PARALLELIZATION OF MULTIDIMENSIONAL HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION ON DÉTENTE INSTANTANÉE CONTRÔLÉE DEHYDRATION PROCESS

HAFIZAH FARHAH BINTI SAIPAN @ SAIPOL

UNIVERSITI TEKNOLOGI MALAYSIA
PARALLELIZATION OF MULTIDIMENSIONAL HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION ON DÉTENTE INSTANTANÉE CONTRÔLÉE DEHYDRATION PROCESS

HAFIZAH FARHAH BINTI SAIPAN @ SAIPOL

A thesis submitted in fulfilment of the requirements for the award of the degree of
Doctor of Philosophy (Mathematics)

Faculty of Science
Universiti Teknologi Malaysia

MARCH 2017
To my dear husband, abah, mak, and family.
ACKNOWLEDGEMENT

All the praises and thanks to Allah the Almighty for giving me the strength to complete and submit this thesis. I would like to express my sincere gratitude to my beloved supervisor, Assoc. Prof. Dr. Norma binti Alias for her sincere and valuable guidance and encouragement. I am extremely grateful and indebted to her for sharing her knowledge and ideas, giving continuous support, and advice throughout this journey.

I sincerely thank Ibnu Sina Institute and the staff members for providing help and guidance and the necessary facilities I need. I also would like to thank all my friends, and to one and all who has been involved directly or indirectly in completing this thesis.

Finally, a special thanks to my beloved parents and parents in law, Saipol bin Juraimi, Azizah binti Abdul Ghani, Zainol Abidin, and Lailawati for their endless supports and prayers. My sincere appreciation to my dear husband, Aezal Muhammad Faim for being such a very supportive husband and has always kept me motivated. I am also very grateful to my family for their support and encouragement.
ABSTRACT

The purpose of this research is to propose some new modified mathematical models to enhance the previous model in simulating, visualizing and predicting the heat and mass transfer in dehydration process using instant controlled pressure drop (DIC) technique. The main contribution of this research is the mathematical models which are formulated from the regression model (Haddad et al., 2007) to multidimensional hyperbolic partial differential equation (HPDE) involving dependent parameters; moisture content, temperature, and pressure, and independent parameters; time and dimension of region. The HPDE model is performed in multidimensional; one, two and three dimensions using finite difference method with central difference formula is used to discretize the mathematical models. The implementation of numerical methods such as Alternating Group Explicit with Brian (AGEB) and Douglas-Rachford (AGED) variances, Red Black Gauss Seidel (RBGS) and Jacobi (JB) method to solve the system of linear equation is another contribution of this research. The sequential algorithm is developed by using Matlab R2011a software. The numerical results are analyzed based on execution time, number of iterations, maximum error, root mean square error, and computational complexity. The grid generation process involved a fine grained large sparse data by minimizing the size of interval, increasing the dimension of the model and level of time steps. Another contribution is the implementation of the parallel algorithm to increase the speedup of computation and to reduce computational complexity problem. The parallelization of the mathematical model is run on Matlab Distributed Computing Server with Linux operating system. The parallel performance evaluation of multidimensional simulation in terms of execution time, speedup, efficiency, effectiveness, temporal performance, granularity, computational complexity and communication cost are analyzed for the performance of parallel algorithm. As a conclusion, the thesis proved that the multidimensional HPDE is able to be parallelized and PAGEB method is the alternative solution for the large sparse simulation. Based on the numerical results and parallel performance evaluations, the parallel algorithm is able to reduce the execution time and computational complexity compared to the sequential algorithm.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxiv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Research 1
1.2 DIC Technique 3
 1.2.1 Mathematical Model in DIC Technique 6
1.3 Statement of Problem 10
1.4 Objectives of Research 11
1.5 Scope of Research 12
1.6 Significance of Research 14
1.7 Thesis Organization 14

2 LITERATURE REVIEW 17
2.1 Finite Difference Method 17
 2.1.1 Finite Difference Grid 18
 2.1.2 Taylor’s Theorem 18
2.2 Basic Scheme for PDE 20
 2.2.1 Classical Explicit Method 20
 2.2.2 Fully Implicit Method 21
2.3 Numerical Methods for Solving SLE 22
 2.3.1 Classical JB Method 23
 2.3.2 Classical RBGS Method 25
 2.3.3 AGE Method 26
 2.3.3.1 Convergence Analysis for AGE Method 28
 2.3.4 AGED Method 32
 2.3.5 AGEB Method 35
2.4 Numerical Analysis 36
 2.4.1 Consistency 37
 2.4.2 Convergence 38
 2.4.3 Stability 38
 2.4.4 Measurements of Numerical Errors 39
 2.4.5 Computational Complexity Cost 40
2.5 Distributed Memory Parallel Computing System 41
 2.5.1 Designing Parallel Programming 42
 2.5.2 Distributed Parallel Computing Architecture 45
 2.5.3 Matlab Distributed Computing Server 48
 2.5.3.1 Development of MDCS 51
 2.5.4 Parallel Performance Evaluations 53
 2.5.4.1 Speedup 53
 2.5.4.1.1 Amdahl’s Law 54
 2.5.4.1.2 Gustafson-Barsis Law 55
 2.5.4.2 Efficiency 55
 2.5.4.3 Effectiveness 57
 2.5.4.4 Temporal Performance 57
 2.5.4.5 Granularity 57
 2.5.4.6 Communication Cost 58
3 FORMULATION OF REGRESSION MODEL TO PDE

3.1 Introduction

3.2 Formulating the Statistical Regression Analysis to Parabolic PDE

3.3 1D Parabolic PDE Model

3.3.1 2D Parabolic PDE Model

3.4 Formulation from Parabolic to Hyperbolic Equation

3.4.1 1D HPDE Model

3.4.2 2D HPDE Model

3.4.3 3D HPDE Model

3.5 Chapter Summary

4 SEQUENTIAL AND PARALLEL ALGORITHMS FOR 1D MODEL

4.1 Introduction

4.2 Discretization using Weighted Average Method

4.3 Numerical Methods

4.3.1 1D_SJB Method

4.3.2 1D_SRSGS Method

4.3.3 1D_SAGED Method

4.3.4 1D_SAGEB Method

4.4 Parallelization of Numerical Methods

4.4.1 1D_PJB Method

4.4.2 1D_PRBGS Method

4.4.3 1D_PAGED Method

4.4.4 1D_PAGEB Method

4.5 Computational Complexity

4.5.1 Computational Complexity for Sequential Algorithm

4.5.2 Computational Complexity for Parallel Algorithm

4.5.3 Communication Cost for Parallel Algorithm
5 SEQUENTIAL AND PARALLEL ALGORITHMS FOR 2D MODEL

5.1 Introduction

5.2 Discretization using Weighted Average Method

5.3 Numerical Methods
 5.3.1 2D_SJB Method
 5.3.2 2D_SR_BGS Method
 5.3.3 2D_SAGED Method
 5.3.4 2D_SAGEB Method

5.4 Parallelization of Numerical Methods
 5.4.1 2D_PJB Method
 5.4.2 2D_PRBGS Method
 5.4.3 2D_PAGED Method
 5.4.4 2D_PAGEB Method

5.5 Computational Complexity and Communication Cost
 5.5.1 Computational Complexity for Sequential Algorithm
 5.5.2 Computational Complexity for Parallel Algorithm
 5.5.3 Communication Cost for Parallel Algorithm

5.6 Results and Discussion
 5.6.1 Numerical Results for Sequential Algorithm
 5.6.2 Parallel Performance Evaluations for Parallel Algorithm

5.7 Chapter Summary
6 SEQUENTIAL AND PARALLEL ALGORITHMS FOR 3D MODEL

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>188</td>
</tr>
<tr>
<td>6.2</td>
<td>Discretization using Weighted Average Method</td>
<td>189</td>
</tr>
<tr>
<td>6.3</td>
<td>Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>6.3.1</td>
<td>3D_SJB Method</td>
<td>192</td>
</tr>
<tr>
<td>6.3.2</td>
<td>3D_SRBGS Method</td>
<td>194</td>
</tr>
<tr>
<td>6.3.3</td>
<td>3D_SAGED Method</td>
<td>196</td>
</tr>
<tr>
<td>6.3.4</td>
<td>3D_SAGEB Method</td>
<td>215</td>
</tr>
<tr>
<td>6.4</td>
<td>Parallelization of Numerical Methods</td>
<td></td>
</tr>
<tr>
<td>6.4.1</td>
<td>3D_PJB Method</td>
<td>231</td>
</tr>
<tr>
<td>6.4.2</td>
<td>3D_PRBGS Method</td>
<td>233</td>
</tr>
<tr>
<td>6.4.3</td>
<td>3D_PAGED Method</td>
<td>236</td>
</tr>
<tr>
<td>6.4.4</td>
<td>3D_PAGEB Method</td>
<td>239</td>
</tr>
<tr>
<td>6.5</td>
<td>Computational Complexity and Communication Cost</td>
<td></td>
</tr>
<tr>
<td>6.5.1</td>
<td>Computational Complexity for Sequential Algorithm</td>
<td>242</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Computational Complexity for Parallel Algorithm</td>
<td>242</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Communication Cost for Parallel Algorithm</td>
<td>244</td>
</tr>
<tr>
<td>6.6</td>
<td>Results and Discussion</td>
<td></td>
</tr>
<tr>
<td>6.6.1</td>
<td>Numerical Results for Sequential Algorithm</td>
<td>245</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Parallel Performance Evaluations for Parallel Algorithm</td>
<td>247</td>
</tr>
<tr>
<td>6.7</td>
<td>Chapter Summary</td>
<td>255</td>
</tr>
</tbody>
</table>

7 CONCLUSION AND RECOMMENDATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>256</td>
</tr>
<tr>
<td>7.2</td>
<td>Conclusion</td>
<td>256</td>
</tr>
<tr>
<td>7.3</td>
<td>Recommendation for Future Research</td>
<td>261</td>
</tr>
</tbody>
</table>

REFERENCES

Appendices A-D: 276 - 310
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Summary of the conventional dehydration techniques</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Value of parameters for pressure, water content and processing time</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>The comparison between sequential and parallel computing</td>
<td>41</td>
</tr>
<tr>
<td>2.2</td>
<td>Command for communication activities in MDCS</td>
<td>50</td>
</tr>
<tr>
<td>3.1</td>
<td>Input parameters involved to simulate the 1D parabolic PDE model</td>
<td>66</td>
</tr>
<tr>
<td>3.2</td>
<td>The absolute and relative errors from Haddad et al. (2007) and 1D parabolic PDE model (Equation 3.4)</td>
<td>66</td>
</tr>
<tr>
<td>3.3</td>
<td>Input parameters for 1D parabolic PDE for heat and mass equation</td>
<td>70</td>
</tr>
<tr>
<td>3.4</td>
<td>The absolute and relative errors from Haddad et al. (2007) and 1D hyperbolic PDE model (Equation 3.14)</td>
<td>74</td>
</tr>
<tr>
<td>3.5</td>
<td>Value of parameters of HPDE model for heat and mass transfer</td>
<td>76</td>
</tr>
<tr>
<td>3.6</td>
<td>The chronology to enhance the mathematical model in dehydration using DIC technique</td>
<td>84</td>
</tr>
<tr>
<td>4.1</td>
<td>Arithmetic operations per iteration in sequential algorithm for 1D heat and mass equations ((m = \text{problem size}))</td>
<td>124</td>
</tr>
<tr>
<td>4.2</td>
<td>Arithmetic operations per iteration in parallel algorithm for 1D heat and mass equations</td>
<td>125</td>
</tr>
<tr>
<td>4.3</td>
<td>Communication cost in parallel algorithm for 1D heat and mass equations</td>
<td>126</td>
</tr>
<tr>
<td>4.4</td>
<td>Parameter values for 1D HPDE heat and mass equations</td>
<td>128</td>
</tr>
</tbody>
</table>
4.5 The numerical results of heat and mass equations when $\theta = 1$ and $\varepsilon = 10^{-5}$

4.6 The numerical results of heat and mass equations when $\theta = 1$ and $\varepsilon = 10^{-10}$

4.7 Execution time for heat and mass equations for $\varepsilon = 10^{-5}$ and $\varepsilon = 10^{-10}$ and its percentage

4.8 Granularity for heat and mass equations using 1D_PAGEB method

4.9 Granularity for heat and mass equations using 1D_PAGED method

4.10 Granularity for heat and mass equations using 1D_PRBGS method

4.11 Granularity for heat and mass equations using 1D_PJB method

5.1 Arithmetic operations per iteration in sequential algorithm for 2D heat and mass equations

5.2 Arithmetic operations per iteration in parallel algorithm for 2D heat and mass equations

5.3 Communication cost in parallel algorithm for 2D heat and mass equations where $m = 401 \times 401$ and $m = 901 \times 901$

5.4 Value of parameters for 2D heat and mass equations

5.5 The numerical results for 2D heat and mass equations when $\theta = 1$, $N_i = N_j = 401$, $\Delta x = \Delta y = 1.25e - 05$ and $\Delta t = 2.025e - 06$

5.6 The numerical results for 2D heat and mass equations when $\theta = 1$, $N_i = N_j = 901$, $\Delta x = \Delta y = 5.556e - 06$ and $\Delta t = 9.0001e - 07$

5.7 Execution time for heat and mass equation for size of matrix 401×401 and 901×901 and its percentage

5.8 Granularity for size of matrix 401×401 and 901×901 using 2D_PAGEB method

5.9 Granularity for size of matrix 401×401 and 901×901 using 2D_PAGED method

5.10 Granularity for size of matrix 401×401 and 901×901 using
2D_PRBGS method

5.11 Granularity for size of matrix 401×401 and 901×901 using 2D_PJB method

6.1 Arithmetic operations per iteration for sequential algorithm of 3D heat and mass equations ($m =$ problem size)

6.2 Arithmetic operations per iteration for parallel algorithm of 3D heat and mass equations

6.3 Communication cost in parallel algorithm for 3D heat and mass equations

6.4 Value of parameters for 3D heat and mass equations

6.5 The numerical results for 3D heat and mass equations when

$$\theta = 1, \quad Ni = Nj = Nk = 21, \quad \Delta x = \Delta y = \Delta z = 2.38e - 04 \quad \text{and} \quad \Delta t = 2.38e - 05$$

6.6 The numerical results for 3D heat and mass equations when

$$\theta = 1, \quad Ni = Nj = Nk = 41, \quad \Delta x = \Delta y = \Delta z = 1.22e - 04 \quad \text{and} \quad \Delta t = 1.22e - 05$$

6.7 Execution time for heat and mass equations for size of matrix, $21 \times 21 \times 21$ and $41 \times 41 \times 41$ and its percentage

6.8 Granularity for size of matrix $21 \times 21 \times 21$ and $41 \times 41 \times 41$ using 3D_PAGEB method

6.9 Granularity for size of matrix $21 \times 21 \times 21$ and $41 \times 41 \times 41$ using 3D_PAGED method

6.10 Granularity for size of matrix $21 \times 21 \times 21$ and $41 \times 41 \times 41$ using 3D_PRBGS method

6.11 Granularity for size of matrix $21 \times 21 \times 21$ and $41 \times 41 \times 41$ using 3D_PJB method
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic diagram of the DIC reactor</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Temperature and pressure changes during DIC treatment</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Parallel algorithm design</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Computational grid points</td>
<td>18</td>
</tr>
<tr>
<td>2.2</td>
<td>The computational molecules for explicit method</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>The computational molecules for fully implicit method</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>The computational molecules for RBGS method</td>
<td>25</td>
</tr>
<tr>
<td>2.5</td>
<td>Problem solving using sequential computing</td>
<td>42</td>
</tr>
<tr>
<td>2.6</td>
<td>Problem solving using parallel computing</td>
<td>42</td>
</tr>
<tr>
<td>2.7</td>
<td>The computing systems according to a) SISD, b) SIMD, c) MISD, and d) MIMD</td>
<td>44</td>
</tr>
<tr>
<td>2.8</td>
<td>Phases of designing the parallel algorithm</td>
<td>45</td>
</tr>
<tr>
<td>2.9</td>
<td>Communication activities involved in JB method</td>
<td>47</td>
</tr>
<tr>
<td>2.10</td>
<td>Parallel Command Window</td>
<td>49</td>
</tr>
<tr>
<td>2.11</td>
<td>Example code for pmode command and its output</td>
<td>50</td>
</tr>
<tr>
<td>2.12</td>
<td>MDCS cluster workstation in Ibnu Sina Insitute, UTM</td>
<td>51</td>
</tr>
<tr>
<td>2.13</td>
<td>Parallel architecture of MDCS cluster</td>
<td>52</td>
</tr>
<tr>
<td>2.14</td>
<td>Parallel process using MDCS</td>
<td>53</td>
</tr>
<tr>
<td>2.15</td>
<td>Speedup versus number of processors</td>
<td>55</td>
</tr>
<tr>
<td>3.1</td>
<td>The phytate content during dehydration process using DIC technique</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>The comparison of phytates in L.albus seed by regression model function in Haddad et al. (2007) and 1D parabolic PDE</td>
<td></td>
</tr>
</tbody>
</table>
model (Equation 3.4)

3.3 The phytate content with a) respect to x-axis and with b) increasing of time 65

3.4 2D drying material 67

3.5 The phytate content with respect to x- and y- axis 68

3.6 Mass transfer after a) 1, 5 and 10 seconds and b) after 10 seconds 71

3.7 Temperature of drying material a) after 1, 5 and 10 seconds and b) after 10 seconds 71

3.8 The comparison of phytates in Laibus seed by regression model function in Haddad et al. (2007) and 1D hyperbolic PDE model (Equation 3.14) 73

3.9 The visualization of the (a) 1D, and (b) 2D equations from Equation (3.14) and (3.16) 75

3.10 The visualization of the mass transfer a) based on x-axis, and b) time in second 78

3.11 The visualization of the heat transfer a) based on x-axis, and b) time in second 78

3.12 The visualization of the 2D HPDE of a) mass transfer and b) heat transfer in x- and y-axis 80

3.13 The visualization of the 3D HPDE of a) mass transfer and b) heat transfer in x-, y- and z-axis 83

3.14 The schematic diagram of the 3D HPDE model using Comsol Multiphysics software 83

4.1 The computational molecules for 1D_SJB method 91

4.2 The computational molecules of red and black points for 1D_SRBGS method 93

4.3 The computational molecules for 1D_SAGED method at a) $\left(n + \frac{1}{2}\right)$ and b) $(n+1)$ time level 97

4.4 The computational molecule for 1D_SAGEB method at a) $\left(n + \frac{1}{4}\right)$, b) $\left(n + \frac{1}{2}\right)$ and c) $(n+1)$ time level 101
4.5 Non overlapping domain decomposition of 1D problem 103
4.6 Algorithm for Matlab client 103
4.7 Pseudocode for defining the left and right workers 105
4.8 Pseudocode for data decomposition for each worker 105
4.9 The structure of parallel strategy from Matlab client to each worker 106
4.10 Pseudocode for global convergence test in the Matlab client 106
4.11 Pseudocode for local convergence test in the Matlab worker 107
4.12 Message passing for the communication activities between client-workers and between neighboring workers 107
4.13 Parallel algorithm for 1D_PJB method 109
4.14 Send and receive points in 1D_PJB method 110
4.15 Parallel algorithm for 1D_PRBGS method 111
4.16 Send and receive points in 1D_PRBGS method 112
4.17 Parallel algorithm for 1D_PAGED method 114
4.18 Send and receive points in 1D_PAGED method 114
4.19 Data partition for matrix a) G_1 and b) G_2 to a number of worker 115
4.20 Parallel algorithm for 1D_PAGEB method 117
4.21 Send and receive points in 1D_PAGEB method 118
4.22 Sequential algorithms for a) 1D_SJB, b) 1D_SRGS, c) 1D_SAGED, and d) 1D_SAGEB method 119
4.23(a) Parallel algorithm for 1D_PJB method 120
4.23(b) Parallel algorithm for 1D_PRBGS method 121
4.23(c) Parallel algorithm for 1D_PAGED method 122
4.23(d) Parallel algorithm for 1D_PAGEB method 123
4.24 Execution time for tolerance a) $\varepsilon = 10^{-5}$ and b) $\varepsilon = 10^{-10}$ on 1D i) mass and ii) heat equations versus number of workers 130
4.25 Speedup for tolerance a) $\varepsilon = 10^{-5}$ and b) $\varepsilon = 10^{-10}$ on 1D i) mass and ii) heat equations versus number of workers 131
4.26 Efficiency value for tolerance a) $\varepsilon = 10^{-5}$ and b) $\varepsilon = 10^{-10}$ on 1D i) mass and ii) heat equations versus number of workers 132
4.27 Effectiveness value for tolerance a) $\varepsilon = 10^{-5}$ and b) $\varepsilon = 10^{-10}$
on 1D i) mass and ii) heat equations versus number of workers

4.28 Temporal performance for tolerance a) $\varepsilon = 10^{-5}$ and b) $\varepsilon = 10^{-10}$ on 1D i) mass and ii) heat equations versus number of workers

4.29 Granularity analysis for tolerance (a) $\varepsilon = 10^{-5}$ and (b) $\varepsilon = 10^{-10}$ on 1D (i) mass and (ii) heat equations versus number of workers

5.1 The computational molecules for 2D_SJB method

5.2 The computational molecules for 2D_SRBS method

5.3 Column-wise ordering of the mesh points parallel to the y-axis

5.4 The computational molecule of 2D_SAGED method at

a) $\left[n + \frac{1}{4} \right]$, b) $\left[n + \frac{1}{2} \right]$, c) $\left[n + \frac{3}{4} \right]$ and d) $(n+1)$ time level

5.5 The computational molecule of 2D_SAGEB method at

a) $\left[n + \frac{1}{5} \right]$, b) $\left[n + \frac{2}{5} \right]$, c) $\left[n + \frac{3}{5} \right]$, d) $\left[n + \frac{4}{5} \right]$ and e) $(n+1)$ time level

5.6 Domain decomposition technique and message passing strategy for 2D problem

5.7 Parallel algorithm for 2D_PJB method

5.8 Send and receive lines in 2D_PJB method

5.9 Parallel algorithm for 2D_PRBGS method

5.10 Send and receive lines in 2D_PRBGS method

5.11 Parallel algorithm for 2D_PAGED method

5.12 Send and receive lines in 2D_PAGED method

5.13 Parallel algorithm for 2D_PAGEB method

5.14 Execution time for size of matrix a) 401×401 and b) 901×901 on 2D i) mass and ii) heat equation versus number of workers

5.15 Speedup for size of matrix a) 401×401 and b) 901×901 on 2D i) mass and ii) heat equation versus number of workers

5.16 Efficiency for size of matrix a) 401×401 and b) 901×901 on 2D i) mass and ii) heat equation versus number of workers
5.17 Effectiveness for size of matrix a) 401×401 and b) 901×901 on 2D i) mass and ii) heat equation versus number of workers 183
5.18 Temporal performance for size of matrix a) 401×401 and b) 901×901 on 2D i) mass and ii) heat equation versus number of workers 183
5.19 Granularity analysis for size of matrix a) 401×401 and b) 901×901 on 2D i) mass and ii) heat equation versus number of workers 184
6.1 The computational molecule for 3D_SJB method 193
6.2 The computational molecule for 3D_SRBGS method 195
6.3 Planes parallel to xy-axis 201
6.4 Planes parallel to yz-axis 208
6.5 Planes parallel to xz-axis 211
6.6 The computational molecules for 3D_SAGED method 215
6.7 The computational molecules for 3D_SAGEB method 228
6.8 Domain decomposition technique and message passing strategy for 3D problem 230
6.9 Parallel algorithm for 3D_PJB method 232
6.10 Send and receive surface in 3D_PJB method 233
6.11 Parallel algorithm for 3D_PRBGS method 235
6.12 Send and receive surface in 3D_PRBGS method 235
6.13 Parallel algorithm for 3D_PAGED method 237
6.14 Send and receive surface in 3D_PAGED method 238
6.15 Parallel algorithm for 3D_PAGEB method 241
6.16 Execution time for size of matrix a) $21 \times 21 \times 21$ and b) $41 \times 41 \times 41$ on 3D i) mass and ii) heat equation versus number of workers 248
6.17 Speedup for size of matrix a) $21 \times 21 \times 21$ and b) $41 \times 41 \times 41$ on 3D i) mass and ii) heat equation versus number of workers 249
6.18 Efficiency for size of matrix a) $21 \times 21 \times 21$ and b) $41 \times 41 \times 41$ on 3D i) mass and ii) heat equation versus number of workers 250
6.19 Effectiveness for size of matrix a) $21 \times 21 \times 21$ and
b) $41 \times 41 \times 41$ on 3D i) mass and ii) heat equation versus number of workers

6.20 Temporal performance for size of matrix a) $21 \times 21 \times 21$ and b) $41 \times 41 \times 41$ on 3D i) mass and ii) heat equation versus number of workers

6.21 Granularity analysis for size of matrix a) $21 \times 21 \times 21$ and b) $41 \times 41 \times 41$ on 3D i) mass and ii) heat equation versus number of workers
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D_PAGEB</td>
<td>1D Parallel Alternating Group Explicit with Brian variant</td>
</tr>
<tr>
<td>1D_PAGED</td>
<td>1D Parallel Alternating Group Explicit with Douglas-Rachford variant</td>
</tr>
<tr>
<td>1D_PJB</td>
<td>1D Parallel Jacobi</td>
</tr>
<tr>
<td>1D_PRBGS</td>
<td>1D Parallel Red Black Gauss Seidel</td>
</tr>
<tr>
<td>1D_SAGEB</td>
<td>1D Sequential Alternating Group Explicit with Brian variant</td>
</tr>
<tr>
<td>1D_SAGED</td>
<td>1D Sequential Alternating Group Explicit with Douglas-Rachford variant</td>
</tr>
<tr>
<td>1D_SJB</td>
<td>1D Sequential Jacobi</td>
</tr>
<tr>
<td>1D_SRBS</td>
<td>1D Sequential Red Black Gauss Seidel</td>
</tr>
<tr>
<td>2D_PAGEB</td>
<td>2D Parallel Alternating Group Explicit with Brian variant</td>
</tr>
<tr>
<td>2D_PAGED</td>
<td>2D Parallel Alternating Group Explicit with Douglas-Rachford variant</td>
</tr>
<tr>
<td>2D_PJB</td>
<td>2D Parallel Jacobi</td>
</tr>
<tr>
<td>2D_PRBGS</td>
<td>2D Parallel Red Black Gauss Seidel</td>
</tr>
<tr>
<td>2D_SAGEB</td>
<td>2D Sequential Alternating Group Explicit with Brian variant</td>
</tr>
<tr>
<td>2D_SAGED</td>
<td>2D Sequential Alternating Group Explicit with Douglas-Rachford variant</td>
</tr>
<tr>
<td>2D_SJB</td>
<td>2D Sequential Jacobi</td>
</tr>
<tr>
<td>2D_SRBS</td>
<td>2D Sequential Red Black Gauss Seidel</td>
</tr>
<tr>
<td>3D_PAGEB</td>
<td>3D Parallel Alternating Group Explicit with Brian variant</td>
</tr>
<tr>
<td>3D_PAGED</td>
<td>3D Parallel Alternating Group Explicit with Douglas-Rachford variant</td>
</tr>
<tr>
<td>3D_PJB</td>
<td>3D Parallel Jacobi</td>
</tr>
<tr>
<td>3D_PRBGS</td>
<td>3D Parallel Red Black Gauss Seidel</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>3D_SAGEB</td>
<td>3D Sequential Alternating Group Explicit with Brian variant</td>
</tr>
<tr>
<td>3D_SAGED</td>
<td>3D Sequential Alternating Group Explicit with Douglas-Rachford variant</td>
</tr>
<tr>
<td>3D_SJB</td>
<td>3D Sequential Jacobi</td>
</tr>
<tr>
<td>3D_SRBG5</td>
<td>3D Sequential Red Black Gauss Seidel</td>
</tr>
<tr>
<td>AGE</td>
<td>Alternating Group Explicit</td>
</tr>
<tr>
<td>AGEB</td>
<td>Alternating Group Explicit with Brian variant</td>
</tr>
<tr>
<td>AGED</td>
<td>Alternating Group Explicit with Douglas-Rachford variant</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>DIC</td>
<td>Détente Instantanée Contrôlée</td>
</tr>
<tr>
<td>DPCS</td>
<td>Distributed Parallel Computing System</td>
</tr>
<tr>
<td>FDM</td>
<td>Finite Difference Method</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite Element Method</td>
</tr>
<tr>
<td>FVM</td>
<td>Finite Volume Method</td>
</tr>
<tr>
<td>HPDE</td>
<td>Hyperbolic Partial Differential Equation</td>
</tr>
<tr>
<td>JB</td>
<td>Jacobi</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>MDCS</td>
<td>Matlab Distributed Computing Server</td>
</tr>
<tr>
<td>MIMD</td>
<td>Multiple Instruction Multiple Data</td>
</tr>
<tr>
<td>MISD</td>
<td>Multiple Instruction Single Data</td>
</tr>
<tr>
<td>MPI</td>
<td>Message Passing Interface</td>
</tr>
<tr>
<td>PCT</td>
<td>Parallel Computing Toolbox</td>
</tr>
<tr>
<td>PCW</td>
<td>Parallel Command Window</td>
</tr>
<tr>
<td>PPE</td>
<td>Parallel performance evaluations</td>
</tr>
<tr>
<td>PVM</td>
<td>Parallel Virtual Machine</td>
</tr>
<tr>
<td>RBGS</td>
<td>Red Black Gauss Seidel</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root Mean Square Error</td>
</tr>
<tr>
<td>SIMD</td>
<td>Single Instruction Multiple Data</td>
</tr>
<tr>
<td>SISD</td>
<td>Single Instruction Single Data</td>
</tr>
<tr>
<td>SLE</td>
<td>System of Linear Equations</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_p</td>
<td>Specific heat capacity</td>
</tr>
<tr>
<td>D_o</td>
<td>Diffusivity</td>
</tr>
<tr>
<td>h_m</td>
<td>Mass transfer coefficient</td>
</tr>
<tr>
<td>M</td>
<td>Moisture content</td>
</tr>
<tr>
<td>M_o</td>
<td>Initial moisture content</td>
</tr>
<tr>
<td>N_i</td>
<td>Total grid on the x-axis</td>
</tr>
<tr>
<td>N_j</td>
<td>Total grid on the y-axis</td>
</tr>
<tr>
<td>N_k</td>
<td>Total grid on the z-axis</td>
</tr>
<tr>
<td>P</td>
<td>Pressure</td>
</tr>
<tr>
<td>P_o</td>
<td>Initial pressure</td>
</tr>
<tr>
<td>p</td>
<td>Number of workers</td>
</tr>
<tr>
<td>r</td>
<td>Acceleration parameter</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>T_o</td>
<td>Initial temperature</td>
</tr>
<tr>
<td>V</td>
<td>Velocity</td>
</tr>
<tr>
<td>Δx</td>
<td>Step size at x-axis</td>
</tr>
<tr>
<td>Δy</td>
<td>Step size at y-axis</td>
</tr>
<tr>
<td>Δz</td>
<td>Step size at z-axis</td>
</tr>
<tr>
<td>Δt</td>
<td>Time step size</td>
</tr>
<tr>
<td>ε</td>
<td>Tolerance</td>
</tr>
<tr>
<td>ρ</td>
<td>Density</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1D_SAGED and 1D_SAGEB method for 1D model problem</td>
<td>276</td>
</tr>
<tr>
<td>B</td>
<td>2D_SAGED and 2D_SAGEB method for 2D model problem</td>
<td>285</td>
</tr>
<tr>
<td>C</td>
<td>3D_SAGED and 3D_SAGEB method for 3D model problem</td>
<td>295</td>
</tr>
<tr>
<td>D</td>
<td>List of publications</td>
<td>310</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Research

Food dehydration is one of the most ancient and efficient preservation methods. Numerous food products are routinely preserved using dehydration techniques, which include grains, marine products, meat products, as well as fruits and vegetables. There are several other food preservation techniques such as storing, freezing, pickling, and canning. Some of the storage techniques require low temperatures and are difficult to maintain throughout the distribution chain (Sagar and Suresh Kumar, 2010). Meanwhile, for pickling and canning, chemical preservative is added to extend the shelf life (Silva and Lidon, 2016). On the contrary, the dehydration involves heat, mass transfer phenomena and frequently used in most food processing industries (Cohen and Yang, 1995; Kristiawan et al., 2011). It is a suitable alternative for post-harvest tasks.

Dehydration is a process of removing the water vapor from food into the surrounding area under controlled conditions that cause minimum changes in the food properties (Chen and Mujumdar, 2008; Potter and Hotchkiss, 1998). The purposes of dehydration are to extend the life of the food product, decrease weight
for transportation, enhance storage stability and minimize the packaging requirements. Besides, it is necessary to remove the moisture content to a certain level in order to prevent the growth of bacteria, yeast, and molds thus slowing down or stopping food spoilage (Mujumdar and Law, 2010). The conventional dehydration techniques found in the food processing industry are freeze, hot air, osmotic, solar, and vacuum (George et al. 2004). Unfortunately, these conventional dryers have several limitations such as high operating cost, low quality and slow process. Table 1.1 shows the advantages and disadvantages of these conventional dehydration techniques.

Table 1.1 : Summary of the conventional dehydration techniques

<table>
<thead>
<tr>
<th>Drying techniques</th>
<th>Characteristic</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freeze</td>
<td>The frozen water is removed from food without going through liquid phase.</td>
<td>Highest quality product, minimal reduction in shape, color and structure.</td>
<td>High operating costs.</td>
<td>Marques et al. (2006), Ratti (2001), Shishehgarha et al. (2007)</td>
</tr>
<tr>
<td>Hot air</td>
<td>The food is in contact with hot air.</td>
<td>Product extends the life of a year.</td>
<td>Low quality compared to the original food.</td>
<td>Ratti (2001)</td>
</tr>
<tr>
<td>Osmotic</td>
<td>The food is soaked in hypertonic solution.</td>
<td>High quality, little energy, reduces process temperature, short drying time.</td>
<td>A slow process because depends on the cell membrane permeability and architecture.</td>
<td>Ahmed et al. (2016), Amami et al. (2007)</td>
</tr>
<tr>
<td>Solar</td>
<td>The food is dried using solar light.</td>
<td>Simple, low cost.</td>
<td>Large space, labor-intensive, difficult to control, slow process, bacterial contamination.</td>
<td>Sagar and Suresh Kumar (2010)</td>
</tr>
<tr>
<td>Vacuum</td>
<td>The food is operated under low pressure and temperature.</td>
<td>High quality product, low energy consumption</td>
<td>A slow process.</td>
<td>Saberian et al. (2014), Thorat et al. (2012)</td>
</tr>
</tbody>
</table>
Based on the limitations from Table 1.1, the conventional dehydration techniques have been improved to enhance the quality of end drying products in terms of color, flavor, nutritional value and texture (Alves-Filho, 2007; Chen and Mujumdar, 2008; Fernandes et al. 2011; Mujumdar, 2006). Some of the novel dehydration techniques are microwave, fluidized-bed, ultrasonic and microwave-augmented freeze (Cohen and Yang, 1995; Falade and Omojola, 2010; Fernandes et al., 2011; Jangam, 2011; Mujumdar and Law, 2010; Sagar and Suresh Kumar, 2010).

1.2 DIC Technique

Another alternative of dehydration is Détente Instantanée Contrôlée (DIC) technique. DIC is known as instant control pressure drop technique. This technique has the potential to be the most commonly used dehydration methods for high value products. DIC is developed by the Laboratory for Mastering Agro-Industrial Technologies (LMTAI) research team (Allaf et al.) since 1988 (Allaf et al., 1999; Setyopratomo et al., 2009) from the University of La Rochelle, France. It is based on the high temperature short time heating (HTST) and followed by an instant pressure drop. DIC consists of three main parts which are processing chamber, vacuum reservoir and valve. The products are treated in the processing chamber at high temperature (up to 170°C) and at high pressure (up to 8×10^5 Pa) with steam. The volume of vacuum tank is at least 50 times greater than the processing chamber. The DIC layout diagram is shown in Figure 1.1 (Haddad and Allaf, 2007). Figure 1.1 shows the vacuum pump, vacuum tank with cooling liquid jacket; instant pressure-drop valve, DIC reactor with heating jacket; and steam boiler. Table 1.2 shows the value of parameters used in DIC technique such as pressure, water content and processing time.
Table 1.2: Value of parameters for pressure, water content and processing time

<table>
<thead>
<tr>
<th>No</th>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pressure</td>
<td>Pa</td>
<td>4-7×10^5</td>
<td>Haddad and Allaf (2007), Haddad et al. (2007), Setyopratomo et al. (2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4-5×10^5</td>
<td>Haddad et al. (2008)</td>
</tr>
<tr>
<td>2</td>
<td>Initial water content</td>
<td>g water/100g dry matter</td>
<td>30-50</td>
<td>Haddad and Allaf (2007), Haddad et al. (2007)</td>
</tr>
<tr>
<td>3</td>
<td>Time</td>
<td>s</td>
<td>40-60</td>
<td>Haddad and Allaf (2007), Haddad et al. (2007)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10-20</td>
<td>Haddad et al. (2008)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30-45</td>
<td>Setyopratomo et al. (2012)</td>
</tr>
</tbody>
</table>

The temperature and pressure changes are presented in Figure 1.2 where stage (a) is at atmospheric pressure. Then, a vacuum condition is created within the reactor to get the greatest contact between steam and materials surface by opening the discharge valve (Figure 1.2(b)). Steam is injected to the materials to create a pressurized atmosphere (Figure 1.2(c)). The materials are left in contact with high pressure for a few seconds (Figure 1.2(d)). Then, a sudden pressure drop in the reactor is created by opening the discharge valve in less than a second (Figure 1.2(e)) which is called as instantaneous pressure drop since the value of \(\frac{\Delta P}{\Delta t} \) is higher than \(5 \times 10^5 \) Pa s\(^{-1} \). This instantaneous pressure drop induces rapid auto-vaporization of
the moisture from the material and lead to texture change which results in higher porosity. Besides, it also intensifies functional behavior of drying product (Setyopratomo et al., 2009). The material is maintained in vacuum condition (Figure 1.2(f)). The final step is returning the reactor to atmospheric pressure (Figure 1.2(g)). DIC increases the material porosity and surface area and reduces the diffusion resistance of moisture during the final dehydration step.

This technique has been successfully used for various products including: fruit swell drying and vegetables drying (Djilali et al., 2016; Haddad et al., 2008; Louka and Allaf, 2002; Tellez-Perez et al., 2015), texturing and drying various biological products by instant auto vaporization (Haddad and Allaf, 2007; Kristiawan et al., 2011; Louka and Allaf, 2004; Louka et al., 2004; Nouviaire et al., 2008; Setyopratomo et al., 2012), and microbiological decontamination (Setyopratomo et al., 2009), post harvesting or steaming paddy rice (Pilatowski et al., 2010) and essential oil extraction (Amor et al., 2008; Besombes et al., 2010). Besides, some experiments have been done to investigate the effect of the DIC technique on Lupin (Haddad et al., 2007); soybean (Haddad and Allaf, 2007); glucose polymer (Rezzoug et al., 2000); and milk (Mounir et al., 2010).

![Figure 1.2 Temperature and pressure changes during DIC treatment](image-url)
1.2.1 Mathematical Model in DIC Technique

Researches on the experiment and mathematical model have been done in order to understand the dehydration mechanism since it is a very complex process. The development of mathematical models is to predict, design and control water losses, weight reduction, dehydration rates and temperature behavior. It is also able to perform an optimal strategy for dryer process control. Parameters during dehydration can range from a very simple to complicated parameter in order to upgrade the quality of dehydration technology.

The mathematical model in drying method can be classified as empirical, semi-empirical and theoretical models depending on the different applications (Vijayaraj et al., 2006). The empirical and semi-empirical model take into account the external resistance to moisture transfer meanwhile the theoretical model considers the internal resistance to moisture transfer between the food product and air (Midilli et al., 2002; Panchariya et al., 2002). Theoretical models require assumptions of geometry of food, its mass diffusivity and conductivity (Demirtas et al., 1998; Wang et al., 2007). The fundamental of drying process is not taken into consideration for empirical model and this model presents a direct relationship between average time and drying time using regression analysis (Ozdemir and Devres, 1999).

In DIC literature, most researches focused on statistical method of regression model (Haddad and Allaf, 2007; Haddad et al., 2007; Mounir et al., 2010; Setyopratomo et al., 2012). The regression model estimated the relationships among a dependent variable and one or more independent variables. Haddad and Allaf (2007) and Haddad et al. (2007) demonstrated the efficiency of DIC in drying the soybean trypsin inhibitors and phytate content, respectively. The steam pressure, treatment time, and initial water content were the DIC operating parameters that were taken into consideration. The results obtained show the reduction of trypsin inhibitors and phytate content were affected due to these operating parameters which
was in a quadratic form. Besides, it is found that pressure and treatment time gave high impact to the reduction of the trypsin inhibitors. The regression model presented a good fit to the observed data but it is limited to a certain experiment (Kaushal and Sharma, 2014). When the experiment is implemented under different conditions, the model did not provide good simulation of dehydration process. Besides, the regression model neglects the fundamental of dehydration process where the parameters involved have no physical meaning (Simal et al., 2005).

Based on the limitations from the regression model, parabolic PDE is shown to be fit with the regression model. The parabolic PDE or Fick’s law of diffusion equation is proposed to analyze the effect of DIC technique on the drying kinetics of drying materials but neglected the effects of possible shrinkage (Abdulla et al., 2010; Kamal et al., 2012; Mounir et al., 2011; Mounir et al., 2012; Pilatowski et al., 2010; Setyopratomo et al., 2009; Setyopratomo et al., 2012). However, most of the researchers only discussed the fundamental of the dehydration model in DIC technique without solving the equation (Haddad et al., 2008; Mounir et al., 2012). Some of the authors solved the model using Crank (1975) solution according to the geometry of the solid matrix to solve the diffusion equation for mass transport of water within the drying material (Abdulla et al., 2010; Mounir et al., 2011; Mounir et al., 2014; Setyopratomo et al., 2009; Setyopratomo et al., 2012; Tellez-Perez et al., 2012). Meanwhile, other authors (Albitar et al., 2011; Kamal et al., 2012) solved the PDE model with the logarithmic transformation. Zarguili et al. (2009) solved the first order partial differential equation (PDE) of mass transfer equation by using integration method. Only a few researchers in DIC technique solved the model using numerical methods.

The existing parabolic model does not involve the main parameter in DIC technique which is pressure. Besides, based on the simulation results obtained in Chapter 3, the diffusion is found to be a very slow process which contradicts to the DIC technique where it involves high temperature high pressure process. Therefore, a new modified mathematical model based on the hyperbolic PDE (HPDE) is proposed. This model is relevant based on Meszaros et al. (2004) and Reverbi et al.
(2008) where they stated that hyperbolic heat and mass transfer is an alternative model because the classical parabolic equation is impossible to solve the extreme condition such as high temperature. The HPDE model is able to integrate between the dependent parameters; moisture content, temperature, and pressure, and independent parameters; time and dimension of region in order to simulate, visualize, and predict the heat and mass transfer during the dehydration process using DIC technique. Further details on the formulation of the HPDE model will be discussed in Chapter 3.

Numerical methods are able to solve a complex system of PDE which is almost impossible to be solved analytically. The Finite Element (FEM), Finite Volume (FVM) and Finite Difference methods (FDM) are some alternative numerical methods to solve the PDE (Peiro and Sherwin, 2005). For the other applications of drying, the FDM has been widely used to solve the heat and mass transfer models (Braud et al., 2001; Karim and Hawlader, 2005; Liu et al., 2014; Naghavi et al, 2010; Rovedo et al., 1995; Simal et al., 2000). The FDM scheme is chosen because this method is simple to formulate a set of discretized equations from the transport differential equations in a differential manner (Botte et al., 2000; Chandra and Singh, 1994). Besides, this method is straightforward in determining the unknown values (Incopera and DeWitt, 1996). Thus, due to this reason, the mathematical model in this research will be solved using FDM scheme. Further details of FDM will be discussed in Chapter 2.

A large sparse data of system of linear equations (SLE) is governed by the FDM to present the actual region of the dehydration process for numerical simulation. The grid generation process involved a fine grained of the large sparse data by minimizing the size of interval, increasing the dimension of the model and level of time steps. However, using only one CPU will take too high execution time to compute for the solution. Therefore, parallelization in solving a large sparse data is a great important process. The objective is to speed up the computation and increase the efficiency by using massively parallel computers. Thus, it is important to design
the parallel algorithm before implementing on the DPCS. The strategy to design the parallel algorithm is illustrated in Figure 1.3.

![Figure 1.3 Parallel algorithm design](https://via.placeholder.com/150)

(a) Domain problem

(b) Partitioning

(c) Communication

(d) Agglomeration

(e) Mapping

The domain depends on the problem where it can be in 1D, 2D or 3D domain (Figure 1.3(a)). The domain problem is partitioned column-wise distribution into equal sized tasks, $T_1, T_2, ..., T_n$ where n is number of processors involved in the
parallel algorithm (Figure 1.3(b)). Then, the tasks are connected to each other through local and global communication (Figure 1.3(c)). The local communication involves communication by sending and receiving data between the neighboring points where the data is sent by point for 1D, by line for 2D and by surface for 3D. Meanwhile global communication requires communication with other tasks. The number of tasks is combined into a set of tasks; Block₁, Block₂, …, Blockₙ to improve the performance of parallelization. This strategy is called as agglomeration (Figure 1.3(d)). Lastly, each block is assigned to a processor (Figure 1.3(e)). Static mapping is implemented because it is easier to design and implemented on the distributed parallel computing architecture compared to dynamic mapping which is more complicated in message passing program.

The hardware computational tool to support the parallel algorithm is based on distributed parallel computing system (DPCS). The software tool to support DPCS is based on Matlab Distributed Computing Server (MDCS) version 7.12 (R2011a). The MDCS consists of a heterogeneous computing system contains 8 computers with Intel Core Duo CPUs under Fedora 8 featuring a 2.6.23 based Linux kernel operating system, connected with internal network 10/100/1000 NIC. The DPCS and MDCS are discussed further in Chapter 2.

1.3 Statement of Problem

The existing mathematical model in dehydration process using DIC technique is focused on the statistical method of regression model. However, this model limits to certain experiment (Kaushal and Sharma, 2014). Besides, this model neglects the fundamental of dehydration process where the parameters involved have no physical meaning. Thus, the dehydration process cannot be predicted using the regression model. The second problem is some of the researchers in DIC technique only discussed the fundamental of the dehydration model in DIC technique without
produced any solution to the mathematical model. The third problem is some of them solved the PDE analytically which involves too many parameters. Therefore, it is almost impossible to be solved and it is time consuming.

Based on these limitations, the main aim of this research is to formulate a new modified mathematical model based on HPDE from the regression model obtained from Haddad et al. (2007). The HPDE is able to integrate between the dependent parameters; moisture content, temperature, and pressure, and independent parameters; time and dimension of region in order to simulate, visualize, and predict the heat and mass transfer during the dehydration process using DIC technique. The mathematical model performs in multidimensional problem and FDM is used to discretize the mathematical model. Numerical methods such as Jacobi (JB), Red Black Gauss Seidel (RBGS), Alternating Group Explicit with Douglas-Rachford (AGED), and Brian (AGEB) variances are used to solve the SLE. A large sparse matrix from the SLE is obtained from the discretization, thus, it performs high execution time using a single CPU. Therefore, a DPCS is implemented on MDCS to reduce the computational time and increase the speedup performance.

1.4 Objectives of Research

This section explains the objectives of this research which are:

a) To formulate the regression model from Haddad et al. (2007) to a new modified mathematical model of heat and mass transfer in DIC technique and discretized using FDM to approximate the solution of the mathematical model.

b) To solve the SLE in (a) using some numerical methods such as AGEB, AGED, RBGS, JB methods.

c) To develop sequential and parallel algorithms from (b) using MDCS.

d) To analyze the results in (c) based on the numerical results for sequential algorithm and PPE for parallel algorithm.
1.5 Scope of Research

The main research problem of this thesis is to solve the dehydration process involved using DIC technique. Based on the limitations of the existing mathematical model in DIC technique, a new modified mathematical model based on the HPDE is formulated from the regression model. HPDE model is chosen because this model is able to integrate between the time, dimension of region, moisture content, temperature and pressure. The HPDE is discretized using FDM based on the central difference formula. Then, the SLE obtained from the discretization is solved using some numerical methods such as AGEB, AGED, RBGS and JB methods where JB is the benchmark for the other numerical methods. The numerical methods are solved using the sequential algorithm on the Matlab software. Since it involves a large sparse matrix which results in high execution time and high computational complexity, thus, the parallel algorithm is implemented on the MDCS. The scope of this research is illustrated in the table below:
To solve the dehydration process using DIC technique

Problem

Mathematical equations

Equations

Type

Solution

Discretization

Numerical Method

Algorithm

Platform

Software

To solve the dehydration process using DIC technique

Algebraic Equation

Differential Equation

Polynomial Equation

Algebraic Equation

Polynomial Equation

Linear

Non-Linear

Ordinary

Partial

1° order

2° order

1° degree

1° degree

Elliptic

Parabolic

Hyperbolic

Numerical Solution

Exact Solution

FEM

FDM

FVM

AGEB

AGED

RBGS

JB

Sequential

Parallel

Shared Memory System

Distributed Memory System

Matlab

Mathematica

MDCS

PVM

MPI
1.6 Significance of Research

The first significance of this research is the HPDE is the alternative model to simulate, visualize, predict and control the independent and dependent parameters of dehydration process. The second significance is the implementation of the numerical methods such as AGEB, AGED, RBGS and JB methods are suitable to solve the multidimensional HPDE. The third significance is the parallel implementation to solve the large sparse data for the multidimensional HPDE on DPCS successfully reduces the computational time and increases the performance of speedup. The numerical results and PPE are the indicators to measure the performance of multidimensional HPDE and the large sparse simulation. From the numerical results and PPE, AGEB is the best method to solve the HPDE model followed by AGED, RBGS and JB methods. It is also found that the parallel algorithm is performed better than the sequential algorithm.

1.7 Thesis Organization

In this thesis, there are seven chapters including the introduction and conclusion parts. Chapter 1 comprises a description of the research problem statement on DIC technique. The dehydration process is described based on the previous literature review on mathematical model developed in DIC technique. This chapter also discusses the research objectives, scope and the significance of the research.

Chapter 2 discusses the literature review on the FDM and the basic scheme for PDE. The numerical methods such as JB, RBGS, AGED, and AGEB, and its algorithm procedure are presented in this chapter. It follows by explaining the numerical analysis based on the consistency, convergence, stability, numerical errors
and computational complexity. Finally, this chapter will discuss the platform of DPCS to support the MDCS and PPE based on speedup, efficiency, effectiveness, temporal performance, granularity and communication cost to measure the parallel algorithm.

The new modified mathematical model development in DIC technique is covered in Chapter 3. In this chapter, the formulation of the hyperbolic partial differential equation (HPDE) from the regression model from Haddad et al. (2007) is presented. The simulations of the mathematical models are analyzed and shown through graphical representation using Matlab 7.12 (R2011a) software. The HPDE is visualized in multidimensional model which are in 1D, 2D and 3D model.

The contribution of Chapter 4 is the numerical results and parallel performance evaluations of sequential and parallel algorithms for 1D HPDE model. The SLE for 1D model is obtained from FDM and it is solved using some numerical methods such as 1D_SJB, 1D_SRBGSG, 1D_SAGED, and 1D_SAGEDB. These numerical methods are compared according to execution time, number of iteration, maximum error and root mean square error. Then, these numerical methods are parallelized to improve the performance of the sequential algorithm. The parallel performances for these methods: 1D_PJB, 1D_PRBGS, 1D_PAGED and 1D_PAGEB are measured based on speedup, efficiency, effectiveness, temporal performance and granularity.

The 1D model is then upgraded into 2D because it reflects the real physical phenomena. The numerical results and parallel performance evaluations for 2D HPDE model are the main contribution for Chapter 5. The 2D HPDE model is discretized using FDM with central difference formula and numerical methods such as 2D_SJB, 2D_SRBGGS, 2D_SAGED, and 2D_SAGEDB are used to solve the SLE. The numerical results are compared based on execution time, number of iteration, maximum error and RMSE. Meanwhile, the parallelization of these numerical
methods such as 2D_PJB, 2D_PRBGS, 2D_PAGED, and 2D_PAGEB are analyzed based on speedup, efficiency, effectiveness, temporal performance and granularity.

Furthermore, the contribution of Chapter 6 focuses on the numerical results and parallel performance of the sequential and parallel algorithms for 3D HPDE model. The discretization of the model is based on the FDM. It is then solved by some numerical methods which are 3D_SJB, 3D_SRBGs, 3D_SAGED, and 3D_SAGEB. The numerical methods are parallelized into 3D_PJB, 3D_PRBGS, 3D_PAGED, and 3D_PAGEB. The PPE of these methods are measured using speedup, efficiency, effectiveness, temporal performance and granularity.

Lastly, Chapter 7 concludes the research findings based on every chapter in the thesis. Some general remarks on the recommendation for future research are discussed.
REFERENCES

