PHYSICOCHEMICAL, MICROSTRUCTURAL AND ENGINEERING BEHAVIOUR OF NON-TRADITIONAL STABILISER TREATED MARINE CLAY

FAIZAL B PAKIR

UNIVERSITI TEKNOLOGI MALAYSIA
PHYSICOCHEMICAL, MICROSTRUCTURAL AND ENGINEERING BEHAVIOUR OF NON-TRADITIONAL STABILISER TREATED MARINE CLAY

FAIZAL B PAKIR

A thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

SEPTEMBER 2017
In the name of Allah, the Supremely Merciful and the Most Kind,

To my beloved family, who never give up to give me spiritual support and pray for my success.
ACKNOWLEDGMENT

Acknowledgments for the completion of this thesis must be extended to many people who provided me with precious time and invaluable advice. My gratitude to the Almighty God, due to all His blessings and grace, this thesis finally came to an end.

I wish to express my sincerest appreciations to my main supervisor, Prof. Dr. Aminaton Marto for her invaluable comments, genuine encouragement, constructive advice, and professional guidance during the formulation and writing of this thesis. Thank you for the opportunity you granted to me. I am also very thankful to my co-supervisors Dr. Nor Zurairahetty Mohd Yunus and Assoc. Prof. Dr. Saiful Azhar Ahmad Tajudin for their permanent support, continuing feedback and motivation.

My sincere gratitude also goes to all laboratory staff in the Geotechnical Engineering as well as the Structures and Materials laboratories for their genuine help in carrying out the laboratory tests and physical modeling works throughout the study.

Last but not least, my utmost appreciations go to my beloved parents for their eternal support, unconditional love, sacrifice, and encouragement. I am nothing without you. Not to forget, my special thanks go to my adorable wife, for all her support and tolerance throughout this research journey. Words really fail to appreciate her for everything she did for me.
ABSTRACT

The presence of marine clay underlying foundation has been responsible for failure in several geotechnical structures and chemical stabilisation is the usual practice to improve the strength of soils. Recently, non-traditional additives are extensively used to solve this problem and their effects on geotechnical properties of soils have been reported by many researchers. However, publications on the fundamental microstructural behaviour of non-traditional additives in treating marine clay soils and their influence on the engineering behaviour are limited. Therefore, this research aimed at determining the stabilisation mechanism and the performance of marine clay soil mixed with two types of non-traditional additives, namely calcium-based powder stabiliser (SH-85) and sodium silicate-based liquid stabilizer (TX-85). Microstructural study from different spectroscopic and microscopic techniques such as X-ray Diffractometry (XRD), Energy-Dispersive X-ray Spectrometry (EDAX), Scanning Electron Microscopy (SEM), Thermal Gravimetric Analysis (TGA) and pore size distribution had been conducted to elucidate the stabilisation mechanism. Unconfined compressive test, oedometer consolidation test and consolidated undrained triaxial compression test were conducted to assess the engineering properties of the stabilised soil. In addition, strip footing model tests were conducted to determine the performance of stabilised clay soils and the results were compared with simulation using PLAXIS 2D finite element. The laboratory tests showed that the addition of 12% SH-85 at early 7 days curing period had increased the compressive strength of treated marine clay by about 42 times while the addition of 6% TX-85 with similar curing period had increased the compressive strength of treated marine clay by about 3.6 times. The results of the microstructural tests indicated the formation of new gel products in the mixtures, which were identified as calcium silicate hydrate (CSH) and sodium aluminosilicate hydrate (NASH) for soils treated with SH-85 and TX-85, respectively. SEM images illustrated the formation of new cementitious compounds (CSH and NASH) which were shown within the pore spaces, resulting in the reduction of radius of pore spaces. In comparison to the untreated soil, the results of the physical model tests showed that the bearing capacity of strip footing on the treated soil at 7 days curing period increased significantly while the settlement reduced. In short, the selected additive had successfully increased the strength of marine clay at early period, thus the usage of selected non-traditional additives was considered as cost effective for geotechnical project.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS AND SYMBOLS</td>
<td>xxii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxiii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
 1.1 Background of Research 1
 1.2 Problem Statement 3
 1.3 Research Aims and Objectives 4
 1.4 Scope of Study 4
 1.5 Significance of Study 5
 1.6 Outline of the Thesis 6

2 LITERATURE REVIEW 7
 2.1 Introduction 7
 2.2 Background of Soft Marine Clay Soils 7
 2.2.1 Clay minerals 10
 2.2.1.1 Illite 12
2.2.1.2 Montmorillonite 13
2.2.1.3 Kaolinite 14
2.2.2 Physical Properties of Marine Clay Soils 14
2.3 Soil Stabilisation using Chemical Stabilisers 19
2.3.1 Traditional Stabilisers 20
2.3.1.1 Lime 20
2.3.1.2 Cement 21
2.3.2 Non-Traditional Stabiliser 22
2.4 Macrostructural Study of Stabilised Soils 26
2.4.1 Plasticity 26
2.4.2 Unconfined Compressive Strength 28
2.4.3 Undrained Triaxial Compressive Strength 30
2.4.4 Compressibility Characteristics 34
2.5 Microstructural Study of Stabilised Soils 37
2.5.1 X-Ray Diffraction 37
2.5.2 Microscopic Studies 41
2.5.3 Particle Size Distribution 44
2.5.4 Thermal Studies 46
2.6 Modelling the Bearing Capacity of Treated Soils 49
2.7 Summary 52

3 RESEARCH METHODOLOGY 54
3.1 Introduction 54
3.2 Soil and stabilisers 58
3.2.1 Soft Marine Clay Soil 58
3.2.2 Stabilisers 59
3.2.2.1 SH-85 59
3.2.2.2 TX-85 60
3.3 Determination of Basic Physical and Index Properties of Soil Samples 61
3.3.1 Grain Size Distribution 62
3.3.2 Atterberg Limits 62
3.3.3 Specific Gravity 63
3.3.4 Loss on Ignition 63
3.4 Preparation of Samples
3.4.1 Treated Soil Samples 64
3.4.2 Curing Period 65
3.5 Determination of Engineering Properties 66
3.5.1 Compaction Characteristics 67
3.5.2 Unconfined Compressive Test 68
3.5.3 Oedometer Consolidation Test 69
3.5.4 Consolidated Undrained Triaxial Compression Test 70
3.6 Determination of Physicochemical and Microstructural Properties 72
3.6.1 pH Determination 72
3.6.2 X-Ray Diffraction Analysis 73
3.6.3 Scanning Electron Microscope and Energy Dispersive X-Ray Spectrometry 74
3.6.4 Particle Size Analysis 77
3.6.5 Thermal Gravimetric Analysis 78
3.7 Physical Model Test 79
3.7.1 Size, Design and Fabrication of Test Box 79
3.7.2 Model Preparation and Test Procedure 83
3.7.2.1 Preparation of Soil Sample 83
3.7.2.2 Load Test 85
3.8 Numerical Model 87
3.8.1 Geometry Model 87
3.8.2 Performing Calculations 90
3.8.2.1 Initial Condition 90
3.8.2.2 footing Phase 91
3.8.2.3 Execution of Calculation 93
3.9 Summary 94

4 MACRO AND MICRO STRUCTURAL STUDIES 95
4.1 Introduction 95
4.2 General Properties of Marine Clay Soil 96
4.3 Basic Engineering and Macro Structural Characterization of Treated Soil

4.3.1 Atterberg Limits 99

4.3.2 Unconfined Compressive Strength 101

4.3.3 Consolidated Undrained Triaxial Test 108
 4.3.3.1 Effect of confining pressure 108
 4.3.3.2 Effect of curing period 115
 4.3.3.3 Shear Strength Parameter 121

4.3.4 Compressibility Behaviour 124

4.4 Micro Structural Characterization 130

4.4.1 X-Ray Diffraction 130

4.4.2 Energy Dispersive X-Ray Spectrometry 133

4.4.3 Scanning Electron Microscopy 138

4.4.4 Particle Size Analysis 143

4.4.5 Thermal Gravimetric Analysis 146

4.4.6 pH Value 148

4.5 Physical Model and Numerical Simulation 149

4.5.1 Physical Model Test 150
 4.5.1.1 Physical Model Test of Treated Soils with SH-85 151
 4.5.1.2 Physical Model Test of Treated Soils with TX-85 153
 4.5.1.3 Summary of Physical Model Test 155

4.5.2 Numerical Simulation 156
 4.5.2.1 Numerical Simulation for Treated Soils with SH-85 157
 4.5.2.2 Numerical Simulation for Treated Soils with TX-85 158
 4.5.2.3 Summary of Numerical Simulation 159

4.6 Summary 161

5 CONCLUSION AND RECOMMENDATIONS 163

5.1 Introduction 163
5.2 Conclusion

5.2.1 Macro Structural Study 164

5.2.2 Micro Structural Study 165

5.2.3 Correlation Between Physicochemical and Microstructural on the Engineering Properties 166

5.2.4 Physical Modelling and Numerical Simulation 167

5.3 Recommendations for Further Research 168

REFERENCES 169

Appendices A-D 183-203
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Physical indices of marine clay soils from various places in Asia</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Percentages of soil components based on particle size</td>
<td>17</td>
</tr>
<tr>
<td>3.1</td>
<td>Summary of laboratory test on untreated soil and standard references</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of laboratory test on treated soil and standard references</td>
<td>57</td>
</tr>
<tr>
<td>3.3</td>
<td>Chemical composition of SH-85 (Latifi, 2014)</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>Description of soil samples</td>
<td>96</td>
</tr>
<tr>
<td>4.2</td>
<td>Physical properties of marine clay soils</td>
<td>97</td>
</tr>
<tr>
<td>4.3</td>
<td>Chemical composition of the untreated marine clay</td>
<td>98</td>
</tr>
<tr>
<td>4.4</td>
<td>Unconfined compressive strength of untreated and soils treated with SH-85 and TX-85 at various curing period</td>
<td>102</td>
</tr>
<tr>
<td>4.5</td>
<td>Unconfined compressive strength of clay soils mixed with different type of stabilisers at 7 days curing period</td>
<td>105</td>
</tr>
<tr>
<td>4.6</td>
<td>Al:Si, and Ca:Si ratios of untreated and soils treated with 12% SH-85 obtained from EDAX analysis</td>
<td>136</td>
</tr>
<tr>
<td>4.7</td>
<td>Al:Si, and Ca:Si ratios of untreated and soils treated with 6% TX-85 obtained from EDAX analysis</td>
<td>138</td>
</tr>
<tr>
<td>4.8</td>
<td>Particle size distribution of untreated soil and soils treated with SH-85 and TX-85</td>
<td>145</td>
</tr>
<tr>
<td>4.9</td>
<td>Summary result of the physical model test</td>
<td>151</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.10</td>
<td>Parameters for soil sample and footing in PLAXIS modelling</td>
<td>156</td>
</tr>
<tr>
<td>4.11</td>
<td>Allowable pressure and pressure at failure of footing of the treated and untreated soil obtained from numerical simulation</td>
<td>157</td>
</tr>
<tr>
<td>4.12</td>
<td>Comparison of failure pressure and settlement of footing for treated and untreated soil from physical model and numerical model</td>
<td>160</td>
</tr>
<tr>
<td>4.13</td>
<td>Summary of macrostructure and microstructure structural characteristics of soil samples</td>
<td>161</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Marine clay soils in South East Asia (Malaysian Highway Authority, 1989)</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Marine clay soils in Peninsular Malaysia (Malaysia Highway Authority, 1989)</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Basic units arrangements of silicon and aluminum (a) silica tetrahedron, (b) silica sheet, (c) alumina octahedron, (d) octahedrol (gibbsite) sheet, (e) elemental silica-gibbsite sheet (Das, 2013)</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Diagram of the structure of an illite (Das, 2013)</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Diagram of the structure of a montmorillonite (Das, 2013)</td>
<td>13</td>
</tr>
<tr>
<td>2.6</td>
<td>Diagram of a kaolinite structure (Das, 2013)</td>
<td>14</td>
</tr>
<tr>
<td>2.7</td>
<td>Influence of lime content on Atterberg limits characteristics of soil (Jha and Sivapullaiah, 2015)</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>Variation of liquid limit and plasticity index with gypsum content (Yilmaz and Civelekoglu, 2009)</td>
<td>28</td>
</tr>
<tr>
<td>2.9</td>
<td>Strength gained for sodium silicate treated soil with different stabiliser content and curing period (Latifi et al., 2014)</td>
<td>29</td>
</tr>
<tr>
<td>2.10</td>
<td>UCS at different curing days for CH and CL with additional of BS (Lim et al., 2013)</td>
<td>30</td>
</tr>
<tr>
<td>2.11</td>
<td>Effect of confining pressure on (a) stress vs strain, (b) pore pressure vs strain behaviour of treated clay (Kamruzzaman et al., 2009)</td>
<td>32</td>
</tr>
</tbody>
</table>
2.12 Consolidated undrained behaviour for 70% BA samples (a) 0 days curing period, (b) 28 days curing period (Latifi et al., 2015a) 33
2.13 Consolidated undrained behaviour for 70% FA samples (a) 0 days curing period, (b) 28 days curing period (Latifi et al., 2015a) 34
2.14 Void ratio versus effective stress for untreated and treated soft clay with different percentages of lime (Ouhadi et al., 2014) 35
2.15 Void ratio versus effective stress for untreated and treated soft clay with different percentages of cement (Ouhadi et al., 2014) 36
2.16 Compression index and swelling index at different curing period (Latifi et al., 2014b) 37
2.17 X-ray diffraction of treated soft clay with different percentages of (a) lime and (b) cement at 7 days of curing period (Ouhadi et al., 2014) 38
2.18 XRD patterns of metakaolin based geopolymer, unstabilised soil and soil stabilised with MKG at different concentrations (Zhang et al., 2013) 39
2.19 XRD patterns for the untreated and treated soil with MgCl₂ (a) High swelling clay and, (b) Low swelling clay at different curing period (Latifi et al., 2015) 40
2.20 SEM image of (a) Clay soils, (b) treated clay soil with fly ash (Sharma et al., 2012) 41
2.21 SEM photos of (a) untreated clay, (b) 10% OPC, (c) 20% OPC, (d) 8% SSCP, (e) 12% SSCP and (f) 16% SSCP stabilised specimens for 28 days (Cong et al., 2014) 43
2.22 Particle size analysis test results for untreated and treated soil with xanthan gum (a) bentonite; (b) kaolinite (Latifi et al., 2016a) 45
2.23 Effect of cement content and curing period on particle size distribution curves of treated clays (a) measured by MIP analysis; (b) measured by Mastersizer (Chew et al., 2004)

2.24 TGA results for untreated and stabilised soils stabilised with fly ash and lime (Sharma et al., 2012)

2.25 TGA curves of untreated and CKD-treated Na-montmorillonite clay at various curing periods (Peethamparan et al., 2009)

2.26 Schematic of geosynthetic reinforced soil foundation (Abu-Farsakh et al., 2013)

2.27 Sketch of field loading test (Ibrahim, 2016)

3.1 Flowchart of research methodology

3.2 Collection of soil sample

3.3 SH-85 stabiliser

3.4 TX-85 stabiliser

3.5 Curing box

3.6 Standard proctor compaction equipment

3.7 UCS equipment

3.8 One dimensional consolidation test equipment

3.9 Consolidated undrained triaxial test equipment

3.10 pH measurement equipment

3.11 X-ray diffractometer

3.12 SEM analysis

3.13 Sputter coat machine

3.14 CILAS machines

3.15 Thermal gravimetric analysis machine

3.16 Failure mechanism from general shear failure

3.17 Schematic picture of test box

3.18 Box test after coated

3.19 Steel plate compactor for compaction

3.20 Top surface of soil is leveled

3.21 Setting up the measurement instrument
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.22</td>
<td>Setup up the data logger</td>
<td>86</td>
</tr>
<tr>
<td>3.23</td>
<td>Typical geometry of strip footing foundation model</td>
<td>88</td>
</tr>
<tr>
<td>3.24</td>
<td>Parameter tabshet of the soil window</td>
<td>89</td>
</tr>
<tr>
<td>3.25</td>
<td>Mesh option windows</td>
<td>89</td>
</tr>
<tr>
<td>3.26</td>
<td>Finite element model and mesh</td>
<td>90</td>
</tr>
<tr>
<td>3.27</td>
<td>Phase window for initial phases</td>
<td>91</td>
</tr>
<tr>
<td>3.28</td>
<td>Phase window for the footing phase</td>
<td>92</td>
</tr>
<tr>
<td>3.29</td>
<td>Activation of the prescribed displacement</td>
<td>92</td>
</tr>
<tr>
<td>3.30</td>
<td>Active task window displaying th calculation progress</td>
<td>93</td>
</tr>
<tr>
<td>3.31</td>
<td>Deformed mesh</td>
<td>94</td>
</tr>
<tr>
<td>4.1</td>
<td>XRD diffractometer of soft marine clay soils</td>
<td>98</td>
</tr>
<tr>
<td>4.2</td>
<td>Effect of SH-85 content on the Atterberg limits of treated clay soils</td>
<td>100</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of TX-85 content on the Atterberg limits of treated clay soils</td>
<td>101</td>
</tr>
<tr>
<td>4.4</td>
<td>Effect of SH-85 content on unconfined compressive strength of treated marine clay</td>
<td>103</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of curing period on unconfined compressive strength of treated marine clay with SH-85</td>
<td>104</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of TX-85 content on unconfined compressive strength of treated marine clay</td>
<td>106</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of curing period on unconfined compressive strength of treated marine clay with TX-85</td>
<td>107</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of confining pressure on deviator stress of clay soils treated with 12% SH-85 at different curing period</td>
<td>111</td>
</tr>
<tr>
<td>4.9</td>
<td>Effect of confining pressure on excess pore pressure of clay soils treated with 12% SH-85 at different curing periods</td>
<td>112</td>
</tr>
<tr>
<td>4.10</td>
<td>Effect of confining pressure on deviator stress of clay soils treated with 6% TX-85 at different curing periods</td>
<td>113</td>
</tr>
<tr>
<td>4.11</td>
<td>Effect of confining pressure on excess pore pressure of clay soils treated with 6%TX-85 at different curing period</td>
<td>114</td>
</tr>
</tbody>
</table>
4.12 Effect of curing period on deviator stress of clay soils treated with 12% SH-85
4.13 Effect of curing period on excess pore pressure of clay soils treated with 12% SH-85
4.14 Effect of curing period on deviator stress of clay soils treated with 6% TX-85
4.15 Effect of curing period on excess pore pressure of clay soils treated with 6% TX-85
4.16 Mohr-Coulomb effective shear strength envelope for soil treated with 12% SH-85 at different curing periods
4.17 Effect of curing period on effective shear strength parameters of clay soils treated with 12% SH-85
4.18 Mohr-Coulomb effective shear strength envelope for soils treated with 6% TX-85 at different curing periods
4.19 Effect of curing period on effective shear strength parameters of clay soils treated with 6% TX-85
4.20 Compression curve of the untreated soil and soils treated with 12% SH-85 at different curing periods
4.21 Vertical strain versus pressure for the untreated and soil treated with 12% SH-85 at different curing periods
4.22 Coefficient of compression, swelling and preconsolidation of the untreated and soils treated with 12% SH-85
4.23 Compression curve of the untreated and soils treated with 6% TX-85 at different curing periods
4.24 Vertical strain versus pressure for the untreated soil and soils treated with 6% TX-85 at different curing periods
4.25 Coefficient of compression, swelling and preconsolidation of the untreated and soils treated with 6% TX-85
4.26 XRD pattern for the untreated and soils treated with 12% of SH-85 at different curing periods
4.27 XRD pattern for the untreated and soils treated with 6% of TX-85 at different curing periods
4.28 EDAX spectrum for the untreated soils
4.29 EDAX spectrum of soils treated with 12% SH-85 at different curing periods
4.30 EDAX spectrum of the soils treated with 6% TX-85 at different curing periods
4.31 SEM image of untreated soils
4.32 SEM image of soils treated with 12% SH-85 at different curing periods
4.33 SEM image of soils treated with 6% TX-85 at different curing periods
4.34 Particle size distribution of the untreated soil and soils treated with 12% SH-85 at various curing periods
4.35 Particle size distribution of the untreated and soils treated with 6% TX-85 at various curing periods
4.36 TGA spectrums for the untreated clay soils
4.37 TGA spectrums for the untreated soil and soils treated with 12% SH-85 at 7, 28 and 90 days curing periods
4.38 TGA spectrums for the untreated soil and soils treated with 6% TX-85 at 7, 28 and 90 days curing periods
4.39 pH for soils treated with various percentage of SH-85 at different curing periods
4.40 pH for soils treated with various percentage TX-85 at different curing periods
4.41 Pressure versus settlement ratio with different SH-85 contents at 7 days curing period
4.42 Variation of bearing capacity improvement factor with different of SH-85 content at 7 days curing period
4.43 Pressure versus settlement ratio with different TX-85 content at 7 days curing period
4.44 Variation of bearing capacity improvement factor with different of TX-85 content at 7 days curing period
<table>
<thead>
<tr>
<th>Section</th>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.45</td>
<td>Comparisons of numerical simulation and physical test of footing foundation treated with SH-85</td>
<td>158</td>
</tr>
<tr>
<td>4.46</td>
<td>Comparisons of numerical simulation and physical test of footing foundation treated with TX-85</td>
<td>159</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>Aluminium oxide</td>
</tr>
<tr>
<td>ASTM</td>
<td>American society of testing material</td>
</tr>
<tr>
<td>B</td>
<td>Width of the shallow foundation</td>
</tr>
<tr>
<td>BS</td>
<td>British standard</td>
</tr>
<tr>
<td>c</td>
<td>Cohesion</td>
</tr>
<tr>
<td>CaO</td>
<td>Calcium oxide</td>
</tr>
<tr>
<td>CU</td>
<td>Consolidated undrained</td>
</tr>
<tr>
<td>Cc</td>
<td>Compression index</td>
</tr>
<tr>
<td>Cs</td>
<td>Swelling index</td>
</tr>
<tr>
<td>CSH</td>
<td>Calcium silicate hydrate</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>E</td>
<td>Young’s modulus</td>
</tr>
<tr>
<td>EDAX</td>
<td>Energy dispersive x-ray spectrometer</td>
</tr>
<tr>
<td>Fe</td>
<td>Iron</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>Ferric oxide</td>
</tr>
<tr>
<td>Gs</td>
<td>Specific gravity</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>Inductively coupled plasma mass spectrometry</td>
</tr>
<tr>
<td>K₂O</td>
<td>Kalium oxide</td>
</tr>
<tr>
<td>LIR</td>
<td>Load increment ratio</td>
</tr>
<tr>
<td>LL</td>
<td>Liquid limit</td>
</tr>
<tr>
<td>LVDT</td>
<td>Linear variable displacement transducer</td>
</tr>
<tr>
<td>MDD</td>
<td>Maximum dry density</td>
</tr>
<tr>
<td>MgO</td>
<td>Magnesium oxide</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Sodium ion</td>
</tr>
<tr>
<td>p_c</td>
<td>Preconsolidation pressure</td>
</tr>
<tr>
<td>PI</td>
<td>Plasticity Index</td>
</tr>
</tbody>
</table>
PL - Plastic limit
SEM - Scanning electron microscopy
SH-85 - Calcium based powder stabiliser
Si - Silicon
SiO₂ - Silica
SO₄ - Sulphate
TGA - Thermal gravimetric analysis
TX-85 - Sodium Silicate Based Liquid Stabiliser
UCS - Unconfined compressive strength
UCT - Unconfined compressive test
XRD - X-ray diffraction
ν - Poisson’s ratio
ϕ - Friction angle
ψ - Dilatancy angle
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Organic content result of marine clay soils</td>
<td>183</td>
</tr>
<tr>
<td>B</td>
<td>Particle Size Distribution (hydrometer test)</td>
<td>184</td>
</tr>
<tr>
<td>C</td>
<td>EDAX result</td>
<td>185</td>
</tr>
<tr>
<td>D</td>
<td>Particle Size Distribution (CILAS method)</td>
<td>192</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Research

Marine clay, which has low strength and high compressibility, is located in many coastal and offshore areas around the world. It is weak in nature due to the presence of swelling clay minerals like montmorillonite, vermiculite, and chlorite, hence causing a problematic foundation for structures to be built on it (Bjerrum, 1973). The physical and engineering behaviours of soil, such as marine clay, depend on the exchangeable cations, mineralogical composition, and pore water system chemistry (Egashira and Ohtsubo 1982; Ohtsubo et al., 1985).

In the Ninth Malaysia Plan (2006-2010), Iskandar Malaysia was launched as one of the high-impact development projects (Ministry of Information Malaysia, 2008). Nusajaya, a 4% land area within Iskandar Malaysia, is the focal point of the whole development projects within that region. Both public and private sectors are required to build more buildings and roads, but the weak marine clay deposits in various sites surrounding Nusajaya need to either be replaced or improved. Therefore, various ground improvement methods have been introduced and tested in research and in practice. However, their respective suitability are considered to be project-specific, which depend on the cost, existing soil's characteristics, and the stabilisers potential impacts or effectiveness for the proposed application. In such cases, appropriate soil property modification measures are typically taken into consideration. Hence, it is
necessary to improve the engineering behaviour of marine clays using appropriate ground improvement techniques.

Geotechnical engineers borrow the knowledge of geologists and soil scientists to seek appropriate method to enhance clay behaviour. Most of the basic ideas related to the enhancement of clay behaviour using stabiliser had been published since 1960 (Petry and Little, 2002). The soil stabilisation is a method which involves mixing natural soils with chemical stabilisers to increase the properties of the soil particularly in strength and decrease moisture content of soil. This method of stabilising or treating soil is an important and widely used method throughout the world. In the stabilisation process, stabiliser agent acts as filler in the pore spaces or reinforcing the bindings between the particles. The stabiliser is categorised as traditional, such as lime, cement and fly ash, as well as non-traditional stabiliser such as, acids, salts, enzymes, polymer, resin, and sulfonated oils (Harris et al., 2006; Tingle et al., 2007). Despite the fact that stabilisation of soil using traditional stabiliser such as cement and lime is well established (Yilmaz and Civelekoglu, 2009), there is a need of alternative technologies to be applied which are more environmentally friendly, sustainable, and economical.

In recent years, an increasing number of non-traditional stabilisers have been developed for soil stabilisation purposes. According to Tingle et al. (2007), the variety of stabilisers (powder and liquid form) are becoming popular due to their relatively low cost, ease of application, and short curing period. The effectiveness of non-traditional stabiliser to increase the properties of clay soils, particularly in strength, has been reported by many researchers such as Suganya et al. (2016), Onyejekwe et al. (2016), Phetchuay et al. (2016), Zhang et al. (2015) and Yi et al. (2015).

Lim et al. (2013), for example, reported the increased of unconfined compressive strength of low plasticity clay treated with biomass silica (non-traditional stabiliser) up to 36 times the untreated value. Using the same non-traditional stabiliser, Latifi et al. (2016) reported the increased strength of residual soil (high plasticity silt) up to 7 times the untreated value. Nevertheless, the lack of knowledge in selecting and using chemical additives to treat soils has induced the damage of losing millions of dollars (Wiggins et al., 1978). Hence, suitable use of stabiliser is important to maximize the optimum use of stabiliser agent and to save cost.
1.2 Problem Statement

In recent years, an increasing number of non-traditional stabiliser have been developed for soil stabilisation purposes. The non-traditional stabiliser has been developed and marketed to meet the need of alternative technologies which are more economical, sustainable, and environmentally friendly. However, the effects of these stabilisers are still vague and yet to be understood. Besides that, the non-traditional stabilisers, in the form of powder or liquid, are becoming popular due to their relatively low cost, ease of application, and short curing period. In spite of the benefits of non-traditional stabiliser as a chemical agent, the engineers seldom use these product due to the variation of chemical data, process explanation, and engineering data. Besides that, the performance of a non-traditional stabiliser is rather difficult to evaluate due to the chemical formulas are often changing based on the market tendency and the exact chemical composition are not disclosed due to the commercial stabilisation product.

In this sense, understanding the mechanism of stabilisation process is very important. Thus, basic stabilisation mechanism should be studied to set these products according to different categories, depending on their primary chemical components and proposed enhancement properties. Considering the above current issues, it is concluded that there is a need to study the physico-chemical and microstructural behaviour of non-traditional stabiliser treated marine clay and use them to explain some aspects of the observed engineering behaviour in a well-controlled laboratory condition before extending it to the field condition. In this thesis, an attempt has been made to evaluate the stabilisation mechanism of treated marine clay soil with selected non-traditional stabilisers.
1.3 Research Aims and Objectives

This research aims to determine the stabilisation mechanism and performance of marine clay soils treated with non-traditional stabilisers, namely the SH-85 and TX-85. Hence, the main objectives of this research are as follows:

i. To determine the changes in the engineering properties of treated marine clay with various percentages of selected stabilisers at different curing periods;

ii. To determine the changes on the physico-chemical and microstructural behaviour of treated marine clay;

iii. To evaluate the influence of pyhsicochemical and microstructural changes of treated marine clay soil on engineering properties; and

iv. To determine the performance of strip footing on treated marine clay soils based on laboratory physical model tests and computer simulation.

1.4 Scope of Study

The soft marine clay soil used in this study was collected from the construction site in Nusajaya where the soils were excavated at the Southern coast Johor, Malaysia. The non-traditional stabilisers used in this study were obtained from a local company called Probase Sdn. Bhd. which is located in Johor.

To understand the changes on physico-chemical and microstructural behaviour of treated marine clay soils, X-Ray diffraction (XRD), energy dispersive x-ray spectrometry (EDAX), scanning electron microscopy (SEM), particle size analysis, thermal gravimetric analysis (TGA), and pH measurement were conducted. Meanwhile, for the engineering behaviour, Atterbeg’s limits, unconfined compressive strength (UCS), oedometer consolidation, and consolidated undrained (CU) triaxial test were conducted.
The testing sample were prepared and cured in a similar manner described in the British Standard (BS 1924: Part 2: 1990). The percentages of the chemical used in the mixture of soil sample were 3%, 6%, 9%, 12%, and 15% cured at 3, 7, 14, 28, 90 and 180 days curing periods. Due to the high quantity of sample and high cost of microstructure test, test was limited to the sample that showed the highest degree of improvement. The 12% of SH-85 stabiliser and 6% of TX-85 stabiliser was chosen as the optimum percentage through the analysis of the results obtained.

Laboratory physical model tests were conducted on the untreated and treated soil (cured at 7 days) as foundation for strip footing. The model tests were carried out by applying loads to the strip footing placed until failure occurred to the footing. The settlement of the footing and the bearing capacity were monitored during loading tests to ascertain the performance of the treated soil as foundation. The commercial 2D finite element software called “PLAXIS” was used in numerical simulation to evaluate and compare the results obtained from laboratory physical model tests. The Mohr-Coulomb soil model under undrained condition was used in the simulation work.

1.5 Significance of Study

In regard to the importance of the study, the mechanism of the stabilisation of marine clay soils with non-traditional stabiliser had been established. The significance of the study includes the following:

i. Understanding the mechanism of the stabilisation process through the results from macro and micro-structural study;

ii. New finding from the changes of the minerology and physical of treated marine clay soils can be used for further study;

iii. The performance of strip footing foundation on treated soil could be used to produce practicing engineers in using non-traditional stabilisers to stabilise marine clay soils.
1.6 Outline of the Thesis

This thesis consists of six chapters. The first chapter gives a brief overall introduction of the entire research work done, followed by its problem statement and research objectives, as well as scope of study and significance of study.

Chapter 2 is devoted to a literature review on the chemical stabilisation by the traditional and non-traditional stabilisers. Also, the fundamentals of clay mineral are presented to understand the soil-chemical reactions. Moreover, previous research on the physical and numerical simulations of strip footing foundation are also discussed.

Chapter 3 describes the research methodology of study, detail of test apparatus, sample preparation, and procedure of testing. Furthermore, the characterization study of stabilised soil was done using spectroscopic and microscopic techniques previously published in papers and as standards. The descriptions of physical and numerical simulation test procedure are also explained at the end of this chapter.

The test results and discussions of the comprehensive testing program are presented in Chapter 4. In Chapter 4, the physico-chemical, as well as microstructural behaviour, together with an integration of the basic engineering properties of treated marine clays and the strength and compressibility behaviour of treated marine clays, are explained and clarified with the knowledge of induced microstructure. In addition, the descriptions of the physical and numerical simulation tests are also presented and discussed.

Finally, Chapter 5 concludes the findings and provides some recommendations for future studies.
REFERENCES

63(5), pp.1057–1066.

Singapore.

Confederation, 91, pp.46–54.

Ministry of Information Malaysia (2008). Rancangan Malaysia Kesembilan,

