QUEUEING THEORY BASED MODEL AND NETWORK ANALYSIS FOR
PREDICTING THE TRANSMISSION AND CONTROL OF EBOLA VIRUS
DISEASE

CHINYERE OGOCHUKWU DIKE

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy

Faculty of Science
Universiti Teknologi Malaysia

JANUARY 2018
DEDICATION

Dedicated to

My darling husband, Dr. Ikeme John Dike, and my lovely children Okey and Ike
whose love, dream, sacrifice, support and encouragement;

My brother and wife, Mr and Mrs Obiajulu Peter Nwofor, whose hospitality,

And

My late lovely father, Chief E. C. Nwofor and my beloved mother Mrs E. C.
Nwofor, who initiated the educational foundation;

Led to achieve my doctoral degree.
ACKNOWLEDGEMENT

I would like to express my sincere appreciation and gratitude to my supervisor Dr. Zaitul Marlizawati Zainuddin for her inspiring guidance, encouragement, and valuable suggestions throughout the period of this research work. Her unwavering guidance, support, and valuable advice during the initial exploration, the background search and writing of this thesis led to the completion of this research work. Also, her dedication and technical expertise proved to be the key elements to my doctoral research.

Special appreciation goes to my darling husband Dr. I. J. Dike and my lovely children Okey and Ike for their love, patience and support during the period of this research. I am indebted to my immediate younger brother and wife Mr and Mrs Obiajulu Peter Nwofor. I am always on transit in their house in Abuja while going and coming back from Malaysia. To my research colleagues, I am grateful especially Ernest Ituma Igba, Nasiru Zakari Muhammad, Hassan Suleiman Jibrin and Yakubu Aliyu Tanko.

Above all, my hearty thanks to God Almighty for his wisdom and spirit of discernment to start and complete this program.
Ebola Virus Disease (EVD) is a complex epidemic killer disease. Recently, the disease has caused serious loss of life, waste of economy and material resources in West Africa nations. Literature shows that mathematical theories and models such as agent-based model, models based on ordinary differential equation for assessment studies and intervention measures have been proposed by several researchers to handle the outbreak of the disease. But, agent-based model comes with high computational cost, and model based on ordinary differential equation describes reality with varying accuracy. Therefore, there is the need for a mathematical model that can describe the real nature of the disease, reduce computational cost and better prediction of its behaviour. This study presents the modelling and analysis of EVD transmission and control using queueing theory technique. Data collected from WHO Ebola Data and Statistics of the recent outbreak in Guinea, Liberia and Sierra Leone from December 2013 to July 2015 is used in the study. The SEI\(_L\)I\(_C\)DR (Susceptible, Exposed, Likely Infected, Confirmed Infected, Dead/Recovery) Ebola epidemic model is proposed to accommodate all the transmission phases and be able to explain EVD transmission and control reliably. The EVD transmission patterns and possible control measures are determined using the basic properties of queueing theory. The SEI\(_L\)I\(_C\)DR based compartmental model is obtained, where SEI\(_L\)I\(_C\)DR represent the compartments within the countries. In addition, the SEI\(_L\)I\(_C\)DR based network model is also developed to characterize every interpersonal contact that can potentially lead to disease transmission. Findings indicate that the spread of EVD follows an irregular and random pattern. Also, the SEI\(_L\)I\(_C\)DR model shows that the Quasi-Stationary Distribution approximation is better than the existing models for the description of EVD problems. Result of the application of queueing theory yielded that the developed model is a reasonable approximation, showing when Ebola Virus is controlled. While, result from network model indicates that the population is vulnerable to large scale epidemics before intervention in the three countries. The vulnerability decreased drastically after intervention. The researcher recommends that studies need to be conducted to include other continent of the world affected by Ebola Virus Disease. The underlying factors of the epidemic are changing rapidly with the increase in safety measures, researchers should develop model that can predict cases in such situation.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xxi</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxvii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Overview of the Research Problem</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Motivation</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Background of the Research</td>
<td>7</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Outbreak, Transmission and Control</td>
<td>7</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Intervention</td>
<td>7</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Queueing Analysis</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Statement of the Problem</td>
<td>11</td>
</tr>
<tr>
<td>1.5</td>
<td>Research Questions</td>
<td>11</td>
</tr>
<tr>
<td>1.6</td>
<td>Objectives of the Study</td>
<td>12</td>
</tr>
<tr>
<td>1.7</td>
<td>Scope of the Research</td>
<td>12</td>
</tr>
<tr>
<td>1.8</td>
<td>Significance of the Research</td>
<td>13</td>
</tr>
</tbody>
</table>
2 LITERATURE REVIEW

2.1 Introduction 17
2.2 Epidemic Diseases 17
2.3 History and Effects of Ebola Virus Disease 18
2.4 Review of Related Literature on Ebola Virus Disease Transmission and Control 20
2.4.1 Implication and Control of Ebola 21
2.4.2 Incidents and Deaths 21
2.4.3 Modelling 23
2.4.4 Clinical Diagnosis and Effectiveness of Numerous Intervention 28
2.4.5 Global Alert on Ebola Virus Disease 333
2.4.6 Effects of Ebola on Convalescent 344

2.5 Research Gap 41
2.6 Summary of Literature Review 42

3 METHODOLOGY

3.1 Introduction 43
3.2 Research Plan 43
3.3 Research Design and Procedure 47
3.3.1 Step 1: Framing of Question 48
3.3.2 Step 2: Structure the Problem 49
3.3.3 Step 3: Data Collection/Data Presentation 49
3.3.4 Step 4: Queueing Analysis of Disease Control 51
3.3.5 Step 5: Development of Mathematical Model of Disease Transmission 51
3.3.6 Step 6: Compartmental Epidemiological Model 52
3.3.7 Step 7: Network Epidemiological Model 55
3.3.8 Step 8: Running and Testing Model 57
3.3.9 Step 9: Model Validation 57
3.3.10 Step 10: Interpreting the Results 58
4 BASIC PROPERTIES OF QUEUEING TECHNIQUE FOR EBOLA VIRUS DISEASE TRANSMISSION AND CONTROL 63
4.1 Introduction 63
4.2 Ebola Data for Guinea, Liberia, and Sierra Leone 63
4.3 Test for Exponentiality Using M/M/1 Queueing Model 65
4.4 Generation of Basic Properties of Queueing Theory from EVD Data (Guinea, Liberia, and Sierra Leone) Using M/M/1 Queueing Model 67
4.5 Mathematical Formulation of Queueing Theory Governing Equation 67
4.6 Application of the Queueing Technique to EVD Problem 73
4.7 Analysis of Guinea, Liberia and Sierra Leone 2014 EVD Outbreak 76
4.8 Summary 84

5 DEVELOPMENT OF SEI_{Lc}DR MODEL 85
5.1 Introduction 85
5.2 Development of SEI_{Lc}DR Model 85
5.3 The SIS and SEIS Based Quasi-Stationary Distribution 86
5.4 Quasi-Stationary Distribution of the Proposed SEI_{Lc}DR Model 93
5.5 SEI_{Lc}DR Model for the Number of Exposed, Likely Infected and Confirmed Infected Person’s Marginal Joint Quasi-Stationary Distribution (QSD) 100
5.6 Analysis of the developed SEI_{Lc}DR Model for Adequate Description of All the Transmission Phases and Behaviours of EVD Using Queueing Theory 102
5.6.1 Results 103
5.7 Validation of the Proposed SEI_{Lc}DR Model 111
6 SEI_{ILC}DR COMPARTMENTAL MODEL

6.1 Introduction 113

6.2 Development of SEI_{ILC}DR Compartemenal Model 114

6.2.1 Timeline of Spread of Recent EVD Outbreak in Guinea 118

6.2.2 Timeline of Spread of Recent EVD Outbreak in Liberia 120

6.2.3 Timeline of Spread of Recent EVD Outbreak in Sierra Leone 121

6.2.4 Discussion on Model Fit Result for the SEI_{ILC}DR Model 123

6.2.4.1 Validation of the SEI_{ILC}DR Compartmenal Model 128

6.3 Application of the SEI_{ILC}DR Compartmenal Model in EVD Cases 129

6.3.1 Derivation of Basic Reproduction Number 130

6.3.1.1 Discussion on Result of the Derivation of Basic Reproduction Number 135

6.4 Application of Queueing Theory to SEI_{ILC}DR Compartmenal Model 139

6.5 Summary 144

7 SEI_{ILC}DR NETWORK MODEL 146

7.1 Introduction 146

7.2 SEI_{ILC}DR Queueing Networks 147

7.2.1 Multiple Channel Open Jackson Queueing Networks 147

7.2.2 Contact Network 148

7.2.3 Urban Contact Network 148

7.3 Transmissibility of EVD 153

7.4 Epidemiological Analysis of EVD 154
7.4.1 Validation of SEI ICDR Network Model 162
7.5 Summary 162

8 CONCLUSIONS AND RECOMMENDATIONS 164
8.1 Introduction 164
8.2 Summary/Conclusion 164
8.3 Contributions 171
8.4 Limitations 172
8.5 Recommendations for Future Work 172

REFERENCES 174
Appendices A - E 186 – 204
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Country/Organisation Expenditure on Ebola Virus Disease</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Table of Ebola Review Analysis</td>
<td>36</td>
</tr>
<tr>
<td>2.2</td>
<td>Table of Queueing Theory Review Analysis</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Research Plan</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>EVD Raw Data for Guinea</td>
<td>50</td>
</tr>
<tr>
<td>3.3</td>
<td>EVD Raw Data for Liberia</td>
<td>50</td>
</tr>
<tr>
<td>3.4</td>
<td>EVD Raw Data for Sierra Leone</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Analogy of Queueing Theory and Disease Control</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Analogy of Queueing Theory and Disease Transmission</td>
<td>55</td>
</tr>
<tr>
<td>4.1</td>
<td>EVD Data for Guinea</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>EVD Data for Liberia</td>
<td>64</td>
</tr>
<tr>
<td>4.3</td>
<td>EVD Data for Sierra Leone</td>
<td>64</td>
</tr>
<tr>
<td>4.4</td>
<td>Data for Exponential Test</td>
<td>65</td>
</tr>
<tr>
<td>4.5</td>
<td>Merged Data for Exponential Test</td>
<td>66</td>
</tr>
<tr>
<td>4.6</td>
<td>Analogy of Basic Properties of Queueing Theory</td>
<td>67</td>
</tr>
<tr>
<td>4.7</td>
<td>Formula for Basic Properties of Queueing Theory</td>
<td>69</td>
</tr>
<tr>
<td>4.8</td>
<td>Guinea Result of Basic Properties of Queueing Theory</td>
<td>69</td>
</tr>
<tr>
<td>4.9</td>
<td>Liberia Result of Basic Properties of Queueing Theory</td>
<td>69</td>
</tr>
<tr>
<td>4.10</td>
<td>Sierra Leone Result of Basic Properties of Queueing Theory</td>
<td>70</td>
</tr>
<tr>
<td>4.11</td>
<td>Guinea Basic Properties for M/M/1-M/M/10</td>
<td>78</td>
</tr>
<tr>
<td>4.12</td>
<td>Liberia Basic Properties for M/M/1-M/M/10</td>
<td>80</td>
</tr>
<tr>
<td>4.13</td>
<td>Sierra Leone Basic Properties for M/M/1-M/M/10</td>
<td>82</td>
</tr>
</tbody>
</table>
7.3 Probability of Infected in the Three Countries for both Compartmental and Network Model
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Record of EVD in Guinea.</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Record of EVD in Liberia.</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Record of EVD in Sierra Leone.</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>Scenarios Leading to Research Problem</td>
<td>10</td>
</tr>
<tr>
<td>3.1</td>
<td>Stages of Disease Transmission and Queueing Theory</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Operational Framework of Research</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Theoretical Framework of Research</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Guinea Transmission Pattern of the Disease</td>
<td>77</td>
</tr>
<tr>
<td>4.2</td>
<td>Guinea Number of Infected Persons per Hour</td>
<td>77</td>
</tr>
<tr>
<td>4.3</td>
<td>Guinea. (a) Probability of Infection (b) ANS against Centre (c) AWTR against Centre (d) AWTS against Centre (e) ENP against Centre</td>
<td>78</td>
</tr>
<tr>
<td>4.4</td>
<td>Liberia Transmission Pattern of the Disease</td>
<td>79</td>
</tr>
<tr>
<td>4.5</td>
<td>Liberia Number of Infected Persons per Hour</td>
<td>9</td>
</tr>
<tr>
<td>4.6</td>
<td>Liberia (a) Probability of Infection (b) ANS against Centre (c) AWTR against Centre (d) AWTS against Centre (e) ENP against Centre</td>
<td>81</td>
</tr>
<tr>
<td>4.7</td>
<td>Sierra Leone Transmission Pattern of the Disease</td>
<td>81</td>
</tr>
<tr>
<td>4.8</td>
<td>Sierra Leone Number of Infected Persons per Hour</td>
<td>82</td>
</tr>
<tr>
<td>4.9</td>
<td>Sierra Leone (a) Probability of Infection (b) ANS against Centre (c) AWTR against Center (d) AWTS against Centre (e) ENP against Centre</td>
<td>83</td>
</tr>
<tr>
<td>5.1</td>
<td>Guinea Stochastic SEI.IcDR Epidemic Model (histogram).</td>
<td>105</td>
</tr>
</tbody>
</table>
5.2 Guinea Contour Diagram of Exposed and Likely Infected Persons

5.3 Guinea Contour Diagram of Likely Infected and Confirmed Infected Persons.

5.4 Liberia Stochastic SEI_{Lc}DR Epidemic Model (histogram).

5.5 Liberia Contour Diagram of Exposed and Likely Infected Persons

5.6 Liberia Contour Diagram of Likely Infected and Confirmed Infected Persons

5.7 Sierra Leone Stochastic SEI_{Lc}DR Epidemic Model (histogram).

5.8 Sierra Leone Contour Diagram of Exposed and Likely Infected Persons

5.9 Sierra Leone Contour Diagram of Likely Infected and Confirmed Infected Persons

6.1 A Schematic of the Transitions between Different States of EVD for SEIR Model

6.2 A Schematic of the Transitions between Different States of EVD for SEI_{Lc}DR Model

6.3 EVD Affected Districts in Guinea

6.4 EVD Affected Districts in Liberia

6.5 EVD Affected Districts in Sierra Leone

6.6 SEI_{Lc}DR Model Fit Result for 2014 Ebola Epidemic Data for Guinea

6.7 SEI_{Lc}DR Model Fit Result for 2014 Ebola Epidemic Data for Liberia

6.8 SEI_{Lc}DR Model Fit Result for 2014 Ebola Epidemic Data for Sierra Leone

6.9 Map of the Affected Countries: (a) Showing Cases, (b) Showing Severity

6.10 Progression of Infection from Susceptible (S) Individuals through the Exposed (E), Likely Infected (I_{L}), Confirmed Infected (I_{C}), and Controlled Dead/Recovery (D/R) Compartments for the Transmission/Control Model
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.11</td>
<td>Trend of EVD Epidemic in SEI_IcDR Compartments for Guinea</td>
</tr>
<tr>
<td>6.12</td>
<td>Trend of EVD Epidemic in SEI_IcDR Compartments for Liberia</td>
</tr>
<tr>
<td>6.13</td>
<td>Trend of EVD Epidemic in SEI_IcDR Compartments for Sierra Leone</td>
</tr>
<tr>
<td>6.14</td>
<td>Normal Distribution Curve for Guinea (a) Number of Exposed, (b) Number of Likely Infected, (c) Number of Confirmed Infected, (d) Number of Death/Recovery</td>
</tr>
<tr>
<td>6.15</td>
<td>Normal Distribution Curve for Liberia (a) Number of Exposed, (b) Number of Likely Infected, (c) Number of Confirmed Infected, (d) Number of Death/Recovery</td>
</tr>
<tr>
<td>6.16</td>
<td>Normal Distribution Curve for Sierra Leone (a) Number of Exposed, (b) Number of Likely Infected, (c) Number of Confirmed Infected, (d) Number of Death/Recovery</td>
</tr>
<tr>
<td>7.1</td>
<td>Urban Contact Network</td>
</tr>
<tr>
<td>7.2</td>
<td>Degree of Contact in the Network Stations</td>
</tr>
<tr>
<td>7.3</td>
<td>Probability Degree of Contact in the Network Stations</td>
</tr>
<tr>
<td>7.4</td>
<td>Cumulative Degree Distribution for Urban Contact Network</td>
</tr>
<tr>
<td>7.5</td>
<td>Network Simulation for Transmissibility before Intervention</td>
</tr>
<tr>
<td>7.6</td>
<td>Network Simulation for Transmissibility after Intervention</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS</td>
<td>Acquired Immunodeficiency Syndrome</td>
</tr>
<tr>
<td>ANS</td>
<td>Average Number in the System</td>
</tr>
<tr>
<td>AWTR</td>
<td>Average Waiting Time for Recovery</td>
</tr>
<tr>
<td>AWTS</td>
<td>Average Waiting Time in the System</td>
</tr>
<tr>
<td>B</td>
<td>Bcell- humoral immunity</td>
</tr>
<tr>
<td>BD</td>
<td>Birth Death</td>
</tr>
<tr>
<td>BDsa</td>
<td>Birth Death Sampled Ancestors</td>
</tr>
<tr>
<td>BDss</td>
<td>Birth Death Super Spreader</td>
</tr>
<tr>
<td>BDEI</td>
<td>Birth Death Exposed Infected</td>
</tr>
<tr>
<td>BDSIR</td>
<td>Birth Death Susceptible Infected Removed</td>
</tr>
<tr>
<td>CDC</td>
<td>Centre for Disease and Control</td>
</tr>
<tr>
<td>CFR</td>
<td>Case Fatality Ratio</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence Interval</td>
</tr>
<tr>
<td>CIA</td>
<td>Central Intelligence Agency</td>
</tr>
<tr>
<td>CNN</td>
<td>Cable News Network</td>
</tr>
<tr>
<td>CS/s</td>
<td>Compartmental Size per second</td>
</tr>
<tr>
<td>DFE</td>
<td>Disease Free Equilibrium</td>
</tr>
<tr>
<td>DRC</td>
<td>Democratic Republic of Congo</td>
</tr>
<tr>
<td>E</td>
<td>Exposed</td>
</tr>
<tr>
<td>EBOV</td>
<td>Ebola Virus</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>EGARCH</td>
<td>Exponential Autoregressive Conditional Heteroskedastic</td>
</tr>
<tr>
<td>EHF</td>
<td>Ebola Haemorrhagic Fever</td>
</tr>
<tr>
<td>ENS</td>
<td>Expected Number in the System</td>
</tr>
<tr>
<td>ETUs</td>
<td>Ebola Treatment Units</td>
</tr>
<tr>
<td>EVD</td>
<td>Ebola Virus Disease</td>
</tr>
</tbody>
</table>
FCFS - First Come First Served
GI/M/S - General Independent/Memoryless/Server
HHCs - Household Contacts
HIV - Human Immunodeficiency Virus
HPD - Highest Posterior Density
I - Infected
IBT - International Business Times
IgG - Antibodies called Immunoglobulin
MATLAB - Matrix Laboratory
MCMC - Markov Chain Monte Carlo
MGARCH-DCC - Multivariate Generalize Autoregressive Conditional Heteroskedastic-Dynamic Correlation Coefficient
M/G/1 - Memoryless/General/1 (Number of Server is 1)
M/G/N - Memoryless/General/N (Number of Server is N)
M/M/./. - Memoryless/ Memoryless /. (Number of Server is .)/ Capacity ()
M/M/1 - Memoryless/ Memoryless /1 (Number of Server is 1)
M/M/1/K - Memoryless/ Memoryless /1 (Number of Server is 1)/Capacity (K)
M/M/S - Memoryless/ Memoryless /S (Number of Server is S)
M/M/s/K - Memoryless/ Memoryless /s (Number of Server is s)/Capacity (K)
PGF - Probability Generating Functions
PPR - Prevalence Proportion Ratios
QC - Quarantine Centre
QSD - Quasi-Stationary Distribution
REBOV - Reston Ebola Virus
RMSE - Root Mean Square Error
RR - Rate Ratio
S - Susceptible
SD - Standard Deviation
SEIDbDiR - Susceptible Exposed Infected Dead Buried Dead Infected Removed
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEI\textsubscript{Lc}DR</td>
<td>Susceptible Exposed Likely Infected Confirmed Infected Dead Recovered</td>
</tr>
<tr>
<td>SEIHFR</td>
<td>Susceptible Exposed Infected Hospitalized Funeral Removed</td>
</tr>
<tr>
<td>SEIR</td>
<td>Susceptible Exposed Infected Removed</td>
</tr>
<tr>
<td>SEIS</td>
<td>Susceptible Exposed Infected Susceptible</td>
</tr>
<tr>
<td>SIR</td>
<td>Susceptible Infected Removed</td>
</tr>
<tr>
<td>SIIR</td>
<td>Susceptible Latent Infected Removed</td>
</tr>
<tr>
<td>SIS</td>
<td>Susceptible Infected Susceptible</td>
</tr>
<tr>
<td>SLLN</td>
<td>Strong Law of Large Numbers</td>
</tr>
<tr>
<td>T</td>
<td>Tcell-mediated immunity</td>
</tr>
<tr>
<td>USD</td>
<td>United States Dollar</td>
</tr>
<tr>
<td>UNICEF</td>
<td>United Nations of Children’s Fund</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>ZEBOV</td>
<td>Zaire Ebola Virus</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

$ - United States Dollar
$0 - Basic Reproduction Number
$ - Probability of Infection
$ - Time
$I(t)$ - Number of Infective at time t
$S(t)$ - Number of Susceptible at time t
Ω - States Space
λ - Infection/Transmission Rate
μ - Recovery rate
β - Effective Contact Rate
k - Infective Individual
R_e, R_e or R_t - Effective Reproduction Number
\overline{l}/k - Average Incubation Period
N - Total Effective Population Size
I_C/N - Probability that Contact is made with Infectious Individual

CD4 T - Assist Other White Blood Cells in Immunologic Process
CD8 T - Destroy Virus Infected Cells and Tumour Cells
$L^*(t,.)$ - Joint Distribution of the Number of Jobs Present at time t
$V_{o(t,.)}$ - Sojourn Time of a Tagged Job Placed in the System at t under various initial conditions in terms of the Laplace transform with respect to t
P - Probability
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_d</td>
<td>Total Delay in the System</td>
</tr>
<tr>
<td>T_m</td>
<td>Average Time an Individual that is Infected Spends in the System</td>
</tr>
<tr>
<td>T_r</td>
<td>Recovery Time</td>
</tr>
<tr>
<td>N</td>
<td>Number of Infected Individuals in the System</td>
</tr>
<tr>
<td>$E(N)$</td>
<td>Expectation of Number of Individuals Infected in the System at Time t</td>
</tr>
<tr>
<td>$E(T)$</td>
<td>Expectation of Total Delay in the System</td>
</tr>
<tr>
<td>$N(t)$</td>
<td>Number of Individuals Infected in the System at Time t</td>
</tr>
<tr>
<td>$N_A(t)$</td>
<td>Number of Individuals Infected that Arrives at the System up to Time t</td>
</tr>
<tr>
<td>$N_D(t)$</td>
<td>Number of Individuals Infected that Departs from the System up to Time t</td>
</tr>
<tr>
<td>T_m</td>
<td>Mean Time an Infected Individual Spends in the System</td>
</tr>
<tr>
<td>$P(\beta_n)$</td>
<td>Inter-arrival Probability Density Function</td>
</tr>
<tr>
<td>$1/\lambda$</td>
<td>Mean of Inter-arrival Probability Density Function</td>
</tr>
<tr>
<td>$1/\lambda^2$</td>
<td>Variance of Inter-arrival Probability Density Function</td>
</tr>
<tr>
<td>Y_i</td>
<td>Sum of Poisson Random Variables for Independent Random Variables</td>
</tr>
<tr>
<td>P_{s_n}</td>
<td>Partial Sum</td>
</tr>
<tr>
<td>N_n</td>
<td>Number of Infected Individuals at Time n</td>
</tr>
<tr>
<td>Ω_1</td>
<td>System that Every Exposed Individual Enters</td>
</tr>
<tr>
<td>Ω_2</td>
<td>Each Infected Individual Leaves Ω_1 and Enters another System Ω_2</td>
</tr>
<tr>
<td>Hrs</td>
<td>Hours</td>
</tr>
<tr>
<td>Δ</td>
<td>Small Change</td>
</tr>
<tr>
<td>Q</td>
<td>Quasi-Stationary Distribution</td>
</tr>
<tr>
<td>$\pi_{m,n}$</td>
<td>Limiting Ratio of Time that there were m</td>
</tr>
</tbody>
</table>
Exposed, \(n \) Infected Persons

\[m \quad - \quad \text{Exposed} \]

\[n \quad - \quad \text{Infected Person} \]

\[E(t) \quad - \quad \text{Number of Exposed at Time} \ t \]

\[I^T(t) \quad - \quad \text{Total Number of Infected Persons at Time} \ t \]

\[P_{t}^{k} \quad - \quad \text{Total Probability for} \ k^{th} \text{Infective} \]

\[\{X_1, X_2, \ldots\} \quad - \quad \text{Series of Nonnegative, Independent and Identically Distributed Random Variable} \]

\[\infty \quad - \quad \text{Infinity} \]

\[m(t) \quad - \quad \text{Mean-Value or the Renewal Function} \]

\[\phi \quad - \quad \text{Probability that Specific Person is in Infectious State} \]

\[\lim_{t \to \infty} \quad - \quad \text{Limit as} \ t \ \text{tends to infinity} \]

\[e \quad - \quad \text{exponential} \]

\[\pi_{m,n,n_c} \quad - \quad \text{Limiting Ratio of time in which there were} \ m \ \text{exposed,} \ n_L \ \text{Likely Infected and} \ n_C \ \text{Confirmed Infected Persons not being in the Absorbing State but Conditioning in the Process} \]

\[\pi_{k} \quad - \quad \text{Total Number of Infectious Persons for Quasi-Stationary Distribution} \]

\[n_L \quad - \quad \text{Number of Likely Infected} \]

\[n_C \quad - \quad \text{Number of Confirmed Infected} \]

\[(E,I_L,I_C) \quad - \quad \text{The State Space of Number of Exposed, Likely Infected and Confirmed Infected Persons} \]

\[I_L(t) \quad - \quad \text{Number of Likely Infected at Time} \ t \]

\[I_C(t) \quad - \quad \text{Number of Confirmed Infected at Time} \ t \]

\[P_{m,n,n_c} \quad - \quad \text{Probability of the Joint Quasi-Stationary Distribution} \]

\[! \quad - \quad \text{Factorial} \]

\[\lambda I_C/N \quad - \quad \text{Rate at which Individual in Contact with the Virus} \]
Enter the Exposed State

- $1/k$ - Average Incubation Period
- ω_L - Rate at which Individual Move from Likely Infected to Confirmed Infected State
- ω_C - Rate at which Individual Move from Confirmed Infected to Death or Recovery State
- τ - Beginning of Intervention Time
- α - Control of Rate of Transmission
- t_0 - Initial Outbreak Time
- $f(x)$ - Function of x
- F - Rate of Appearance of New Infections in the Compartment
- V - Rate of Transfer of Individuals into and out of Compartment
- ν_1 - Rate at which Individual Progress from Exposed to Likely Infectious Individuals
- ν_2 - Rate at which Individual Progress from Likely Infected to Confirmed Infectious Individual
- d - Death Rate
- η_1 - Control Rate for Exposed Individuals
- η_2 - Control Rate for Confirmed Infectious Individuals
- q - Successful Control Infectious individuals
- $(p = 1-q)$ - Unsuccessful Control Infectious Individuals
- E - Differential of Exposed
- I_L - Differential of Likely Infected
- I_C - Differential of Confirmed Infected
- S - Differential of Susceptible
- D/R - Differential of Dead/Recovery
- ρ - Spectral Radius of Matrix FV^{-1}
\(x_0 \) - Jacobian Matrix

\(Df(x_0) \) - Derivative \([\partial f / \partial x]\) Evaluated at the Disease Free Equilibrium

\(P_E \) - Probability of Exposed

\(P_{L} \) - Probability of Likely Infected

\(P_{C} \) - Probability of Confirmed Infected

\(P_S \) - Probability of Susceptible

\(P_{D/R} \) - Probability of Dead/Recovery

\(T \) - Transmissibility

\(T_c \) - Critical Transmissibility or Epidemic Threshold

\(c \) - Mean Degree

\(c^2 \) - Mean Square Degree

\(G_0(h) \) - Probability Generating Functions for a Degree

\(\langle c-1 \rangle \) - Excess Degree

\(\langle c \rangle \) - Mean Degree Absolute value

\(\langle c_e \rangle \) - Mean Excess Degree Absolute Value

\(\langle e \rangle \) - Average Size of an Outbreak Absolute Value

\(E \) - Probability of a Full-Blown Epidemic

\(l \) - Probability that the Person at the End of an Edge or Line Does Not Have the Disease

\(r_c \) - Probability that a Patient Zero with Degree \(c \) will Start an Epidemic or Probability that Transmission of the Disease Along at Least One of the Edges Originating from the New Node or Vertex will Lead to an Epidemic

\(1-T \) - Probability that the Disease Does Not Get Transmitted Along the Edge

\(Tl \) - Probability that Even if Disease is Transmitted to the Next Node or Vertex, it Does Not Proceed into
a Full-Blown Epidemic, for Any One of its c Edges

$$1 - \prod_{i=1}^{N} (1 - r_i)$$

- Probability that an Outbreak of Size N will Kindle an Epidemic

f_c

- Probability that an Individual with Degree c will Become Infected During an Epidemic is Equal to One Minus the Probability that None of an Individual c Contact will Transmit the Disease to an Individual
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Generation of Basic Properties of Queueing Theory from EVD Data (Guinea, Liberia and Sierra Leone) Using M/M/1 Queueing Model</td>
<td>186</td>
</tr>
<tr>
<td>B</td>
<td>MATLAB Code for SEI(_i)ICDR Epidemic Model and Contour Diagram for Guinea, Liberia and Sierra Leone</td>
<td>193</td>
</tr>
<tr>
<td>C</td>
<td>Proposed SEI(_i)ICDR Compartmental Model Code (Before and After Intervention for Guinea, Liberia and Sierra Leone)</td>
<td>197</td>
</tr>
<tr>
<td>D</td>
<td>Critical Transmissibility, Transmissibility and Probability of Network Infected</td>
<td>201</td>
</tr>
<tr>
<td>E</td>
<td>Publications</td>
<td>204</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Overview of the Research Problem

Ebola Virus Disease (EVD) is a disease caused by infection with the virus of the family Filoviridae, genus Ebola virus (Feldmann et al., 2011). It is one of the greatest challenges mankind has faced since inception of the world. The toughness of the challenge might be linked to the ways the disease transmits from place to place and from person to person.

Transmission is the unbroken sequence of event by a system. According to Lahm et al. (2007) and Walsh et al. (2003), Ebola outbreaks and transmission among humans has been associated with direct exposure to fruit bats and mortality among other wild animals, which tend to succumb to the infection. Once there is an outbreak, it can easily be transmitted from person to person. Subsequently, humans need to adopt some control measures to avoid further transmission and possible eradication of the disease. The quest to provide some control measures has attracted some researchers to develop various EVD transmission and control models.

A model is a physical, mathematical, or logical representation of a system, entity, phenomenon, or process. EVD models such as SIR (Susceptible, Infected, Removed), and others such as SEIR (Susceptible, Exposed, Infected, Removed), SEID DR (Susceptible, Exposed, Infected, Dead Buried, Dead Infected, Removed), SEIHFR (Susceptible, Exposed, Infected, Hospitalized, Funeral, Removed) were
derived from basic epidemiological model SIR, were used by researchers. Researchers use Removed to mean those who recuperate or die from the illness. In the proposed research there is provision for Death and Recovery phases. However, these models are not suitable to be used because they do not accommodate the transmission phases of Ebola. Thus, model that would accommodate the transmission phases and be able to explain EVD transmission and control reliably in the real world is needed. According to WHO (2014a), WHO (2014b), WHO (2015a), CDC (2014a), Goeijenbier et al. (2014), Hass (2014), Alan (2013) and Singh (2014), EVD transmission phases are: Susceptible, Exposed, Likely Infected, Confirmed Infected, Dead, Recovery (SEIILIcDR). Therefore, in this study, the SEIILIcDR model of EVD transmission is proposed through queueing theory. Queueing theory is the mathematical study of waiting lines, or queues (Sztrik, 2012). It deals with the analysis of serving customers arriving to a facility with a fixed number of servers (Hernandez-Suarez et al., 2010). M/M/1 queueing model is applied which refers to the way the disease is transmitted, that is, infection is from one stage to another. For example, in SEIILIcDR model an infected individual has to pass through the S→E→IL→IC→D/R stages one after the other. The characteristics of queueing theory is that it has Poisson arrival, exponential service times and number of server (capacity). Through applying Poisson and exponential distributions assists to model complex phenomenon of waiting of infected individual in a queue as simple mathematical equation thereby reducing computational cost (quantification of the difficulty of a computational problem in terms of the computer resources such as computational time or amount of memory required for its solution). These equations are analyzed to describe the real nature of the disease, better prediction of its behaviour and helps in capacity planning decision. That is, it assists in determining the number of EVD Quarantine Centres (QC) with respect to infected EVD patients. The application of queueing theory in the transmission dynamics and control of EVD assists in the development of a reliable EVD model. The theory monitors the outbreak of the disease, the trend of the disease and the eradication of the disease.
1.2 Motivation

Ebola Virus Disease currently has no known effective treatment or vaccine. Stadler et al. (2014) argued that supportive care and disease containment is the only available focus of relief efforts in bringing down the case fatality in case of any outbreak. Ebola outbreak has affected adversely the economy of the affected West African countries. Nwaoga (2014) revealed that Nigeria government spent USD11.875 million (United States Dollar) on the fight against EVD as of August 2014. Furthermore, United State government has committed USD175 million, partnering with the United Nations and other international partners to help the government of Guinea, Liberia, Sierra Leone, Nigeria, and Senegal. On the other hand, World Health Organisation (WHO) has spent USD1 billion so far (WHO, 2014c). The United Nations of Children’s Fund (UNICEF) spent USD65 million in Liberia, USD61 million in Sierra Leone, and USD55 million in Guinea (UNICEF, 2014a, b). Additional USD10 million was also mapped out to the neighbouring countries to get them prepared for potential spread of the disease within their borders, with the remaining USD9 million required for regional coordination efforts (WHO, 2014c; UNICEF, 2014a,b). Table 1.1 shows expenses of countries and organisations on combating Ebola Virus Disease.

<table>
<thead>
<tr>
<th>Country/Organisation</th>
<th>Amount $(USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nigeria</td>
<td>11.875 million</td>
</tr>
<tr>
<td>United State, United Nations, and other partners</td>
<td>175 million</td>
</tr>
<tr>
<td>WHO</td>
<td>1 billion</td>
</tr>
<tr>
<td>UNICEF</td>
<td>65 million (Liberia)</td>
</tr>
<tr>
<td></td>
<td>61 million (Sierra Leone)</td>
</tr>
<tr>
<td></td>
<td>65 million (Guinea)</td>
</tr>
<tr>
<td></td>
<td>10 million (neighbouring countries)</td>
</tr>
<tr>
<td></td>
<td>9 million (regional coordinators)</td>
</tr>
</tbody>
</table>
The high death rate is another worry. Information gathered from WHO (2014a) and WHO (2015a) Ebola Data and Statistics showed that in February 2015 there were 3155 total cases and 2091 total death. In March 2015, there were 3429 total cases and 2263 total death and in April, there were 3548 total cases and 2346 total death for Guinea as shown in Figure 1.1.

![Guinea EVD record](image)

Figure 1.1: Record of EVD in Guinea.

Subsequently, in February 2015 there were 9238 total cases and 4037 total death; in March 2015 there were 9602 total cases and 4301 total death, in April there were 10042 total cases and 4486 total death for Liberia as shown Figure 1.2.
As for Sierra Leone, in February 2015 there were 11301 total cases and 3461 total death; in March 2015 there were 11841 total cases and 3747 total death, in April there were 12201 total cases and 3857 total death as shown in Figure 1.3.

Figure 1.2: Record of EVD in Liberia.
Therefore, it has been shown in Table 1.1, Figures 1.1, 1.2, and 1.3 that a study for evident transmission of EVD is extremely important in order to find out the best ways to minimise the disaster caused by the disease. For example, in Figure 1.3 Sierra Leone has smaller number of death/cases compared to Guinea in Figure 1.1 and Liberia in Figure 1.2 because the outbreak started later which is May 2014 in Sierra Leone, December 2013 in Guinea and March 2014 in Liberia.

However the trend was on the increase for the three countries-Guinea, Liberia and Sierra Leone. Guinea was declared Ebola free on December 2015, Liberia on 9 May 2015 and Sierra Leone on November 2015. Guinea and Sierra Leone both had much larger outbreaks and it took a little longer. Liberia has been the most affected, with 4809 death, 3955 death in Sierra Leone and 2536 death in Guinea. Liberia Ebola epidemic that was declared free on 9 May re-emerged seven weeks later when a 17 year old man died from the disease and more cases was reported. The same happened in September, which is why the latest declaration of Liberia being Ebola free, while welcome one should be treated with caution (WHO, 2015a; BBC, 2016).
1.3 Background of the Research

As a result of the above mentioned problems, some researchers have carried out studies in finding possible means of eradicating EVD transmission in the affected areas. The studies can be divided into three criteria.

1.3.1 Outbreak, Transmission and Control

Siettos et al. (2015) developed an agent-based model to study the 2014 Ebola virus epidemic outbreak, transmission and control in Liberia and Sierra Leone. They employed equation free approach to assign estimates to key epidemiological variables. Their data was derived from WHO Ebola Data and Statistics. The proposed model was found reliable for future EVD prediction in Liberia and Sierra Leone. However, equation free algorithms are generally not accurately expressed. In addition, all agent-based approach comes with high computational cost (Kelso & Milne, 2011).

Gomes et al. (2014) assessed the international spreading risk associated with the 2014 West African Ebola outbreak. They used the global epidemic and mobility model to generate stochastic individual based simulation. They found out that the extension of the outbreak is more likely occurring in African countries, increasing the risk of international dissemination on a longer time scale. However, it is difficult to use the approach for complex simulation and as such Gomes et al. (2014) used short term data only in their study.

1.3.2 Intervention

Rivers et al. (2014) modelled the impact of interventions on Ebola in Sierra Leone and Liberia using ordinary differential equations and simulations. They
forecasted the progression of Ebola. The researchers also looked at the effectiveness of numerous interventions such as increased contact tracing, improved infections control practices and the use of a hypothetical pharmaceutical intervention to improve survival of hospitalized patients. They found out that there is increasingly severe epidemic with no sign of having reached the peak as at 31st December 2014. However, ordinary differential equation based models describe reality with varying accuracy (Isberg, 2012).

1.3.3 Queueing Analysis

The theory of queues and its analysis by the method of imbedded Markov chain was proposed by Kendall (1953). He used the technique to show the relationship between M/G/1 queues and; birth and death process. Subsequently, Kitaev (1993) proposed a processor-sharing model to find the relation between birth and death processes and the M/G/1 queues with processor sharing. Furthermore, Ball and Donnelly (1995) used M/G/1 theory to find total cost of the epidemic. Hernandez-Suarez et al. (2010) applied queueing theory to SIS (Susceptible, Infected, Susceptible) and SEIS (Susceptible, Exposed, Infected, Susceptible) epidemic models. However, their concern was on general epidemic. It is good to mention that each epidemic has its own special characteristics.

As can be seen, researchers have developed various epidemic based model of Ebola virus, mainly for Liberia and Sierra Leone. Their models were derived from the original SIR model proposed in 1932 as cited in Bashar et al. (2015). Some of the researchers extended the model to accommodate latent property of the Ebola virus during incubation period. But their models did not cover all the necessary EVD transmission phases.

Furthermore, the way Ebola Virus Disease invade countries differ due to socio-cultural and population behavioural differences. Hence, there is a need to study the way Ebola Virus Disease invaded different affected West African countries and measures taken to address the spread. In order to minimise the spread of the disease,
a mathematical model that can determine the real nature of EVD transmission in a better way is deemed necessary. The scenario leading to the research problem is summarized in Figure 1.4.
MOTIVATION

Ebolavirus epidemic has led to the death of many people in West Africa and affected the economy of the affected countries adversely. The outbreak constitutes a Public Health Emergency of International Concern (WHO, 2014d; WHO, 2014e). Therefore, Ebola Virus Disease needs to be controlled.

EPIDEMIC MODEL

Researchers have worked on the following epidemic models: SIR, SEIR, SEIRD, SEIHFR, BDEIR, BDSIR, BD SEIR, BD, BDE, BD, SIIR. Where: S = Susceptible, I = Infected, E = Exposed, R = Removed, D = Dead, Db = Dead buried, DI = Dead Infected, H = Hospitalized, F = Funeral, BDsa = Birth Death sampled ancestors, B = Birth, BDss = Birth Death super spreaders, II = Latent Infected

CURRENT SCENARIO / PRACTICE

On EVD Treatment and Control

Mathematical Approaches

- Agent-based simulation and equation free approach (Siettos et al., 2015)
- Stochastic individual based simulation (Gomes et al., 2014)
- Ordinary differential equations (Rivers et al., 2014)

LIMITATION 2

None of the above epidemic models cover all the transmission phases of EVD.

LIMITATION 3

1. Equation free algorithm are generally not expressed accurately
2. Agent based approach comes with higher computational cost (Kelso & Milne, 2011)

LIMITATION 4

1. It is difficult to use the approach for complex simulation (Kelso & Milne, 2011).
2. Only short term data were used (Gomes et al., 2014).

LIMITATION 5

ODE describes reality with varying accuracy (Isberg, 2012)

FILLING THE GAP

The study focuses on:

1. An approach capable of handling complex phenomenon sequentially.
2. Adopts a mathematical model that understands reality and predicts behaviours
3. Development of model that covers all the transmission phases associated with EVD.
4. Development of model that address challenges due to socio-cultural related and dense population-behavioural related factors

The research will consider queueing theory as a good approach since it assists to model complex phenomenon of waiting of infected individual in a queue as simple mathematical equation thereby reducing computational cost, describe the real nature of the disease, predicts its behavior and helps in capacity planning decision (Damon, 2016)

Figure 1.4: Scenarios Leading to Research Problem
1.4 Statement of the Problem

Ebola Virus Disease is a complex and unprecedented epidemic killer disease. Recently, the disease has caused serious loss of life, waste of economy and material resources in West African nations like Nigeria, Senegal, Liberia, Sierra Leone and Guinea (WHO, 2014d). A lot of mathematical theories and models such as agent-based model, model based on ordinary differential equation for necessary assessment studies and intervention measures have been proposed by several researchers on ways to handle outbreak of the disease (Chowell and Nishiura, 2014). The researcher is of the opinion, that if EVD and its effects are not carefully studied and managed, it will claim immeasurable number of lives and properties within West Africa and her neighbours in no distant time. Therefore, a model that is capable of explaining the real nature of EVD transmission is needed.

As a result of the transmission mode and deadly nature of the disease, this study proposes an EVD transmission and control model based on queueing theory that considers all the transmission phases in order to understand the real nature of the disease and predict its behaviour. A queueing theory based compartmental model that explains individual queues of EVD and a queueing theory based network model to explain network of EVD queues in the three most affected countries are developed. Compartmental model is based on subdividing the population under consideration into various sections, while queueing network model is an interconnected collection of stations and contact network is applied. Therefore contact exist in designated stations which involves use of urban contact network such as household, shopping centre, religious centre, schools, workplaces and hospitals in a given community.

1.5 Research Questions

The problem statement raised several research challenges. These challenges will be addressed by providing answers to the following questions:
1. How would queueing theory be applied to determine Ebola Virus Disease transmission pattern?

2. How would all transmission phases and behaviours of EVD be described through developed queueing theory based SEI_I_C_DR (Susceptible, Exposed, Likely Infected, Confirmed Infected, Dead, Recovery) model?

3. How would SEI_I_C_DR based compartmental model using the queueing theory approach be obtained for EVD analysis?

4. How would SEI_I_C_DR based network model using the queueing theory approach be obtained for EVD analysis?

1.6 Objectives of the Study

The aim of the study is to develop queueing theory based EVD transmission and control model. The specific objectives are:

1. To determine Ebola Virus Disease transmission patterns and possible control measures using the basic properties of queueing theory.

2. To develop SEI_I_C_DR (Susceptible, Exposed, Likely Infected, Confirmed Infected, Dead, Recovery) model, for adequate description of all transmission phases and behaviours of EVD using queueing theory.

3. To obtain SEI_I_C_DR based compartmental model using the queueing theory approach for EVD analysis.

4. To obtain SEI_I_C_DR based network model using the queueing theory approach for EVD analysis.

1.7 Scope of the Research

Ebola Virus Disease transmission patterns and possible control measures will be determined using the basic properties of queueing theory. A three dimensional model of SEI_I_C_DR Ebola epidemic will be developed, solved and analysed to accommodate necessary EVD transmission phases. Queueing theory is used to
develop, solve and analyse the compartmental model and network model in determining the EVD transmission dynamics and control measures. The study considered the three most affected countries in West Africa (Guinea, Liberia and Sierra Leone). The EVD data documented by the World Health Organisation was trusted in finding the input parameters of the model.

1.8 Significance of the Research

Previous researchers applied models on one and two dimensional approach, on the other hand this study developed SEI:IC:DR model which is three dimensional. Likewise other studies applied an agent-based model and equation free approach, the global epidemic and mobility model, and ordinary differential equations which cannot understand the real nature of the Ebola Virus Disease and predict its behaviour. Alternatively, this study adopted queueing theory which can make better predictions.

The real nature of the disease was understood through the use of the developed model and its behaviour was predicted. It also determined the Ebola Virus Disease transmission patterns. These findings will be of benefit to the World Health Organisation, institutions of higher learning, nations of the world especially West African nations.

The research findings will form part of essential EVD database for World Health Organisation. The organisations will refer to the information provided in the research findings in taking decisions concerning future EVD outbreak whenever it occurs.

The institutions of higher learning also will benefit from the findings of the research. Suggestions for further study provided in the research will form pedestal for future research.
Nations of the world, especially West African nations will utilize the model to combat EVD outbreak anytime it occurs. They will use the model to predict possible transmission pattern of the disease and also proffers controlling measures to address the outbreak.

1.9 Thesis Organisation

The thesis is classified into eight chapters. The organisation is as follows:

Chapter 1 consists of overview of the research problem, motivation, background of the research, statement of the problem, research questions, objectives of the study, scope of the research and significance of the research. This chapter gives understanding on the research work under consideration.

Chapter 2 provides comprehensive literature review based on the research topic. The literature reviewed covers the general overviews on Ebola Virus Disease transmission and control. The chapter further describes the brief history of Ebola Virus Disease, outlined possible effects of Ebola Virus Disease, control measures and other epidemic diseases. This chapter provides a description, summary, and critical evaluation of surveys books, scholarly article, and any other sources relevant to a particular issue about the study, area of research, or theory in relation to research problem being investigated.

Chapter 3 covers the research methodology adopted to perform this research work. The research design and procedure serves as the road map to achieve the research objectives. These include research plan, research design and procedure which is made up of ten steps-(framing of questions, structure the problem, data collection/data presentation, queueing analysis, development of Mathematical model, compartmental epidemiological model, network epidemiological model, running and testing the model, model validation and interpreting the results), operational framework as well as theoretical framework. This chapter offers the systematic, theoretical analysis of the methods applied to field of study.
Chapter 4 discusses the generation of the basic properties of queueing process from EVD data (Guinea, Liberia and Sierra Leone) using M/M/1 queueing model, test of exponentiality, queueing theory governing equation, application of queueing technique to EVD problem and analysis of Guinea, Liberia and Sierra Leone 2014 EVD outbreak. This chapter determines Ebola Virus Disease transmission patterns and possible control measures using the basic properties of queueing theory.

Chapter 5 covers the development of SEI\textsubscript{L}IC\textsubscript{DR} model, SIS and SEIS based Quasi-Stationary Distribution; Quasi-Stationary Distribution of the proposed SEI\textsubscript{L}IC\textsubscript{DR} model; SEI\textsubscript{L}IC\textsubscript{DR} model of the number of Exposed, Likely Infected and Confirmed Infected persons for marginal joint Quasi-Stationary Distributions; analysis of the developed SEI\textsubscript{L}IC\textsubscript{DR} model for adequate description of all transmission phases and behaviours of EVD using queueing theory and validation of the proposed SEI\textsubscript{L}IC\textsubscript{DR} model.

Chapter 6 discusses the development of the SEI\textsubscript{L}IC\textsubscript{DR} compartmental model; application of the SEI\textsubscript{L}IC\textsubscript{DR} compartmental model in EVD cases using Guinea, Liberia, and Sierra Leone as case studies; and application of queueing theory approach to SEI\textsubscript{L}IC\textsubscript{DR} compartmental model. This model explains traditional epidemiological analysis that is based on subdividing the population under consideration into various sections. Application of compartmental model to Ebola Virus Disease (EVD) will result in estimating of the fundamental quantity called the basic reproduction number, R_0, which is the number of secondary infections produced by a typical cases of an infection in a population that is totally Susceptible. The value above one means outbreak should flicker to large-scale epidemic. The model is validated using Chi-Square.

Chapter 7 highlights SEI\textsubscript{L}IC\textsubscript{DR} queueing networks, multiple channel open Jackson queueing networks, contact network, urban contact network (households, shopping centre, religious centre, schools, workplaces and hospital), transmissibility of EVD and epidemiological analysis of EVD. This model explains that contagious disease like Ebola transmits through networks, made by bodily interactions among
persons. The model is validated using urban contact network analysis, since it offers a high degree of realism.

Chapter 8 provides the summary of the research work and conclusion of the entire research work based on the results obtained in Chapters 4, 5, 6 and 7. It also discusses the contributions, limitations of the study and recommendations for future research work.
REFERENCES

Doi:10.1371/currents.outbreaks.91af65e0f279e7f29e7056095255b288.

Sierra Leone Unemployment Rate (2017). https://www.google.com/webhp?sourceid=chrome-

