BIOACTIVITIES AND FITTING MODELS OF QUERCUS INFECTORIA GALLS EXTRACTS USING SUPERCRITICAL CARBON DIOXIDE

HASMIDA BINTI MOHD NASIR

UNIVERSITI TEKNOLOGI MALAYSIA
BIOACTIVITIES AND FITTING MODELS OF QUERCUS INFECTORIA GALLS EXTRACTS USING SUPERCritical CARBON DIOXIDE

HASMIDA BINTI MOHD NASIR

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Bioprocess Engineering)

Faculty of Chemical and Energy Engineering
Universiti Teknologi Malaysia

MAY 2017
To my beloved parents
ACKNOWLEDGEMENT

“In The Name of Allah, Most Merciful, Most Gracious”. Without His guidance and permission, the completion of this thesis cannot be made possible.

I wish to give my sincere thanks to my supervisor, Dr Liza Md Salleh for guiding, supervising and encouraging me both in the research field or regarding personal matters. I am also very much thankful to my co-supervisor, Dr Harisun Ya’akob and Prof Dr Fadzilah Adibah Abd Majid for her their kind guidance.

I would like to express my gratitude to the Ministry of Higher education Malaysia for funding my studies at Doctorate level at Universiti Teknologi Malaysia (UTM). My appreciation and gratitude are also to the Centre of Lipid Engineering and Applied Research (CLEAR), the Tissue Culture Laboratory and the Applied Biology Laboratory of Faculty of Chemical and Energy Engineering, UTM for providing me the apparatus, equipment and space for the completion of my study.

I am also very grateful to my family members, Ayati, Amir, Azwani, Hakiman, Amirah and Amirul that were always there during the ups and downs of my life. To our parents, Mohd Nasir and Wan Zuriah, both of you will always be in my prayer. I also extend my sincere appreciation to my best friend Nuraimi, fiancé Ashrulhadi, and all my colleagues, Syafiq, Yian, k.Olie, Syukriah, Hartati, Ramdan, Amzar, Roslina, Salsabila, Fahim, Azah, Syaza, who have provided assistance with useful views, tips and support in various occasions. Lastly, as it is not possible to list all of them, I would like to express my gratitude to all of who had helped me directly or indirectly during my study.
ABSTRACT

The extraction of natural plants has gained interest from the researchers due to their therapeutic values. In this study, the bioactive compounds of Quercus infectoria galls were extracted using supercritical carbon dioxide. The optimization of extraction conditions was performed using response surface methodology. The effect of extraction conditions (pressure, temperature, particle size) on extraction yield and hydrolysable tannins content of Q. infectoria were investigated. The biological properties of the extracts were evaluated by in vitro wound healing assay including total phenolic content, free radical scavenging, cell proliferation and scratch assay. The density-based models for simulation of extract solubility were also correlated. The mass transfer phenomena for extraction process of Q. infectoria galls was also investigated using both single sphere model and the broken and intact cells model. The extraction was conducted at 2 mL/min of carbon dioxide flow rate with the addition of methanol (purity: 99.8%) at ratio of 1:3 (weight of sample/volume of methanol) and was kept constant throughout this study. The study revealed that pressure, temperature and particle size were critical parameters that significantly affect the extraction yield, but did not contribute to the hydrolysable tannins content. The overall yield increased with increased pressure, temperature and particle size. The best conditions obtained from the optimization process were pressure (28.11 MPa), temperature (50.43°C) and particle size (1.25 mm) with predicted yields of 6.02%, tannic acid composition (6149.71 mg/g) and gallic acid concentration (96.85 mg/g). The galls extract showed high biological properties in terms of total phenolic content, antioxidant activity, cell proliferation and migration properties. Bartle model successfully fitted to the experimental solubility data with low absolute average relative deviation which was 1.52%. Single sphere model provides better correlation for mass transfer coefficient estimation than the broken and intact cell model. The findings from both models suggested the importance of internal diffusion and mass transfer in the extraction process of the galls.
Pengekstrakan tumbuhan semulajadi telah menarik minat para penyelidik disebabkan oleh nilai-nilai terapeutiknya. Dalam kajian ini, komponen aktif daripada hempedu *Quercus infectoria* telah diekstrak menggunakan pengekstrakan karbon dioksida lampau genting. Pengoptimuman keadaan pengekstrakan dilakukan dengan menggunakan kaedah tindak balas permukaan. Kesan keadaan pengekstrakan (tekanan, suhu, saiz zarah) pada kadar pengeluaran dan kandungan tannin terhidrolisis daripada *Q. infectoria* telah dikaji. Sifat-sifat biologi ekstrak telah dinilai oleh cerakan penyembuhan luka *in vitro* termasuk jumlah kandungan fenolik, penangkapan radikal bebas, percambahan sel dan cerakan goresan. Model berasaskan ketumpatan untuk simulasi kelarutan ekstrak juga telah dihubungkaitkan. Fenomena pemindahan jisim untuk proses pengekstrakan hempedu *Q. infectoria* juga dikaji dengan menggunakan model sfera tunggal dan model sel pecah dan tak terusik. Pengekstrakan ini dijalankan pada kadar aliran karbon dioksida 2 mL/min dengan tambahan metanol (ketulenan: 99.8%) pada nisbah 1:3 (jisim sampel/isipadu metanol) dan dimalarkan sepanjang kajian ini. Kajian ini menunjukkan bahawa tekanan, suhu dan saiz zarah adalah parameter penting yang member kesan ketara terhadap hasil pengekstrakan, tetapi tidak menyumbang kepada kandungan tannin terhidrolisis. Hasil keseluruhan meningkat dengan peningkatan tekanan, suhu dan saiz zarah. Keadaan terbaik diperoleh daripada proses pengoptimuman adalah tekanan (28.11 MPa), suhu (50.43°C) dan saiz zarah (1.25 mm) dengan ramalan hasil 6.02%, komposisi asid tanik (6149.71 mg/g) dan kepekatan asid galik (96.85 mg/g). Ekstrak hempedu menunjukkan sifat-sifat biologi yang tinggi daripada segi jumlah kandungan fenolik, aktiviti antioksidan, sifat-sifat percambahan dan migrasi sel. Model Bartle berjaya disesuaikan kepada data kelarutan ujikaji dengan purata mutlak sisihan relatif yang rendah iaitu 1.52%. Model sfera tunggal menunjukkan hubungan yang lebih baik bagi anggaran pekali pemindahan jisim daripada model sel pecah dan tak terusik. Penemuan daripada kedua-dua model mencadangkan kepentingan penyebaran dalaman dan pemindahan jisim dalam proses pengekstrakan daripada hempedu.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xxi</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxv</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background of Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives of Study</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Scopes of Study</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Significance of Study</td>
<td>7</td>
</tr>
<tr>
<td>1.6</td>
<td>Thesis Outline</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Overview</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Quercus infectoria</td>
<td>11</td>
</tr>
</tbody>
</table>
2.2.1 Facts about *Quercus infectoria* Galls 11
2.2.2 Medicinal Properties of *Q. infectoria* 13
2.2.3 Characteristics of Hydrolysable Tannins 15

2.3 Supercritical Fluid Extraction 18

2.3.1 Properties of Supercritical Fluid 18
 2.3.1.1 Density of Supercritical Fluid 19
 2.3.1.2 Diffusivity and Viscosity 20
 2.3.1.3 Mass Transfer Rate 20

2.3.2 Principle of Supercritical Fluid Extraction 21
2.3.3 Parameters Effect on Supercritical Fluid Extraction
 2.3.3.1 Pressure at Constant Temperature 23
 2.3.3.2 Temperature at Constant Pressure 24
 2.3.3.3 Particle Size 25
 2.3.3.4 Solvent Flow Rate 26
 2.3.3.5 Extraction Time 27
 2.3.3.6 Modifier 28

2.3.4 Carbon Dioxide as Solvent 29
2.3.5 Review of Seeds/Nuts by ScCO₂ Literature 31

2.4 Process Optimization 37

2.5 Extraction Profile 39

2.6 Solubility of Solute in Supercritical Carbon Dioxide 40

2.6.1 Review on Solute Solubility by ScCO₂ Extraction Literature 41

2.6.2 Solubility Measurement using Density-Based Equation
 2.6.2.1 Chrastil Equation 44
 2.6.2.2 Adachi-Lu Equation 45
 2.6.2.3 del Valle-Aguilera Equation 46
2.6.2.4 Sparks Equation 46
2.6.2.5 Kumar and Johnston Equation 46
2.6.2.6 Bartle Equation 47
2.6.2.7 Modification of Density Term 47

2.7 Mathematical Modelling in Supercritical Fluid Extraction
2.7.1 Mass Transfer Mechanism 49
2.7.2 Single Sphere Model (SSM) 51
2.7.3 Broken and Intact Cells (BIC) Model 54
2.7.4 Validation 59

3 MATERIAL AND METHODS 60

3.1 Introduction 60
3.2 Chemicals 62
3.3 Sample Preparation 62
3.4 Preliminary Study
 3.4.1 Determination of Moisture Content 62
 3.4.2 Total Solute Content 63
 3.4.2 Determination of Constant Solvent Flow Rate 63

3.5 Supercritical Carbon Dioxide Extraction 64
3.6 Expression of Results 65
3.7 Design of Experiment for Response Surface Methodology (RSM) 65
3.8 High Performance Liquid Chromatography Analysis
 3.8.1 Standard Preparation 67
 3.8.2 Tannic Acid 67
 3.8.3 Gallic Acid 67
3.9 Bioactivities of *Quercus infectoria* Galls Extracts 68

3.9.1 Total Phenolic Content 68

3.9.2 Antioxidant Assay 68

3.9.3 *In vitro* Wound Healing Analysis

3.9.3.1 Cell Culture Study 69

3.9.3.2 Cell Recovery 69

3.9.3.3 Subculture of Adherent Cells 70

3.9.3.4 Cryopreservation of Cells 70

3.9.3.5 Cell Number and Viability Determination 71

3.9.3.6 Growth Profile 72

3.9.3.7 Cytotoxicity Assay 72

3.9.3.8 Scratch Wound Assay 73

3.10 Solubility Measurement 73

3.11 Mass Transfer Modelling 74

3.12 Statistical Analysis 74

4 RESULTS AND DISCUSSION 75

4.1 Introduction 75

4.2 Preliminary Study of Supercritical Carbon Dioxide (ScCO₂) Extraction

4.2.1 Moisture Content 76

4.2.2 Total Solute Content 76

4.2.3 Effects of CO₂ Flow Rate on Extraction Yield

4.2.3.1 Total Phenolic Content 79

4.2.3.2 Antioxidant Activity 80

4.3 Identification and Quantification of Hydrolysable Tannins Content in the Extracts by HPLC 81
4.4 Optimization Using Response Surface Methodology
 4.4.1 Model Fitting and Statistical Analysis on Extraction Yield 87
 4.4.2 Analysis of Response Surface on Extraction Yield 90
 4.4.3 Model Fitting and Statistical Analysis on Tannic Acid Content 94
 4.4.4 Analysis of Response Surface on Tannic Acid Content 96
 4.4.5 Model Fitting and Statistical Analysis on Gallic Acid Content 98
 4.4.6 Analysis of Response Surface on Gallic Acid Content 100
 4.4.7 Multiple Responses Optimization 102

4.5 Bioactivities of *Quercus infectoria* Galls Extracts 103
 4.5.1 Total Phenolic Content 103
 4.5.2 Free Radical Scavenging Activity 105
 4.5.3 Growth Profile 108
 4.5.4 Fibroblast Cells Morphology 110
 4.5.5 Influence of Galls Extract on Cell Proliferation 111
 4.5.6 Influence of Galls Extract on Cell Migration 113

4.6 Correlation between All Analyzed Responses 119

4.7 Solubility of *Q. infectoria* Galls Extract in ScCO₂ Extraction 121
 4.7.1 Pressure and Temperature Effects on Solubility 123
 4.7.2 Density-Based Models 125
 4.7.3 Comparisons of Solubility Models with Other Works 130

4.8 Mass Transfer Modelling in ScCO₂ Extraction 133
4.8.1 Single Sphere Model
4.8.2 Broken and Intact Cells Model
4.8.3 Comparison of Mathematical Models

5 CONCLUSIONS AND RECOMMENDATIONS 145
5.1 Conclusions 145
5.2 Recommendations 148

REFERENCES 149

Appendices A – D 178-198
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Scientific classification of Quercus infectoria</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical constituents of the galls and their extraction methods</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Physical properties of tannic and gallic acids</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Comparisons of the properties between supercritical CO$_2$ and ordinary gases and liquids</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparisons of critical constants for commonly used fluids in SCF state</td>
<td>29</td>
</tr>
<tr>
<td>2.6</td>
<td>Advantages and disadvantages of the most commonly used supercritical fluids</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Supercritical carbon dioxide extraction on natural plants done by previous researchers</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>ANOVA table (Source: Cornell, 1990)</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Independent variables and their coded levels chosen for Central Composite Design</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>The effect of CO$_2$ flow rate on the total phenolic content and radical scavenging activity at P =30 MPa and T = 40°C</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison of ScCO$_2$ and solvent extraction</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Experimental conditions and results obtained for Response Surface Methodology estimation of Q. infectoria extract yield and hydrolysable tannins yield</td>
<td>85</td>
</tr>
<tr>
<td>4.4</td>
<td>Estimated regression coefficients for the polynomial model of gall’s extraction yield</td>
<td>87</td>
</tr>
<tr>
<td>4.5</td>
<td>Analysis of variance (ANOVA) for galls extraction yield</td>
<td>89</td>
</tr>
<tr>
<td>4.6</td>
<td>Estimated regression coefficients for the polynomial model of tannic acid content</td>
<td>94</td>
</tr>
</tbody>
</table>
4.7 Analysis of variance (ANOVA) for tannic acid content 95
4.8 Estimated regression coefficients for the polynomial model of gallic acid content 99
4.9 Analysis of variance (ANOVA) for tannic acid content 99
4.10 Best value of each parameter 102
4.11 Predicted and observed values for responses 102
4.12 Total phenolic content and antioxidant activity of the extracts for various conditions 105
4.13 Correlation coefficients between all responses evaluated in this study 119
4.14 Fluid density and solubility data of Q. infectoria galls extract for various conditions at CO$_2$ flow rate = 2 mL/min and mean particle size, d = 1.00 mm 122
4.15 Calculated parameters for the density-based solubility models 126
4.16 Parameters comparison of Chrastil equation 130
4.17 Parameters comparison of Adachi-Lu equation 131
4.18 Parameters comparison of del Valle-Aguilera equation 131
4.19 Parameters comparison of Sparks equation 132
4.20 Parameters comparison of Kumar-Johnston equation 133
4.21 Parameters comparison of Bartle equation 133
4.22 Calculated parameters for the mass transfer using single sphere model for Q. infectoria galls extraction using ScCO$_2$ for different operating conditions at 2 mL CO$_2$/min 138
4.23 Parameters for extraction process estimated with simplified model 140
4.24 Parameters for extraction process estimated with complete model of broken and intact cell model 141
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>(a) Tree, (b) galls (green), (c) galls (dried) of Q. infectoria</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical structure of (a) tannic acid; (b) gallic acid (Adapted from: Hagerman (2002))</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Phase diagram for a pure compound in a close system. The critical point indicates critical pressure and temperature of carbon dioxide (Capuzo et al., 2013)</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic diagrams of supercritical fluid extraction apparatus (Machmudah et al., 2008a)</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Effect of pressure on lycopene extracted at 80 °C and 4 ml/min. (■) $P = 150$ bar; (●) $P = 300$ bar; (▲) $P = 450$ bar (Machmudah et al., 2008a)</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Total extraction yield as function of temperature at 200 bar (Zeković et al., 2017)</td>
<td>24</td>
</tr>
<tr>
<td>2.7</td>
<td>The yield of cocoa butter extracted using ScCO$_2$ at pressure (P) = 35 MPa, temperature (T) = 60°C and flow rate (f) = 2 mL/min) as a function of the extraction time with different particle size (Asep et al., 2008)</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Effect of solvent flow rate on andrographolide yield as a function of time (Kumoro and Hasan, 2006)</td>
<td>26</td>
</tr>
<tr>
<td>2.9</td>
<td>The effects of extraction time on the extraction efficiency at $T = 50°C$, $P = 20$ MPa (Salajegheh et al., 2013)</td>
<td>27</td>
</tr>
<tr>
<td>2.10</td>
<td>(−)-epicatechin extraction yield using CO$_2$ and CO$_2$-ethanol as solvent (Luengthanaphol et al., 2004)</td>
<td>28</td>
</tr>
<tr>
<td>2.11</td>
<td>Projections of the phase diagram of carbon dioxide in the density-pressure plane (Adapted from Angus et al., 1976)</td>
<td>30</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.12</td>
<td>Extraction profile of sunflower seed oil (mass of sample to mass of solvent used) (Fiori, 2009)</td>
<td>40</td>
</tr>
<tr>
<td>2.13</td>
<td>Schematic diagram of porous solid particle (Goto et al., 1998)</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Layout of research activity</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic process flow diagram of supercritical carbon dioxide extraction</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>Total solute content of Q. infectoria extract at pressure of 30 MPa, temperature of 60°C, particle size of 1.00 mm</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>The effect of solvent flow rate and on accumulative yield (%) of the extracts at 30 MPa, 40°C</td>
<td>78</td>
</tr>
<tr>
<td>4.3</td>
<td>Chromatogram of (a) standard tannic acid (b) tannic acid for Q. infectoria galls extract using SFE at minimum condition (-1,-1,-1) (P =25 MPa; T=50°C; d=0.5 mm) at constant CO₂ flow rate of 2 mL/min</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>Chromatogram of (a) standard gallic acid and (b) gallic acid for Q. infectoria galls extract using SFE at minimum condition (-1,-1,-1) (P =25 MPa; T=50°C; d=0.5 mm) with constant CO₂ flow rate of 2 mL/min</td>
<td>82</td>
</tr>
<tr>
<td>4.5</td>
<td>Diagnostic plot of extraction yield (a) predicted versus actual, (b) residuals between predicted and experimental data of yield</td>
<td>89</td>
</tr>
<tr>
<td>4.6</td>
<td>(a) Response surface and (b) contour plot for the extraction yield as related to pressure and temperature at a constant mean particle size (d = 1.0 mm).</td>
<td>93</td>
</tr>
<tr>
<td>4.7</td>
<td>a) Response surface and (b) contour plot for the extraction yield as related to pressure and particle size at a constant temperature (T = 60°C).</td>
<td>93</td>
</tr>
<tr>
<td>4.8</td>
<td>(a) Response surface and (b) contour plot for the extraction yield as related to temperature and particle size at a constant pressure (P = 25 MPa).</td>
<td>93</td>
</tr>
<tr>
<td>4.9</td>
<td>(a) Response surface and (b) contour plot of tannic acid content as a function of pressure and temperature at a</td>
<td>97</td>
</tr>
</tbody>
</table>
constant particle size (d = 1.0 mm)

4.10 (a) Response surface and (b) contour plot of tannic acid content as a function of pressure and particle size at a constant temperature (T = 60°C).

4.11 (a) Response surface and (b) contour plot of tannic acid content as a function of temperature and particle size at a constant pressure (25 MPa).

4.12 (a) Response surface and (b) contour plot of gallic acid content as a function of pressure and temperature at a constant particle size (d = 1.0 mm).

4.13 (a) Response surface and (b) contour plot of gallic acid content as a function of pressure and particle size at a constant temperature (T = 60°C).

4.14 (a) Response surface and (b) contour plot of gallic acid content as a function of temperature and particle size at a constant pressure (P = 25 MPa).

4.15 The growth curve for Human Skin Fibroblast (HSF1184) cell

4.16 Morphology of fibroblast (HSF1184) cells at (a) day 0, (b) day 2, (c) day 4 and (d) day 7

4.17 Relative viability and proliferation of Human Skin Fibroblast (HSF1184) for different conditions and concentrations of Quercus infectoria extracts, markers and control. Data were recorded after 24 hours applying MTT. Each bar represents mean ± SD (n = 3) of percentage cell viability. * indicate significantly different compared to control (P < 0.05)

4.18 Cells migration and proliferation at 0, 12 and 24 hours for different conditions, markers, positive and negative control

4.19 Percentage of wound closure after treated with different extract’s concentrations, markers and controls for 24 hours
4.20 *Q. infectoria* galls extract solubility as a function of pressure at different temperature

124

4.21 *Q. infectoria* galls extract solubility as a function of temperature at different pressure

124

4.22 Galls solubility in ScCO\(_2\) as a function of density at different temperature for Chrastil (---) and Adachi-Lu (---) equations. Points indicate experimental solubility

128

4.23 Galls solubility in ScCO\(_2\) as a function of density at different temperature for del Valle-Aguilera (-----) and Sparks (-----) equations. Points indicate experimental solubility

128

4.24 Galls experimental solubility (points) in ScCO\(_2\) as a function of density correlated by Kumar-Johnston equation

129

4.25 Galls experimental solubility (points) in ScCO\(_2\) as a function of density correlated by Bartle equation

129

4.26 Single sphere model for ScCO\(_2\) extraction of the galls at 20 MPa, 70°C and 1.00 mm; fitted value \(D_e = 3.41\times10^{-11}\) m\(^2\)s\(^{-1}\)

135

4.27 Simplified model applied to the ScCO\(_2\) extraction of *Q. infectoria* at 20 MPa, 50°C and 1.00 mm; fitted values: \(r = 0.2486, k_s a_v = 0.1742\) m\(^{-1}\)s\(^{-1}\)

139

4.28 Complete model applied to the ScCO\(_2\) extraction of *Q. infectoria* at 20 MPa, 50°C and 1.00 mm; fitted values: \(r = 0.1065, k_s a_v = 1.61\times10^{-2}\) m\(^{-1}\)s\(^{-1}\), \(k_f a_v = 1.47\times10^{-5}\) m\(^{-1}\)s\(^{-1}\)

140

4.29 Comparison between experimental and calculated data at various pressure for SSM and BIC model

143

4.30 Comparison between experimental and calculated data at various temperature for SSM and BIC model

143

4.31 Comparison between experimental and calculated data at various mean particle size for SSM and BIC model

144
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AARD</td>
<td>Absolute average relative deviation</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>Ar</td>
<td>Argon</td>
</tr>
<tr>
<td>BHA</td>
<td>Butylated hydroxyanisole</td>
</tr>
<tr>
<td>CCD</td>
<td>Central composite design</td>
</tr>
<tr>
<td>CH<sub>3</sub>CN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>CO<sub>2</sub></td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CP</td>
<td>Critical point</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2-diphenyl-1-picrylhydrazine</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>Concentration of sample required to scavenge 50% of DPPH radicals</td>
</tr>
<tr>
<td>E</td>
<td>Error</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FC</td>
<td>Folin-Ciocalteu</td>
</tr>
<tr>
<td>GA</td>
<td>Gallic acid</td>
</tr>
<tr>
<td>H<sub>2</sub>O</td>
<td>Water</td>
</tr>
<tr>
<td>H<sub>3</sub>PO<sub>4</sub></td>
<td>Orthophosphoric acid</td>
</tr>
<tr>
<td>HC</td>
<td>Hydrocarbon</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>MS</td>
<td>Mean squared</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>n.d.</td>
<td>Not defined</td>
</tr>
<tr>
<td>Na<sub>2</sub>CO<sub>3</sub></td>
<td>Sodium carbonate</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate bovine saline</td>
</tr>
<tr>
<td>PDGF</td>
<td>Platelet derived growth factor</td>
</tr>
<tr>
<td>OEC</td>
<td>Overall extraction curve</td>
</tr>
<tr>
<td>FER</td>
<td>Falling extraction rate</td>
</tr>
<tr>
<td>CER</td>
<td>Constant extraction rate</td>
</tr>
<tr>
<td>R</td>
<td>Regression</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RSM</td>
<td>Response surface methodology</td>
</tr>
<tr>
<td>ScCO₂</td>
<td>Supercritical carbon dioxide</td>
</tr>
<tr>
<td>SCF</td>
<td>Supercritical fluid</td>
</tr>
<tr>
<td>SFE</td>
<td>Supercritical fluid extraction</td>
</tr>
<tr>
<td>SL</td>
<td>Saturated liquid</td>
</tr>
<tr>
<td>SS</td>
<td>Sum of squared</td>
</tr>
<tr>
<td>SV</td>
<td>Saturated vapour</td>
</tr>
<tr>
<td>TPC</td>
<td>Total phenolic content</td>
</tr>
</tbody>
</table>
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔH_{solv}</td>
<td>Heat of salvation</td>
</tr>
<tr>
<td>ΔH_{vap}</td>
<td>Heat of vaporization</td>
</tr>
<tr>
<td>a_0</td>
<td>Bed void fraction</td>
</tr>
<tr>
<td>a_{ij}</td>
<td>Coefficients of the function i,j</td>
</tr>
<tr>
<td>ε_p</td>
<td>Particle porosity</td>
</tr>
<tr>
<td>θ_e</td>
<td>External mass transfer resistance</td>
</tr>
<tr>
<td>θ_i</td>
<td>Internal mass transfer resistance</td>
</tr>
<tr>
<td>$\bar{\rho}$</td>
<td>Molar density</td>
</tr>
<tr>
<td>ρ_{CO_2}</td>
<td>Density of carbon dioxide</td>
</tr>
<tr>
<td>ρ_{MeOH}</td>
<td>Density of methanol</td>
</tr>
<tr>
<td>ρ_B</td>
<td>Apparent density</td>
</tr>
<tr>
<td>ρ_f</td>
<td>Solvent density</td>
</tr>
<tr>
<td>ρ_{ref}</td>
<td>Reference density</td>
</tr>
<tr>
<td>ρ_s</td>
<td>Particle density</td>
</tr>
<tr>
<td>μ</td>
<td>Viscosity of solvent</td>
</tr>
<tr>
<td>ρ</td>
<td>Solvent density</td>
</tr>
<tr>
<td>β</td>
<td>Simplified mathematical expression in BIC model</td>
</tr>
<tr>
<td>γ</td>
<td>Solvent to matrix ratio in the bed</td>
</tr>
<tr>
<td>a,b,c,d,e</td>
<td>Constant in solubility equations</td>
</tr>
<tr>
<td>$A_{control}$</td>
<td>Absorbance of control</td>
</tr>
<tr>
<td>A_{sample}</td>
<td>Absorbance of sample</td>
</tr>
<tr>
<td>B_i</td>
<td>Biot number</td>
</tr>
<tr>
<td>B, X</td>
<td>Equation’s parameter</td>
</tr>
<tr>
<td>C</td>
<td>Cells concentration</td>
</tr>
<tr>
<td>C_1, C_2, C_3, C_4</td>
<td>Constants for methanol density calculation</td>
</tr>
<tr>
<td>C_{i, C_2}</td>
<td>Adjustable parameters in simplified BIC model</td>
</tr>
</tbody>
</table>
\(c_u \) - Solute content in the untreated solid

\(DF \) - Dilution factor

\(D \) - Diffusion coefficient of the solute

\(d \) - Mean particle size

\(D_e \) - Intraparticle diffusion coefficient (effective diffusivity)

\(E \) - Amount of oil extracted

\(e \) - Model extraction yield

\(e_{exp} \) - Experimental extraction yield

\(f \) - Flow rate

\(j_f \) - Flux from broken cells to the fluid

\(j_s \) - Flux in solid phase

\(K \) - Equilibrium constant

\(k \) - Association constant

\(k_f \) - External mass transfer coefficient

\(K_f \) - Film mass transfer coefficient

\(k_f \sigma_0 \) - Product between external mass transfer coefficient and specific surface area between broken and intact cells

\(k_p \) - Overall mass transfer coefficient

\(k_s \) - Internal mass transfer coefficient

\(k_s \sigma_s \) - Product between internal mass transfer coefficient and specific surface area between broken and intact cells

\(M \) - Moisture content

\(M \) - Mass of passed solvent

\(m_0 \) - Mass of sample

\(m_0 \) - Weight of petri dish

\(m_1 \) - Mass of the extract

\(m_1 \) - Weight of petri dish and sample before drying

\(m_2 \) - Weight of petri dish and sample after drying

\(M_{\infty} \) - Total amount of solute

\(M_f \) - Total amount of solute diffused from sphere at time

\(MW_A \) - Molecular weight of solute

\(MW_B \) - Molecular weight of solvent

\(N \) - Mass of solid loaded in the extractor

\(N \) - Number of experiment run
n - Number of iterations
n - Number of mixers in series
N_m - Insoluble mass of matrix loaded in the extractor
n_p - Number of particles in the bed
P - Pressure
P - Number of term in model used for analysis
P_c - Critical pressure
P_{ref} - Reference pressure
\dot{Q} - Solvent mass flow rate
q - Relative amount of passed solvent
q - The concentration of solute within the particle at radius r
q_{∞} - Concentration of solute at the surface after infinite time
q_c - Relative amount of the passed solvent at the end of fast extraction period
r - Grinding efficiency
R - Universal gas constant
r, R - Radius of particle
Re - Reynolds number
S - Solubility of solute
Sc - Schmidt number
Sh - Sherwood number
T - Temperature
t - Time
T_c - Critical temperature
U - Interstitial velocity
V - Volume of passed solvent
v_2 - Molar volume of the solute
V_{solv} - Solvent volume for dissolving extract
$W_{t=0 \text{ hr}}$ - Width of wound at 0 hour (pixel)
$W_{t=24 \text{ hr}}$ - Width of wound at 24 hour (pixel)
x_1 - Solute concentration in broken cells
X_1 - Pressure
X_2 - Temperature
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_3</td>
<td>Mean particle size</td>
</tr>
<tr>
<td>x_u</td>
<td>Weight fraction of solute content in the untreated solid</td>
</tr>
<tr>
<td>Y</td>
<td>Total oil yields in supercritical as g oil/g sample</td>
</tr>
<tr>
<td>y_{exp}, y_{calc}</td>
<td>Data obtained from experiment and model equations</td>
</tr>
<tr>
<td>y_s</td>
<td>Solubility of solute in BIC model</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Related figures</td>
<td>178</td>
</tr>
<tr>
<td>B</td>
<td>Solubility estimation for different equations</td>
<td>185</td>
</tr>
<tr>
<td>C</td>
<td>Calculation examples</td>
<td>188</td>
</tr>
<tr>
<td>D</td>
<td>Publications</td>
<td>196</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

In the recent years, there has been increasing demand for functional ingredients obtained from natural resources as consumers are getting more interested in functional foods. New leads in food, nutraceutical and pharmaceutical advance have always been served by natural product substances. In the early 20th century, medicines were mostly made from roots, barks and leaves of plants as fluid extracts were in trend (McChesney et al., 2007). Besides, Esnon (2000) tells that in the history of Egyptians, Chinese and Romans, the reliance of early human evolution on medicinal plants and herbs for the use of curing the sick were well documented. In advance, Soon and Hasni (2005) reported that the researchers would keep on using the medicinal herb and should be incorporated into modern medicine.

Quercus infectoria, also known as manjakani, is a type of medicinal plant that can be used in treating diseases and it is already well-known since ancient time. Oak (Quercus) is a part of Fagaceae family. Early studies shows *Q. infectoria* has been traditionally used for post-childbirth care to strengthen the mother’s womb. The galls was also claimed to be extremely valuable for the postpartum women and there are no risky effects reported until now (Soon and Hasni, 2005). These benefits are due to the content of bioactive compounds inside the plant solid.
Bioactive compounds are additional nutritional constituents that naturally occur in small quantities in food and plant products (Kris-Etherton et al., 2002). Most frequent bioactive compounds consist of alkaloids, food grade pigments, antibiotics, mycotoxins, plant growth factors and phenolic compounds (Kris-Etherton et al., 2002; Hölker et al., 2004; Nigam, 2009). Basically, Q. infectoria galls contained phenolic compounds that are responsible for their biological activities such as antioxidant (Dicko et al., 2006), anti-allergenic, anti-atherogenic (Puupponen-Pimiä et al., 2001), anticancer (Cai et al., 2004) and antimicrobial activities (Owen et al., 2000). These constituents are a group of aromatic secondary plant metabolites which usually spreads throughout the plant, present either in the free form or in the bound form. There is a huge attention of phenolic compounds in food industry due to the food’s quality enhancement and nutritional value (Parr and Bolwell, 2000).

Solvent extraction offers good recovery of phytochemicals from various samples, such as fruits and vegetables. Supercritical fluids have been widely used as a solvent for various applications. The state of supercritical fluid can only be achieved if the fluid operates at the pressure and temperature that is near its critical conditions (Pereda et al., 2008). This type of extraction process is known as supercritical fluid extraction (SFE). Generally, supercritical fluid extraction is based on the utilization of a fluid under supercritical conditions. It is suitable for extraction and purification of various compounds, especially for those with low volatility or susceptible to thermal degradation, if cost is not the limiting factor. According to Díaz-Reinoso et al. (2008), supercritical fluids have higher diffusivity and lower density, surface tension and viscosity compared to conventional solvent used for extraction. These properties can be altered by manipulating the operating conditions (pressure and temperature), which provide more effective extraction process.

There are many advantages of SFE reviewed by Abbas et al. (2008). SFE allows the removal of active ingredients from herbs and plants with better flavour or fragrance reproduction than the conventional extraction. The operation at reduced temperature avoids thermal degradation and decomposition of labile compounds, whereas the absence of light and oxygen prevents oxidation reactions. Besides, the separation and recovery of active ingredients is in higher quality by using selective
fractionation. In practice, more than 90% of all analytical SFE was performed with carbon dioxide (CO₂) as a solvent, because of its practical reasons such as relatively low critical temperature (31.1°C) and pressure (73.9 bar), nontoxic, non-flammable, available in high purity at considerably low cost and easily separated because of its volatility. CO₂ is suitable to extract heat labile, natural compounds with low polarity and volatility (Díaz-Reinoso et al., 2006) and best suited for lipophilic compounds (Pourmortazavi and Hajimirsadeghi, 2007). In addition, the gas-like characteristic of CO₂ helps the fluid diffuse into the matrix and access the phytochemicals while the liquid-like characteristics provide good salvation power. Many reviews have been reported that supercritical extraction utilizing CO₂ as solvent gave high recovery of interest compound than typical organic solvents (Tena et al., 1997; Kaplan et al., 2002; Rajaei et al., 2005; Prandhan et al., 2010).

The main negative aspect of CO₂ is its lack of polarity for extraction of polar analytes (Wang et al., 2003). Thus, CO₂ does not dissolve any mineral species such as salts and metals, and hydrophilic compounds, such as proteins and sugars (Perrut, 2004). In addition, the storage tank for CO₂ and extractors must be suitably isolated and equipped with relief system (Lucas et al., 2003). In order to enhance solubility of target compounds and extraction efficiency, the small amount addition of co-solvents (methanol or ethanol) will be useful and it will allow the process to operate at both low pressure and temperature. Supercritical carbon dioxide (ScCO₂) is suitable for various applications with the following conditions; processing cost is not a limiting factor, restriction of conventional solvent extraction by environmental regulations, consumer demands or health considerations, products have improved in quality and/or marketability; and traditional processing is not applicable because the product is thermally labile or morphologically unique.

The ScCO₂ extraction of the phenolic compounds which in this study is hydrolysable tannins from Q. infectoria galls can be explained using mathematical expressions in terms of solubility and mass transfer phenomena. The feasibility and scaling-up of the extraction process can be evaluated using the kinetic parameters obtained from the solubility and mass transfer models.
1.2 Problem Statement

The benefits of supercritical carbon dioxide (ScCO$_2$) extraction as a green extraction method such as suitable for heat labile compounds, low toxicity, reduce extraction time, minimize solvent used and produce high quality of product is well known (Chen and Ling, 2000; Mohamed and Mansoori, 2002). However, the extraction of polar compounds is not favourable in this method due to polarity properties of carbon dioxide. Hydrolysable tannin, tannic acid and gallic acid, which is the interest compounds in this study is water soluble, hence the addition of polar solvent, i.e. methanol is needed in this study to increase the solubility of these compounds (Jin et al. 2012). The extraction of polar bioactive compounds implementing CO$_2$-modifier system has been widely applied by previous researchers (Chafer et al, 2007; Fan et al., 2010; Ghafoor et al., 2012; Kukula-Koch et al., 2013). Furthermore, although numerous reports on supercritical fluid extraction of medicinal plants or seeds have been published, however, the extraction of substances from *Quercus infectoria* galls remains scarce in the literature, for instance their solubility data and mass transfer behaviour during the extraction process are rather limited.

Most of *Q. infectoria* extraction researches were performed using conventional solvent extraction. The extraction of oak gall has conducted by Calam in 1966 using Soxhlet extraction. Initially, the aims of the study are to isolate the active compounds from a fresh supply of galls and to prove that the plant extract can produce histamine protection. Even though the findings on the oak gall extracts were appeared to have significant antihistamine activity, but it is only for a short duration and shows non-specific effect. The extracts also have been signified to contain toxic ingredients. Pithayanukul et al. (2009) used maceration process with 50% aqueous to investigate the hepatoprotective potential of the plant extract. In another research, Ghafour et al. (2010) used soaking method in distilled water to extract tannin, saponins, alkaloid, glycoside and other phenolic compounds present in the galls. Basri et al. (2012) also applied soaking method with different solvent which was methanol and determine the effectiveness of the galls extracts against oral pathogens. The only research which applied modern technology such as SFE in galls extraction
was done by Stashia (2013), where the bioactivities and transport processes involved have not been explored yet. During the study, the author found that only a trace amount of gallic acid in the sample could be due to unpolar properties of CO$_2$. This study does not utilize the application of modifier in the extraction process.

Considering the importance of medicinal plants in pharmaceutical industries nowadays and the increasing demands for green technologies, it is remarkable to find alternative methods to prepare bioactive compounds from *Q. infectoria* galls. In addition, solubility data and mass transfer relationship for the extraction of *Q. infectoria* using ScCO$_2$ extraction with the help of modifier are not yet established. Hence, a reliable model is needed as it is an effective method to support the application of supercritical fluid in natural products extraction in terms of scaling up and design the process.

1.3 Objectives of Study

The aims of this study are:

a) To investigate the effect of supercritical carbon dioxide extraction conditions such as pressure, temperature and particle size on the extraction yield and hydrolysable tannins content from *Q. infectoria* galls and followed by the optimization using response surface methodology (RSM).

b) To determine the bioactivities of extracted *Q. infectoria* galls including antioxidant activity, cytotoxicity and cell migration ability using *in vitro* wound healing related assays.

c) To model the solubility data using density-based equations and kinetic coefficients for the extraction of *Q. infectoria* galls using supercritical carbon dioxide.
1.4 Scope of Study

The tasks that need to be accomplished in order to achieve the aim of this study are:

a) Pre-treatment and preliminary experiments were studied to determine moisture content, total solute content and constant solvent flow rate.

b) Extraction of *Q. infectoria* galls was performed using supercritical carbon dioxide extraction at pressures (20 to 30 MPa), temperatures (50 to 70°C) and mean particle sizes (0.50 to 1.50 mm). Extraction pressure was kept above 20 MPa because the application of pressure below than that showed no obvious extractable yield detected. 30 MPa was used as the maximum pressure used because of the equipment limitation. For extraction temperature, 50°C was applied to ensure supercritical condition during the extraction and the extraction above 70°C is not suitable for extracting bioactive compound. The selection of particle size range was done by trial and error runs. It was found that sizes < 0.50 mm lowering the extracted yield and clogging also occur inside the vessel. The unavailability of mesh size larger than 1.50 mm limits the selection of the mean particle size used in this study.

c) Identification of hydrolysable tannins content in extracted *Q. infectoria* galls using High Performance Liquid Chromatography (HPLC).

d) Optimization of extraction conditions for the extraction yield and hydrolysable tannins content of *Q. infectoria* galls using software of Design Expert 7.0.

e) Determination of total phenolic content, antioxidant activity and cell migration properties of extracted *Q. infectoria* galls by experimenting total phenolic content, free-radical scavenging, cytotoxicity assay and scratch assay analysis on the human skin fibroblast (HSF1184) cell.

f) Correlation of solubility constants at different temperatures and pressures range by fitting the experimental data with six density-based solubility equations; Chrastil, Adachi-Lu, del Valle-Aguilera, Sparks, Kumar and Johnston, and Bartle equations; and comparison among them.
g) Determination of diffusion coefficient and mass transfer coefficient for extraction of *Q. infectoria* galls using single sphere model and broken and intact cell model and their comparison.

1.5 Significance of Study

The key contributions that have emerged from this work can be divided into two aspects; which are academic and application. Academically, the manipulation of extraction conditions to extract more polar compound from *Quercus infectoria* galls using supercritical fluid for medicinal purposes is considered new since there are no available *Q. infectoria* galls research reported, specifically in Malaysia. Besides, the medicinal properties of *Q. infectoria* have been proved by scientific study using living cell like fibroblasts or HaCaT. The establishment of database for solubility behaviour, diffusion coefficient and mass transfer provides a significance reference for further studies of supercritical fluid extraction of the galls.

In application point of view, one of the main contributions is the application of suitable supercritical fluid extraction conditions to access high quality of valuable compounds in *Q. infectoria* galls. By knowing the data for wound healing analysis, appropriate extracts dosage to be applied as medicine without being harmful to human being can be noted. In addition, the available modelling data is useful in scaling up and economic evaluation of industrial SFE processes. Apart from that, by doing this research, it is hope that it can enrich the field of global studies with the production of products by applying supercritical fluid extraction method, especially carbon dioxide fluid in publication, patent and networking.
1.6 Thesis Outline

This thesis is organised in 5 chapters. Chapter 1 begins with the introduction of this research project i.e. the brief introduction of supercritical fluid extraction, medicinal properties of *Quercus infectoria* galls and models to be used in this study. This chapter also includes problem statements that had motivated this research, the research objectives, scopes and significance of this research conducted.

Chapter 2 presents the overview of the pharmacology properties of the galls. This chapter also describes the fundamental theory of supercritical fluid extraction, comprises of chemical and physical properties, selection of extraction conditions and solvent, and review of previous research on the topic of interest. Optimization and modelling of supercritical fluid extraction also reviewed in this chapter. This chapter ends with a brief about factors influencing wound healing properties.

Chapter 3 describes the detailed methodology in order to achieve the research objectives. The experimental work for extraction process, compound analysis and biological analysis are mentioned as a guideline for this research. The design of experiments is also presented in this chapter.

Chapter 4 are discussed in two different parts. The first part discussed the findings through experimental work including the effects of operating conditions on extracted yield and bioactive compounds of the galls; and the effect of the extracts on antioxidant activity, fibroblast proliferation assay and scratch wound assay. The mathematical models on solubility behaviour and mass transfer are discussed in the latter part.

Finally, Chapter 5 highlights the conclusions and recommendations of the work. The conclusions are summarised depends on the results and discussion in Chapter 4. The recommendations also suggested for guidance and improvement of future work related to supercritical carbon dioxide extraction and *Quercus infectoria*.
REFERENCES

Stability by Supercritical Carbon Dioxide Extraction. *The Journal of Supercritical Fluids.* 68, 45-51.

Rosehip Fruit Using Supercritical CO₂. *Journal of Supercritical Fluids.* 44(3), 308–314.

