</tbody>
</table>
LSS - Life Span Study
MC - Monte Carlo
MIRD - Medical Internal Radiation Dose
MSAD - Multiple Scan Average Dose
MSCT - Multi-Slice CT
NMRR - National Medical Research Registration
NURBS - Non-Uniform Rational B-Splines
OD - Optical Density
PET - Positron Emission Tomography
PMMA - Poly-Methyl Methacrylate
POSDE - Patient- and Organ- Specific Dose Estimation
PPM - Planned and Preventive Maintenance
Q3 - Third quartiles
QA - Quality Assurance
SNR - Signal-to-Noise Ratio
SSCT - Single-Slice CT
SSDL - Secondary Standard Dosimetry Laboratory
TF - Table-Feed
TL - Thermo-Luminescence
TLD - TL dosimeter
UFC - Ultra-Fast Ceramic
UNSCEAR - United Nation Scientific Committee on Effects of Atomic Radiations
WHO - World Health Organization
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Approval letter from National Medical Research Registration (NMRR) board for conducting research in government hospital (ID: NMRR-14-606-20966)</td>
<td>191</td>
</tr>
<tr>
<td>B</td>
<td>Questionnaires form on radiation awareness and knowledge of CT optimization technique among radiology staff</td>
<td>192</td>
</tr>
<tr>
<td>C</td>
<td>CT protocols and dose calculation survey form</td>
<td>198</td>
</tr>
<tr>
<td>D</td>
<td>CT scanner quality control form</td>
<td>200</td>
</tr>
<tr>
<td>E</td>
<td>List of awards and publications</td>
<td>201</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview

Since the discovery of X-rays by Wilhelm Conrad Roentgen in the year 1885, the field of medicine has been revolutionized and utilized by a medical field known as radiology. Radiology is one of the branches of medicine that uses various imaging techniques and modalities to produce high-quality images of human anatomy with the aim to provide an accurate diagnosis of diseases. Henceforth, a lot of imaging modalities use X-rays as the main emitting source due to its advantages in providing high contrast radiographic images, including the Computed Tomography (CT) scan.

CT is one of the most vital imaging modalities in radiology, capable of producing high contrast sectional images. The X-rays that transmit through the human body are detected by a detector in a circular motion along the x-y axis. Subsequently, computer processing of the raw data produced from the received detector using Rando transform algorithm, reproducing sectional images in the form of axial, sagittal-coronal and 3D images, as in Figure 1.1 and the details in Chapter 2. The sectional images allows the Radiologist to diagnose diseases accurately in a clinical situation better than 2D radiographic images of conventional X-ray machines (Goo, 2012; Lee et al., 2004).
Figure 1.1 CT images of a thorax. The upper right side is axial images of CT thorax and it is followed by sagittal images in lower right side. On the left upper side is a 3D image of CT pulmonary and below on the left side is a coronal image of CT thorax (Workstation images).

Nowadays, CT has become a one of the recognized diagnostic imaging tools for radiological investigation since the inception of the CT scan EMI Mark I by Godfrey Hounsfield in 1972 (Jessen et al. 1999; Tsapaki et al. 2010; Rehani 2012; Kalender 2014; Hounsfield 1976a). Unlike film-cassettes techniques, which use a larger but passive detector, CT has minimized the unnecessary amount of scattered radiation by allowing sequential irradiation slabs of tissue and collimation of the detector. Furthermore, in the year 1988, a slip-ring technology was introduced that made a continuous rotation of the gantry and detectors possible (Kalender et al., 2008). Thus, during helical mode acquisition, the table is able to move continuously while the detectors are rotating and produce images by utilizing interpolation
techniques. This allows spiral CT capable in obtaining a larger volume of information in sub-second time, resulting in shorter breath hold and subsequently, minimizes motion artifacts. However, despite its benefits, the CT scan is considered as one of the most hazardous imaging modality as it contributes greater dose exposure.

Figure 1.2 G.F Hounsfield with his first commercial CT scanner, EMI Mark I (Buzug et al., 2009).

1.2 Background of study

The advancement of CT technology and requisite for better image quality lead to the geometry of the CT systems becoming much more complex and with the employment of more detectors (Fuchs et al., 2000). Therefore, the dosimetry in CT has become a challenging task for many researchers with the addition of the increasing demand for individual dose tracking in medical imaging (Fearon et al., 2011).

In the year 2001, the International Commission on Radiological Protection (ICRP) raised concern that with increased use of CT there was a possibility that the
radiation dose from CT examinations was high. A 2006 United States (US) radiation dose survey categorized CT exams as the largest source of medical exposure in the USA (National Academy of Sciences, 2006). This trend is due to the advantages of CT modality in providing the high diagnostic value of images with faster and accurate diagnosis which steered to a number of unjustified request for CT examinations by physicians. With increase in public concern, many agencies introduced monitoring processes also establishing Diagnostic Reference Levels (DRLs). As expected, the multinational surveys show that with radiation doses from CT exceeding reference levels this could increase the risk of cancer (radiation-induced cancer) (Brenner, 2012; Hall and Brenner, 2008; Feng et al., 2010; Swanson, 2012).

Figure 1.3 The number of CT scans examinations performed in the US (Smith-Bindman et al., 2009)

In 2003, a survey conducted in the UK by Health Protection Agency (HPA) indicated that the total effective population radiation dose to be 47% even though it only represented 9% of all x-ray examinations done in the country (Jones and Shrimpton, 1991; Shrimpton et al., 2006). According to Naumann et al. (2014), the risk of radiation is greater for pediatric patients as they receive higher absorbed dose
compared to an adult even using the same scan parameters (Naumann et al., 2014; Rehani et al., 2012). As illustrated in Figure 1.4, the radiation dose to patients varies based on the type or region of examinations, the abdominal CT investigations have the highest effective dose values (Sokolovskaya and Shinde, 2016; Pantos et al., 2011; Sabarudin et al., 2015).

![Typical Values of Effective Dose for Various Medical X-rays](image)

Figure 1.4 Effective dose values from radiological examinations were based on the type of examinations, modality used and region of scanning (Australian Radiation Protection, 2013).

As a result of the increased utilization of CT and increasing radiation dose to the population, CT optimization techniques have become a major focus of the medical research community. Furthermore, much research has focused on finding the most accurate means of dosimetry, patient-specific, although current existing dosimetry for CT system are still usable worldwide (Edyvean, 2013; Fearon et al., 2011; Jessen et al., 1999; Tsalafoutas et al., 2012). This includes the use of the Monte Carlo (MC) simulation method such as anthropomorphic mathematical
simulation as well as the use of direct methods using small dosimeters, for instance thermoluminescence dosimeters (TLD).

Generally, the biological risk associated with the exposures of individual or populations to ionizing radiation can be categorized into two effects; deterministic and stochastic effects (Alpen, 1998). Deterministic effects are the acute outcomes of the absorbed dose when exceeding a certain threshold (> 1 Gy). The doses received from CT examinations typically are much lower compared to dose threshold, ranging from 10 – 50 mGy. The dose delivered from CT to a specific anatomical region is sometimes repeated up to three phases depending on the clinical needs (Kalender, 2014). As consequences, effects such as hair loss, skin injuries and erythema have been reported, especially from CT brain perfusion studies as shown in Figure 1.5.

![Figure 1.5](Image1.png)

Figure 1.5 Patients suffering from epilation due to CT brain perfusion examinations (New York Times Magazine, 2009)

Stochastic effects of radiation describe the potential chronic risks of radiation exposure. Generally, the typical doses from radiological examinations do not cause immediate cell death, but the ionization process could result in DNA strand breaks. The DNA strand breaks are commonly caused by the interaction of DNA hydroxyl with the ionized atoms and become hydroxyl radicals. These DNA breaks are usually repaired by cellular repair mechanism or the cell is into apoptosis. In the case of incorrect repair of DNA, cell proliferation continues despite genetic mutation and led to carcinogenesis effects.
Normally, the risk from radiation has been defined by using the linear non-threshold model (LNT), based on epidemiological studies including data from 1945 atomic bomb survivors (Figure 1.6) (National Academy of Sciences, 2006). Although the LNT models at low dose have been questioned for accuracy, many researchers show great interest in estimating cancer risk from CT examinations as radiation dose from CT is quite high and potentially more hazardous compared to other modalities. The various techniques of calculation and new applications have been introduced in order to demonstrate an overview of cancer risk from CT. Concerning the above matter, it is necessary to properly assess and monitor radiation dose from CT examinations, in particular, estimating the patient- and organ- specific dose (POSDE) and risk.

Figure 1.6 The LNT model uses for estimate risk from low dose exposure (Canadian Nuclear Safety Commission, 2013)
1.3 Problem statement and motivation

A number of studies have related that exposure from CT scans is responsible for increasing the risk of cancer (Brenner and Hall, 2007; Berrington de Gonzalez et al., 2009). Brenner predicted radiation-related risks in a population by using the data from survivors of the atomic bombs dropped on Japan in 1945, where the average effective dose is around 20 mSv (Brenner and Hall, 2007; Naumann et al., 2014).

As conclusion, they have established finding that the dangers of malignant neoplastic disease are greater for paediatrics than adults as paediatric patients are more radio-sensitive to radiation and have a longer lifespan to get cancer. Furthermore, Berrington et al. reported that 29,000 of future cancers could be linked to CT scans performed in the USA in 2007 (Berrington et al., 2009). Consequently, this has alarmed responsible agencies such as the ICRP, United Nation Scientific Committee on Effects of Atomic Radiations (UNSCEAR), American Association of Physicist in Medicine (AAPM), the International Atomic Energy Agency (IAEA) and have alerted the public that the radiation risk from CT may possibly be harmful and dangerous (Rehani, 2012; AAPM Task Group 23, 2008; UNSCEAR, 2010; Balonov and Shrimpton, 2012).

The primary goal of this study is to measure radiation dose from routine CT examinations and to introduce accurate CT dosimetry that matches to Malaysian clinical practice. It is also essential to estimate the risk to Malaysian populations that have undergone CT examinations since there are several issues related to the inaccuracy of standard CT dosimetry that need to be addressed. Figure 1.7 shows schematically the problem statement of the current study. In general, the present study is intended to provide information on the issues of current dosimetry in CT technology. The data obtained from the study forms part of the review of the present situation of CT dosimetry and its related health risks. In future, this thesis could also be used as a supplementary document in support of baseline information on the recent situation of CT dosimetry in Malaysia.
Figure 1.7

The schematic diagram of thesis problem statement

Objectives: The primary goals of this study are to measure radiation dose from routine CT examinations and introduce an accurate form of CT dosimetry that matches to Malaysian clinical practice. It is also essential to estimate risk to Malaysian population that have undergone CT examinations since there are several issues related to inaccuracy of standard dosimetry that need to be addressed. In general, the present study could provide information on the issues of current dosimetry in CT technology. The data obtained from the study would be a review of the present situation of the CT dosimetry and its related health risk, mainly for Johor population. In future, this can be used as a supplementary document of the baseline information in recent situation of CT dosimetry in Malaysia.
1.4 Research Objectives

The objectives of this study are:

1) To assess knowledge and awareness of radiology personnel towards optimization techniques and radiation risk of CT examinations.

2) To evaluate the standard acquisition protocols and radiation dose exposure received by the patient from current CT practice, finally establishing local DRLs.

3) To measure the radiation risk from CT scan cohort studies using a variety of calculation methods.

4) To investigate organ absorbed dose and CT optimization techniques on an adult anthropomorphic phantom.

5) To introduce a method for the determination of patient- and organ- specific dose (POSDE) by using Monte Carlo simulation method.

1.5 Scope of study

The scope of the study involves determination of the accuracy of organ radiation dose measurement from CT examinations and the evaluation of related radiation risk. To achieve this, the study was divided into three parts;

1) Part I: The data was obtained from the survey method and cross-validated with standard mathematical stylized phantom measurements. Local DRLs were established and radiology personnel awareness relationship was evaluated.
2) Part II: Various methods of calculation based on ICRP and BEIR VII were used to estimate patient organ dose and radiation risk. The risk calculation was made on the whole perspective and then narrowed down to specific clinical CT examinations.

3) Part III: Direct measurements were used to estimate patient organ dose by inserting dosimeters such as TLDs into a physical anthropomorphic phantom. Further, steps for optimization techniques of current CT practice were introduced.

1.6 Thesis outlines

This thesis gives a comprehensive overview of CT practice in Johor state including dose exposure evaluation, organ absorbed dose assessment, radiation risk among the population, steps for optimization and the introduction of novel applicable method for evaluating individual specific dose. The basics of the dosimetry and estimation of risk is undoubtedly mathematics. However, the beauty of computed tomography cannot be understood without a basic knowledge of X-ray physics and signal processing. With respect to the title of this thesis, it is structured to provide understanding in current CT practice.

In Chapter 2, the fundamentals of CT dosimetry, the milestones and current research in CT dosimetry and its related risks are briefly explained. In Chapter 3, the materials and method used are discussed briefly. In Chapter 4, Chapter 5 and Chapter 6 the results and discussion will be presented on; the establishment of DRLs, radiation risk measurement, and optimization process, respectively. Furthermore, the conclusion of the thesis will be provided in Chapter 7.
REFERENCES

Australian Radiation Protection agency, (2013). Typical values of effective dose for various medical X-rays. ARPANSA: Australia.

Institute, "101(3), 205–9.

validation and application of a multi-detector CT (MDCT) scanner model for assessing organ doses to the pregnant patient and the fetus using Monte Carlo simulations. *Physics in medicine and biology, 54*(9), 2699.

IAEA. (2004). IAEA-TECDOC 1423 - *Optimization of the radiological protection of patients undergoing radiography, fluoroscopy and computed tomography.* Vienna; IAEA.

IAEA. (2012). *Quality Assurance Programme for Computed Tomography: Diagnostic and Therapy Applications.* Vienna, IAEA.

Litmanovich, D., Tack, D., Lin, P. J. P., Boiselle, P. M., Raptopoulos, V., & Bankier,

Springer Berlin Heidelberg.
Pantos, I., Thalassinou, S., Argentos, S., Keleki, N. L., Panayiotakis, G., &

Rehani, M.M., Ciraj-Bjelac, O., Al-Naemi, H.M., Al-Suwaidi, J.S., El-Nachef, L.,

http://doi.org/10.1016/j.ejmp.2011.03.002

van der Molen, A. J., & Geleijns, J. (2007). Overranging in Multisection CT:

