SENSOR-BASED ASSESSMENT USING MACHINE LEARNING FOR PREDICTIVE MODEL OF BADMINTON SKILLS

CHEW ZHEN SHAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

MAY 2018
Dedicated to all readers, especially you
ACKNOWLEDGEMENT

Firstly, I would like to express my sincere gratitude to my supervisor, Dr. Yeong Che Fai, many thanks for supporting and motivating me throughout my studies. I am also thankful to my co-supervisor, Dr Eileen Su Lee Ming for her selfless guidance and advice, not only in the research but also in English speaking improvement.

I also give thanks to the Ministry of Education (MOE) for funding my Master study. Many thanks to librarians of Universiti Teknologi Malaysia (UTM) for their assistance in supplying me the relevant literatures. On the other hand, the full support from my family can never be expressed by words.

Finally, I would like to express my gratitude to all colleagues and friends who sincerely have helped me to achieve the objectives of this study. I hope my achievement will encourage you to realize your ambition.
ABSTRACT

Badminton assessment is a process to evaluate the performance of players and it is very important for them to identify their strengths and weaknesses so as to improve their training effectiveness. Several conventional assessment methods, which are the lack of manpower, expertise and objective methods. Besides, standard parameters and assessment model using machine learning for badminton assessment are still at research level. The main objective of this research is to design and develop a novel and effective system for badminton assessment. In this thesis, a total of three assessment modules (Module 1: Badminton Serving Accuracy, Module 2: Badminton Shots Quality, Module 3: Player’s Agility) were developed to extract the required measurable parameters of players through their serves, hits and agility. A 9 degree of freedom wireless sensor, an APDM Opal sensor and a badminton feedback sensor, XiaoYu 2.0 were used in this study to collect kinematic parameters such as acceleration, power and rotational speed. All the three modules were tested with 3 strong and 6 normal players and there were totally 46 collected features. A total of 39 out of 46 features have been proved being significantly different using t-test method. The three feature selection methods were named Relief, Principal Component Analysis and Correlation Feature Selection and were used for feature extraction. Then, the acquired datasets were tested by seven machine learning models, namely Random Tree (RT), Random Forest, Artificial Neural Network, K Star, Multiple Linear Regression, Gaussian Process and Support Vector Machine. Total of 21 assessment models had been constructed. The results show that the RT model produces prediction accuracy of 90.84% and correlation value of r=0.86.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>xix</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xx</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxi</td>
<td></td>
</tr>
</tbody>
</table>

1 | INTRODUCTION | 1 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.3 Research Objectives</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1.4 Research Scopes</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1.5 Thesis Outline</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

2 | LITERATURE REVIEW | 6 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2.2 Badminton</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Badminton Playing Ability</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
2.2.1.1 Badminton Serve 9
2.2.1.2 Offensive and Defensive 10
2.2.1.3 Footwork in Badminton 11
2.2.2 Conventional Assessment 14
2.2.3 Quantitative Assessment by using Sport Technologies 16
2.3 Sport Technologies 16
2.3.1 Technologies on Badminton Assessment 18
2.3.2 Wireless-Based Technology 18
2.3.3 Comparison of Wearable Sensors 20
2.4 Statistical Analysis 21
2.4.1 T-Test 22
2.4.2 ANOVA Test 23
2.5 Data Preprocessing 23
2.6 Feature Reduction 26
2.6.1 RELIEF 27
2.6.2 Principal Component Analysis (PCA) 28
2.6.3 Correlation Feature Selection (CFS) 29
2.7 Modelling using Machine Learning 30
2.7.1 Multiple Linear Regression (MLR) 31
2.7.2 Artificial Neural Network (ANN) 32
2.7.3 K Star (K*) 33
2.7.4 Gaussian Process 33
2.7.5 Random Tree 34
2.7.6 Random Forests 36
2.7.7 Support Vector Machine 37
2.8 Model Validation and Selection 37
2.8.1 K-fold Cross-validation 38
2.8.2 Correlation Analysis 39
2.9 Predictive Model for Badminton Assessment 40
2.10 Summary 42
METHODOLOGY

3.1 Introduction

3.2 Interview Section

3.3 Data Acquisition System
 - 3.3.1 Wireless Wearable Sensor
 - 3.3.2 Smart Badminton Sensor
 - 3.3.3 Analysis Software

3.4 Design of Badminton Assessment Modules
 - 3.4.1 Module 1: Badminton Serving Accuracy
 - 3.4.1.1 Protocol
 - 3.4.1.2 Data Analysis
 - 3.4.2 Module 2: Badminton Shots Quality
 - 3.4.2.1 Protocol
 - 3.4.2.2 Data Analysis
 - 3.4.3 Module 3: Player’s Agility
 - 3.4.3.1 Protocol
 - 3.4.3.2 Data Analysis
 - 3.4.4 Experimental Setup

3.5 Subjects

3.6 Summary

RESULTS OF BADMINTON ASSESSMENT

MODULES 1, 2, 3

4.1 Introduction

4.2 Module 1: Badminton Serving Accuracy
 - 4.2.1 Wrist Analysis during Badminton Serve
 - 4.2.2 Elbow Analysis during Badminton Serve
 - 4.2.3 Serving Accuracy Analysis
 - 4.2.4 Discussion

4.3 Module 2: Badminton Shots Quality
 - 4.3.1 Wrist Analysis during Smash, Clear, Lift
 - 4.3.2 Elbow Analysis during Smash, Clear, Lift
4.3.3 Racket Analysis during Smash, Clear, Lift 71
4.3.4 Discussion 74
4.4 Module 3: Player’s Agility 75
 4.4.1 Reaching Time Analysis 75
 4.4.2 Stamina Analysis 77
 4.4.3 Discussion 79
4.5 Summary 81

5 PREDICTION MODEL FOR BADMINTON 82
ASSESSMENT BY USING MACHINE LEARNING
5.1 Introduction 82
5.2 Methodology 83
 5.2.1 Data Collection 83
 5.2.2 Data Pre-process 84
 5.2.3 Feature Extraction 85
 5.2.4 Model Construction 85
5.3 Results 86
 5.3.1 Feature Extraction 86
 5.3.2 Prediction Model 88
 5.3.2.1 Correlation Analysis 90
 5.3.2.2 Model Accuracy 95
 5.3.2.3 Computational Time 100
5.4 Discussion 105
5.5 Summary 106

6 CONCLUSION 107
6.1 Overall Discussions 107
6.2 Contributions 109
6.3 Suggestions for Future Works 109

REFERENCES 111
Appendix A 120
<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix B</td>
<td>121</td>
</tr>
<tr>
<td>Appendix C</td>
<td>122</td>
</tr>
<tr>
<td>Appendix D</td>
<td>123</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Comparison of wearable sensors</td>
<td>21</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of T-test and ANOVA test</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Feature selection methods for specific domains</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary of previous studies on badminton assessment prediction model</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of T-test results in badminton assessment Module 1: Badminton Serving Accuracy</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Summary of T-test results in badminton assessment module 2: Badminton Shots Quality</td>
<td>74</td>
</tr>
<tr>
<td>4.3</td>
<td>Summary of T-test results in badminton assessment module 3: Player’s Agility</td>
<td>79</td>
</tr>
<tr>
<td>5.1</td>
<td>Sample data collected from Modules 1, 2, 3</td>
<td>84</td>
</tr>
<tr>
<td>5.2</td>
<td>Features that shown significant difference (p ≤ 0.05) which collected from badminton assessment Module 1, 2, 3</td>
<td>84</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary of number of feature selections for Modules 1, 2, 3 and combination of all modules</td>
<td>87</td>
</tr>
<tr>
<td>5.4</td>
<td>Abbreviation of feature selection and modelling in this study</td>
<td>88</td>
</tr>
<tr>
<td>5.5</td>
<td>Combination of feature selection methods and modeling methods</td>
<td>89</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>5.6</td>
<td>Correlation analysis of different models on different badminton assessment modules</td>
<td>94</td>
</tr>
<tr>
<td>15.7</td>
<td>Model accuracy of different models on different badminton assessment modules</td>
<td>99</td>
</tr>
<tr>
<td>5.8</td>
<td>Computational Time of different models on different badminton assessment modules</td>
<td>104</td>
</tr>
<tr>
<td>5.9</td>
<td>Ranking of models on different analysis</td>
<td>102</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Badminton Game</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of motor skills and cognitive skills</td>
<td>8</td>
</tr>
<tr>
<td>2.3</td>
<td>Four types of basic badminton serve</td>
<td>9</td>
</tr>
<tr>
<td>2.4</td>
<td>Area that needed to be covered by badminton player during a rally</td>
<td>11</td>
</tr>
<tr>
<td>2.5</td>
<td>Experiment setup of Chin’s fitness test for badminton players</td>
<td>12</td>
</tr>
<tr>
<td>2.6</td>
<td>Experiment setup of Frederick’s system</td>
<td>13</td>
</tr>
<tr>
<td>2.7</td>
<td>Result of agility test for badminton by Kusuma</td>
<td>14</td>
</tr>
<tr>
<td>2.8</td>
<td>A conventional badminton assessment form</td>
<td>15</td>
</tr>
<tr>
<td>2.9</td>
<td>Example of video-based sport system</td>
<td>17</td>
</tr>
<tr>
<td>2.10</td>
<td>Example of wearable sensor system for sport: Fitbit</td>
<td>19</td>
</tr>
<tr>
<td>2.11</td>
<td>Example of smart badminton sensor: SOTX</td>
<td>20</td>
</tr>
<tr>
<td>2.12</td>
<td>Tasks of data pre-processing</td>
<td>25</td>
</tr>
<tr>
<td>2.13</td>
<td>Summary of model construction flow using machine learning</td>
<td>30</td>
</tr>
<tr>
<td>2.14</td>
<td>Basic structure of artificial neural network</td>
<td>32</td>
</tr>
<tr>
<td>2.15</td>
<td>Illustration of decision tree model</td>
<td>34</td>
</tr>
<tr>
<td>2.16</td>
<td>Random tree with number of vertices = 36</td>
<td>35</td>
</tr>
<tr>
<td>2.17</td>
<td>Random tree with number of vertices = 1000</td>
<td>35</td>
</tr>
<tr>
<td>2.18</td>
<td>Random forest</td>
<td>36</td>
</tr>
<tr>
<td>2.19</td>
<td>Concept of support vector machine (SVM)</td>
<td>37</td>
</tr>
<tr>
<td>2.20</td>
<td>10 fold cross validation</td>
<td>38</td>
</tr>
</tbody>
</table>
2.21 Illustration of different r values in a correlation analysis

3.1 Flow of system development, data collection and data analysis

3.2 APDM Opal Sensors

3.3 APDM Station and Motion Studio software

3.4 Coollang Xiaoyu Sensor

3.5 User Interface of Xiaoyu Sensor Mobile Application on smartphone

3.6 Demonstration of a low serve in badminton game

3.7 Badminton serve trajectory of a low serve

3.8 Experiment setup of Module 1: Badminton Serving Accuracy

3.9 Evolution of design of target in Module 1 assessment

3.10 Setup of Opal sensor’s position on the subject’s upper limb during Module 1 assessment

3.11 Summary of experiment protocol for Module 1: Badminton Serving Accuracy

3.12 Experiment setup of badminton assessment Module 2: Badminton Shots Quality

3.13 Different badminton shots like smash, clear and lift

3.14 Summary of experiment protocol for Module 2: Badminton Shots Quality

3.15 Experiment setup of Module 3: Player’s Agility

3.16 Illustration of sensor placement in badminton assessment Module 3: Player’s Agility

3.17 Summary of experiment protocol for Module 3: Player’s Agility

3.18 The position of sensors on the subject’s upper limb and racket

3.19 Positions of sensors attached on subject and racket
4.1 Comparison of wrist linear acceleration of strong and normal players during serve 61
4.2 Comparison of wrist angular velocity of strong and normal players during serve 62
4.3 Comparison of elbow linear acceleration of strong and normal players during serve 63
4.4 Comparison of elbow angular velocity strong and normal players during serve 64
4.5 Comparison of accuracy points of strong and normal players during serve 65
4.6 Comparison of wrist linear acceleration of strong and normal players during badminton smash, clear, lift 67
4.7 Comparison of wrist angular velocity of strong and normal players during badminton smash, clear, lift 68
4.8 Comparison of elbow linear acceleration of strong and normal players during badminton smash, clear, lift 69
4.9 Comparison of elbow angular velocity of strong and normal players during badminton smash, clear, lift 70
4.10 Average power on racket during badminton smash, clear and lift 71
4.11 Average speed on racket during badminton smash, clear and lift 72
4.12 Average swing angle on racket during badminton smash, clear and lift 73
4.14 Comparison of average point-to-point reaching time of strong and normal players 75
4.15 Comparison of point-to-point reaching time on specific Targets A through D for strong and normal players 76
4.16 Comparison of completion time on each repetition for strong and normal players 77
4.17 Comparison of variation of completion time on each repetition for strong and normal players 78
4.18 Comparison of Trp2p of normal players on Targets A and D 80

5.1 Summary of model construction flow using machine learning 83
5.2 Proposed badminton assessment model for model training 85
5.3 Comparison of reduction rate of each feature selection methods 87
5.4 Comparison of correlation coefficient of different models on badminton assessment Module 1: Badminton Serving Accuracy 90
5.5 Comparison of correlation coefficient of different models on badminton assessment Module 2: Badminton Shots Quality 91
5.6 Comparison of correlation coefficient of different models on badminton assessment Module 3: Player’s Agility 92
5.7 Comparison of correlation coefficient of different models on combination of all Modules 1, 2 and 3 93
5.8 Comparison of model accuracy of different models on badminton assessment Module 1: Badminton Serving Accuracy 95
5.9 Comparison of model accuracy of different models on badminton assessment Module 2: Badminton Shots Quality 96
5.10 Comparison of model accuracy of different models on badminton assessment Module 3: Player’s Agility 97
5.11 Comparison of model accuracy of different models on combination of all Modules 1, 2 and 3 98
5.12 Comparison of computational time of different models on badminton assessment Module 1: Badminton Serving Accuracy
5.13 Comparison of computational time of different models on badminton assessment Module 2: Badminton Shots Quality
5.14 Comparison of computational time of different models on badminton assessment Module 3: Player’s Agility
5.15 Comparison of computational time of different models on combination of all Modules 1, 2 and 3
6.1 Proposed badminton assessment model
LIST OF ABBREVIATION

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>CFS</td>
<td>Correlation Feature Selection</td>
</tr>
<tr>
<td>DOF</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>GP</td>
<td>Gaussian Process</td>
</tr>
<tr>
<td>K*</td>
<td>K Star</td>
</tr>
<tr>
<td>MAE</td>
<td>Mean Absolute Error</td>
</tr>
<tr>
<td>MLR</td>
<td>Multiple Linear Regression</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Components Analysis</td>
</tr>
<tr>
<td>RF</td>
<td>Random Forest</td>
</tr>
<tr>
<td>RT</td>
<td>Random Tree</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Packages for the Social Science</td>
</tr>
<tr>
<td>UTM</td>
<td>Universiti Teknologi Malaysia</td>
</tr>
<tr>
<td>WEKA</td>
<td>Waikato Environment for Knowledge Analysis</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

° - Degree of angle
F - Force
Hz - Unit of frequency
mm - Millimeter
N - Unit of force, Newton
s - Unit of time (second)
θ - Angle
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Publications</td>
<td>120</td>
</tr>
<tr>
<td>B</td>
<td>Raw Data of Opal Sensor</td>
<td>121</td>
</tr>
<tr>
<td>C</td>
<td>Converted Data of Opal Sensor</td>
<td>122</td>
</tr>
<tr>
<td>D</td>
<td>Sample Dataset after Pre-process</td>
<td>123</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Sport assessment is a quality tool to evaluate athletes’ sport performance in terms of fitness, strength, agility, stamina, gaming skills and knowledge. There are mainly three benefits in the performance assessment.

Firstly, the assessment helps to identify the weakness and strength of an athlete [1]. By doing so, athletes have better idea to plan their training schedule with a clear objective such as to improve their balancing ability. Secondly, it provides a very precise measurement on training fitness such as heart rate, lactate threshold, etc. Thirdly, repeating test with assessment provides strong evidence of improved performance enhancing their confidence and proves the potential to improve further more on their performance. Besides that, the assessment also helps to motivate athletes to keep improving themselves during training session before next assessment. Sometimes, the assessment is also used for talent identification and injury prediction.

Selecting appropriate assessment is vital for different sports since different sports require different skill sets. For example, soccer goalies require different skill sets versus the forwards and midfielders while baseball pitcher’s demand is much different with the infielders and outfielders. Therefore, sport assessment must be specifically designed for different sports.
Badminton is regarded as the most popular sport in Malaysia based on the positive international performance [2]. Recently, technology innovation has great influence in badminton game. For example, smart badminton racquet sensors that are able to gather important information such as swing speed, acceleration, shots recognition. Wireless sensor is used to track athletes’ stamina, heartbeat, temperature, oxygen consumption and a video-based system is used to record athlete’s 3D motion and pattern [3].

With the integration of technology in sport assessment, an athlete will receive important information objectively and accurately. A machine can gather information from multiple angles which are not achievable by human with only cognitive observation capabilities. For sport assessment in badminton, a common method to evaluate a player’s performance is to observe his/her agility, playing skills (different badminton shots such as smash and clear), and serving skill by an experienced coach with a skill assessment list.

To fully utilize the gathered information, new technology such as artificial intelligence (AI) is a key tool to bring the data analysis to higher level. One of the popular forms of AI is machine learning (ML). It is a method to classify subjects into different groups based on number of inputs. Thus, coaches and athletes are able to plan efficient training strategies for athletes based on multi numbers of factors. The ML is able to provide a better visualization on athlete’s performance and evaluate their unique status.

1.2 Problem Statements

Conventionally, a badminton assessment depends on observation by a coach. Thus, evaluation results are very subjective and easily affected by the coach’s perception and experience. Sports technology such as sensor-based system and computer can provide more accurate information which is non-observable by a coach [4], such as acceleration and rotational velocity [5].

Badminton player need to be good in variety of fitness capability such as cardiovascular fitness, agility, power and skills to become a strong player. A lot of studies have been carried out to create objective and quantitative methods to assess badminton player’s performance. But most badminton assessment modules only focus on specific
training types, such as smash, fitness and agility. Therefore, an assessment module that combines all individual evaluation on agility, fitness and strategies will be designed in this study.

This study was conducted to identify measurable parameters that can be used as predictors to assess player’s playing ability by using a sensor-based system with carefully designed assessment modules. The selected parameters must be able to significantly differentiate between strong and normal players thus the player may understand about their current performance easily. The strong players in this study is the badminton team representative who actively participate in training and competition, while the normal players in this study is the casual player who rarely do the training and not representative of badminton team.

Then, the selected parameters or predictors will be used to construct a quantitative assessment model using ML. Currently, there are no any assessment models which can differentiate between strong and normal players with high accuracy > 90% for badminton assessment.

1.3 **Research Objectives**

The objectives are:

1. To design and develop a set of sensor-based assessment modules which is suitable for badminton assessment.

2. To investigate and propose measurable parameters from the designed assessment modules.

3. To design and develop a badminton assessment model based on the proposed parameters by using machine learning.
1.4 Research Scope

There are two tasks in this study, namely the design and implementation of the badminton assessment modules.

The main purpose of the badminton assessment modules is to identify measurable parameters to differentiate between strong and normal players. The modules are tested by both strong players (the university’s badminton team player) and normal players (ordinary university students). The player’s data are collected using APDM Opal sensor and XiaoYu 2.0 Badminton Sensor. Analysis was accomplished using MATHWORK MATLAB, Waikato Environment for Knowledge Analysis (WEKA) and Statistical Packages for the Social Science (SPSS).

Parameters with significant difference between the two groups are applied as predictors in badminton assessment model. The predictors are pre-processed by using feature selection methods, namely RELIEF, CFS and PCA. Then, assessment models are constructed based on different modelling methods, i.e. RF, K*, NN, RT, MLR, GP and SVM. The designed model will be evaluated and selected based on its model correlation coefficient, model accuracy, and model calculation time.
1.5 Thesis Outline

The thesis consists of six chapters. Chapter 1 gives general introduction of the project which briefly discussed background of the studies, problem statements, research objectives and scopes.

Chapter 2 looks into literature review relevant to the scope of this study. It explains in details about previous study on badminton, badminton assessment methods, and assessment models.

Chapter 3 presents methodology of this study. It elaborates the hardware and software implementation, and conducted experiments.

Chapter 4 presents the proposal of badminton assessment modules. There are 3 badminton assessment modules designed and tested. It also discusses the acquired results and findings of the 3 mentioned badminton assessment modules.

Chapter 5 describes the design of badminton assessment models. The inputs to the network have used significant parameters obtained from experiments of assessment modules 1, 2 and 3.

Lastly, Chapter 6 discusses the overall finding of all experiments, contribution of this study, the limitations and future work arising as a continuation to this study.
REFERENCES

A. Anwar, "Classification of error related potential (ErrP) in P300-Speller," Palestine Polytechnic University, Hebron, 2015.

I.H. Witten, E. Frank, M.A. Hall, Data mining: Practical machine learning tools and techniques, Morgan Kaufmann, 2011.

