USER EXPERIENCE OF ARCHITECTURAL DETAILING IN VIRTUAL URBAN ENVIRONMENT

ATTA IDRAWANI BIN ZAINI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Architecture)

Faculty of Built Environment
Universiti Teknologi Malaysia

AUGUST 2017
DEDICATION

To my beloved parents, Zaini Oje and Juncy Abdullah.
ACKNOWLEDGEMENT

Alhamdulillah, all praises to Allah.

An utmost appreciation to my supervisor, Assoc. Prof. Dr. Mohamed Rashid bin Embi for his time, encouragement, advice and assistance devoted to me from the beginning. I would also like to express my gratitude to Universiti Teknologi Malaysia (UTM), especially to the management staff from the Department of Architecture, Faculty of Built Environment (FAB) and the School of Postgraduate (SPS) for being very accommodating to me throughout completing this thesis. I would like to extend my appreciation to the staff from Perpustakaan Sultanah Zanariah (PSZ), Perpustakaan Raja Zarith Sofia (PRZS) and UTM Faces (Senai Airport) for their helpfulness during the data collection process.

I am also indebted to MyBrain15 and Yayasan Sarawak for provided me with the funding in completing this thesis. I would also like to show my appreciations to Nadzirah Jausus, Rasydan Abdullah, Omar Harris and all my colleagues who have helped me in completing this thesis. Thank you also to my family for believing in me from the start. Lastly, thank you to all lecturers, individuals, respondents and organizations for their supports.

May Allah bless them all.
ABSTRACT

Architecture and urban design disciplines very much adhere to the use of representations as a tool to aid decision making process. As it is almost impossible to replicate environments in full-scale, both physical and digital representations are therefore restricted by the notions of scale and level of details. These notions are now challenged by the emergence of virtual reality (VR) technology, which allows architects to work with full-scale virtual environments (VEs). However, the taxonomy of architectural representations in VR is not properly defined as discussions in academia are mostly concerned about creating realistic impressions of space, rather than the operational side of different architectural detailing. Thus, in recognizing the operational dimensions of VEs in VR, it is vital to examine the influence of different architectural detailing on the legibility of VEs. This study aimed to suggest a guideline for users’ experience of architectural detailing in a VE for a large-scale urban simulation. This study was executed as an experimental simulation study. In a total of N=96 respondents were divided into four different treatments with n=24 respondents in each VE with a unique level of architectural detailing. They answered the questionnaire surveys and drew cognitive maps after completed navigating within the VEs using VR. Analysis methods used were primarily of content analysis, Kruskal-Wallis H test, and one-way ANOVA. The first analysis phase was environment-specific and the second phase was route and point-specific. In the third phase, the findings from previous phases were triangulated. The most and the least legible VEs were established as per different abilities of interpreting VEs. The operational dimensions of the VEs were established based on the deconstructed architectural detail components namely ‘geometric extrusion’ and ‘distinction’ as the factors influencing legibility of VEs. The operational dimensions of each VE were synthesized based on various criteria derived from the abilities of interpreting VEs. Based on the statistically significant results, the criteria were reduced to ‘understanding VE’ and ‘recalling VE’, in that order. In conclusion, there are some influences of architectural detailing on legibility but only in regards to the two criteria. The operational dimensions were also established for each criterion, which was learned from the cognitive knowledge data. Firstly, is for tasks within one viewpoint. Secondly, is for linear navigation and lastly is for full-fledged virtual exploration. This thesis also proposed two main guidelines for the user experience of architectural detailing in urban VE to be used by architects and users in the associated domain.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xxvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xxviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxix</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background | 1 |
1.2 Statement of Problem | 4 |
1.3 Aim and Objectives | 8 |
1.4 Primary Hypotheses | 9 |
1.5 Scope of Research | 9 |
1.6 Outline of Research Methodology | 10 |
 1.6.1 Stage 1: Literature Review | 11 |
 1.6.2 Stage 2: Synthesis of Theories and Definition of Variables | 12 |
 1.6.3 Stage 3: Method Development | 12 |
 1.6.4 Stage 4: Data Collection | 12 |
 1.6.5 Stage 5: Data Analysis | 13 |
1.6.6 Stage 6: Results & Discussions
1.7 Significance of Study
1.8 Organization of Thesis
1.9 Chapter Summary

2 LITERATURE REVIEW

2.1 Introduction
2.2 Representations
 2.2.1 Models
 2.2.1.1 Physical Urban Models
 2.2.1.2 Digital 3D Models
 2.2.2 Virtual Environments (VEs)
 2.2.3 Level of Details in Full-Scale VEs
 2.2.4 Summary: Representations

2.3 Virtual Reality (VR)
 2.3.1 Presence and Immersion
 2.3.2 Studies on VEs and VR
 2.3.3 VR/VE for Representation vs. Interaction
 2.3.4 VR System
 2.3.5 Summary: Virtual Reality

2.4 Urban VEs’ Legibility
 2.4.1 Wayfinding and Navigation in VEs
 2.4.2 Spatial Cognition in VEs
 2.4.3 Elements of Urban Legibility
 2.4.4 Architectural Details and Urban Legibility
 2.4.5 Summary: Urban VEs Legibility

2.5 Level of Details Schematization
 2.5.1 3D Modelling of VEs for Navigation
 2.5.1.1 Schematization of 3D Buildings based on Computer Graphics
 2.5.1.2 Schematization of 3D Buildings based on Architectural Details
 2.5.1.3 Architectural Styles in Melaka
3 RESEARCH METHODOLOGY 84

3.1 Introduction 84

3.2 System of Inquiry - Post-positivism 85

3.2.1 Combined Research Strategy:
Mixed-Methodology Design 87

3.2.2 Experimental Simulation Research 88

3.2.2.1 Simulation Research 89

3.2.2.2 Experimental Research 89

3.2.3 Variables of Study 90

3.2.3.1 Independent Variables 90

3.2.3.2 Dependent Variables 92

3.2.3.3 Control and Confounding Variables 92

3.3 Hypotheses 94

3.4 Research Tactics 95

3.4.1 Sample Size 96

3.4.2 Wayfinding & Navigation Strategies 99

3.4.3 Justification of the Chosen VE Reference Site (Melaka) 101

3.4.4 Research Instruments - VE 3D Models 108

3.4.5 Research Instruments – VR System (Oculus Rift Development Kit 2) 112

3.4.6 Research Instruments - Questionnaires 114

3.4.7 Research Instruments – Cognitive Maps 116

3.4.8 Observations 117

3.4.9 Data Collection Procedure 118

3.5 Data Analysis Method 122

3.5.1 Content Analysis 124

3.5.2 Kruskal-Wallis H Test 129
4 RESULTS OF EXPERIMENT

4.1 Introduction 137
4.2 Respondents 138
4.3 Analysis Phase 1: Perception Data on ‘Abilities in Interpreting VE’ 142
 4.3.1 Distribution Shape 143
 4.3.2 Comparison of ‘Abilities in Interpreting VE’ 146
 4.3.3 Post Hoc Test 1 149
 4.3.4 Post Hoc Test 2 151
 4.3.4.1 VE 1 – VE 2 151
 4.3.4.2 VE 1 – VE 3 152
 4.3.4.3 VE 1 – VE 4 153
 4.3.4.4 VE 2 – VE 3 153
 4.3.4.5 VE 2 – VE 4 154
 4.3.4.6 VE 3 – VE 4 154
 4.3.5 Summary: ‘Abilities in Interpreting VE’ 155
4.4 Analysis Phase 1: Observation Data on ‘Ambiguities in Navigation’ 157
 4.4.1 Test for Normality 158
 4.4.2 Detecting Outliers 159
 4.4.3 Homogeneity of Variance 159
 4.4.4 Comparison of ‘Ambiguities in Navigation’ 160
4.4.5 Summary: ‘Ambiguities in Navigation’ 161

4.5 Analysis Phase 1: Defining Architectural Detailing 162
4.5.1 Sampling Adequacy 163
4.5.2 Suitability for Data Reduction 164
4.5.3 Detecting Outliers 164
4.5.4 Communalities 165
4.5.5 Summary: ‘Defining Architectural Details’ 168

4.6 Analysis Phase 2: Perception Data on ‘Point A’
Legibility 169
4.6.1 Distribution Shape 170
4.6.2 Comparison of ‘Point A’ Legibility 171
4.6.3 Post Hoc Test 172
4.6.4 Summary: ‘Legibility Perception at Point A’ 174

4.7 Analysis Phase 2: Cognitive Knowledge in ‘Point A’
Maps 175
4.7.1 Comprehensibility of ‘Point A’ Maps 176
4.7.2 General Elements Acknowledged at ‘Point A’ 176
4.7.3 Path Networks’ Acknowledgment at ‘Point A’ 182
4.7.4 Node Elements’ Position at ‘Point A’ 183
4.7.5 Opposite District’s Acknowledgment at ‘Point A’ 184
4.7.6 Edges Elements’ Acknowledgment at ‘Point A’ 185
4.7.7 Buildings and Landmarks’ Position at ‘Point A’ 189
4.7.8 Landmark Elements’ Acknowledged at ‘Point A’ 190
4.7.9 Summary: ‘Cognitive Knowledge at Point A’ 194

4.8 Analysis Phase 2: Perception Data on ‘Route A to B’
Legibility 196
4.8.1 Distribution Shape 197
4.8.2 Comparison of ‘Route A to B’ Legibility 197
4.8.3 Summary: ‘Legibility Perception at Route A to B’ 199
4.9 Analysis Phase 2: Cognitive Knowledge in ‘Route A to B’ Maps

4.9.1 Comprehensibility of ‘Route A to B’ Maps

4.9.2 General Elements Acknowledged at ‘Route A to B’

4.9.3 Path Networks Acknowledgment at ‘Route A to B’

4.9.4 Turns and Angles at ‘Route A to B’

4.9.5 Node Elements’ Position at ‘Route A to B’

4.9.6 Juxtapositions of Point A and Point B at ‘Route A to B’

4.9.7 Edge Elements’ Acknowledgment at ‘Route A to B’

4.9.8 Buildings and Landmarks’ Position at ‘Route A to B’

4.9.9 Landmark Elements Acknowledged in ‘Route A to B’

4.10 Analysis Phase 2: Observation Data at ‘Route A to B’

4.10.1 Time Taken to Complete ‘Route A to B’

4.10.2 Test for Normality

4.10.3 Detecting Outliers

4.10.4 Homogeneity of Variance

4.10.5 Comparison of Time Taken to Complete ‘Route A to B’

4.10.6 Tukey’s Post Hoc Test

4.10.7 Summary: ‘Cognitive Knowledge and Time Taken to Complete Navigation at Route A to B’

4.11 Analysis Phase 2: Perception Data on Legibility at ‘Route B to A’

4.11.1 Distribution Shape

4.11.2 Comparison of ‘Route B to A’ Legibility

4.11.3 Summary: ‘Legibility Perception at Route B to A’
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.12</td>
<td>Analysis Phase 2: Cognitive Knowledge in ‘Route B to A’ Maps</td>
</tr>
<tr>
<td>4.12.1</td>
<td>Comprehensibility of 'Route B to A' Maps</td>
</tr>
<tr>
<td>4.12.2</td>
<td>General Elements Acknowledged at ‘Route B to A’</td>
</tr>
<tr>
<td>4.12.3</td>
<td>Path Networks Acknowledgment at 'Route B to A'</td>
</tr>
<tr>
<td>4.12.4</td>
<td>Turns and Angles at 'Route B to A'</td>
</tr>
<tr>
<td>4.12.5</td>
<td>Node Elements’ Position at 'Route B to A'</td>
</tr>
<tr>
<td>4.12.6</td>
<td>Juxtapositions of ‘Point A’ and ‘Point B’ at 'Route B to A'</td>
</tr>
<tr>
<td>4.12.7</td>
<td>Edge Elements’ Acknowledgment at 'Route B to A'</td>
</tr>
<tr>
<td>4.12.8</td>
<td>Buildings and Landmarks’ Position at 'Route B to A'</td>
</tr>
<tr>
<td>4.12.9</td>
<td>Landmark Elements Acknowledged in ‘Route B to A’</td>
</tr>
<tr>
<td>4.13</td>
<td>Analysis Phase 2: Observation Data at ‘Route B to A’</td>
</tr>
<tr>
<td>4.13.1</td>
<td>Time Taken to Complete ‘Route B to A’</td>
</tr>
<tr>
<td>4.13.2</td>
<td>Test for Normality</td>
</tr>
<tr>
<td>4.13.3</td>
<td>Detecting Outliers</td>
</tr>
<tr>
<td>4.13.4</td>
<td>Homogeneity of Variance</td>
</tr>
<tr>
<td>4.13.5</td>
<td>Comparison of Time Taken to Complete ‘Route B to A’</td>
</tr>
<tr>
<td>4.13.6</td>
<td>Summary: ‘Cognitive Knowledge and Time Taken to Complete Wayfinding at Route B to A’</td>
</tr>
<tr>
<td>4.14</td>
<td>Chapter Summary</td>
</tr>
</tbody>
</table>

5 DISCUSSION

5.1 Introduction

5.2 Analysis Phase 3: Triangulation of Findings
5.2.1 The Influence of Level of Architectural Details upon the Legibility of VEs

5.2.2 Summary: Triangulation of Findings

5.3 Chapter Summary

6 CONCLUSION

6.1 Introduction

6.2 Notable Findings

6.2.1 Objective 1: To measure differences in the degree of legibility in all VEs.

6.2.2 Objective 2: To evaluate the influence of different levels of architectural detailing upon the legibility of VEs.

6.2.3 Objective 3: To compare the differences in cognitive knowledge gathered from all VEs.

6.3 Synthesis: Establishing architecturally operational dimensions for each level of architectural detailing.

6.4.1 Low Degree of ‘Geometric Extrusion’ and Low Degree of ‘Distinction’

6.4.2 Low Degree of ‘Geometric Extrusion’ and High Degree of ‘Distinction’

6.4.3 High Degree of ‘Geometric Extrusion’ and Low Degree of ‘Distinction’

6.4.4 High Degree of ‘Geometric Extrusion’ and High Degree of ‘Distinction’

6.4 Contribution of Study

6.5 Limitations of Study

6.6 Future Studies

REFERENCES

Appendices A - C
<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Common type of scale models.</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Level of details in VEs based on various authors’ works.</td>
<td>39</td>
</tr>
<tr>
<td>2.2</td>
<td>The summary of the discussions.</td>
<td>53</td>
</tr>
<tr>
<td>2.3</td>
<td>The types and locations of landmarks used in directions.</td>
<td>58</td>
</tr>
<tr>
<td>2.4</td>
<td>The five elements of urban legibility.</td>
<td>60</td>
</tr>
<tr>
<td>2.5</td>
<td>Building form components as defined by Appleyard (1969).</td>
<td>63</td>
</tr>
<tr>
<td>2.6</td>
<td>The visibility attributes.</td>
<td>64</td>
</tr>
<tr>
<td>2.7</td>
<td>Movement, contour, size, shape, surface, quality and signs are</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>contributing to building forms and characteristics.</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Components critical for designing for navigation in VEs for</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>this study.</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Schematization approaches as explained by Peters & Richter (2008).</td>
<td>70</td>
</tr>
<tr>
<td>2.10</td>
<td>The approaches to schematization as explained by Whyte (2002).</td>
<td>70</td>
</tr>
<tr>
<td>2.11</td>
<td>Works and components in 3D construction and visualization.</td>
<td>72</td>
</tr>
<tr>
<td>2.12</td>
<td>Different 3D modelling approaches.</td>
<td>73</td>
</tr>
<tr>
<td>2.13</td>
<td>The layer separation to construct VEs manually.</td>
<td>74</td>
</tr>
<tr>
<td>2.14</td>
<td>Some window elements and types in Melaka shophouses.</td>
<td>78</td>
</tr>
<tr>
<td>2.15</td>
<td>Some door elements and types in Melaka shophouses.</td>
<td>79</td>
</tr>
<tr>
<td>2.16</td>
<td>Schematization emphasis in constructing the VEs based on Melaka image.</td>
<td>82</td>
</tr>
<tr>
<td>3.1</td>
<td>The different treatments on VEs.</td>
<td>91</td>
</tr>
<tr>
<td>3.2</td>
<td>Variables involved in this study.</td>
<td>94</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Hypotheses for each data type.</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>The sample sizes in different studies on urban wayfinding and cognition.</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>The focus groups and the sample size for this study.</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Strategies in wayfinding.</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Top 10 most identified landmarks in Melaka.</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Visual cues used by the wayfinders.</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>Justifications of the chosen points and routes for VR simulation.</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>The outline of the works and tools involved in preparing the VEs.</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>The specifications of the VR system used for the data collection process.</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>Descriptions of the items listed in the questionnaire.</td>
<td></td>
</tr>
<tr>
<td>3.13</td>
<td>The specific instructions to be given to the respondents.</td>
<td></td>
</tr>
<tr>
<td>3.14</td>
<td>The data analysis methods for this study.</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>The content analysis data presentation and coding schemes.</td>
<td></td>
</tr>
<tr>
<td>3.16</td>
<td>The concerns under the main coding techniques for the content analysis.</td>
<td></td>
</tr>
<tr>
<td>3.17</td>
<td>Assumption tests.</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Gender distribution among respondents.</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Age group distribution among respondents.</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Percentage of respondents associated with the built environment disciplines.</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Generated medians for all VEs.</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Hypotheses test summary.</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Report table for ‘Understanding VE’.</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>A report table for ‘Recalling VE’.</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>A report table for ‘Finding directions in VE’.</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>A report table for ‘Identifying buildings in VE’.</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>The mean ranks for ‘abilities in interpreting VE’ score between VEs.</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Pairwise comparisons of different VEs.</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Content</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Test statistics for ‘Understanding VE’ between ‘VE 1’ and ‘VE 2’.</td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>Mean ranks for ‘Understanding VE’ between ‘VE 1’ and ‘VE 2’.</td>
<td></td>
</tr>
<tr>
<td>4.14</td>
<td>Test statistics for ‘Understanding VE’ between ‘VE 1’ and ‘VE 3’.</td>
<td></td>
</tr>
<tr>
<td>4.15</td>
<td>Mean ranks for ‘Understanding VE’ between ‘VE 1’ and ‘VE 3’.</td>
<td></td>
</tr>
<tr>
<td>4.16</td>
<td>Test statistics for ‘Understanding VE’ between ‘VE 1’ and ‘VE 4’.</td>
<td></td>
</tr>
<tr>
<td>4.17</td>
<td>Mean ranks for ‘Understanding VE’ between ‘VE 1’ and ‘VE 4’.</td>
<td></td>
</tr>
<tr>
<td>4.18</td>
<td>Test statistics for ‘Understanding VE’ between ‘VE 2’ and ‘VE 3’.</td>
<td></td>
</tr>
<tr>
<td>4.19</td>
<td>Mean ranks for ‘Understanding VE’ between ‘VE 2’ and ‘VE 3’.</td>
<td></td>
</tr>
<tr>
<td>4.20</td>
<td>Test statistics for ‘Understanding VE’ between ‘VE 2’ and ‘VE 4’.</td>
<td></td>
</tr>
<tr>
<td>4.21</td>
<td>Mean ranks for ‘Understanding VE’ between ‘VE 2’ and ‘VE 4’.</td>
<td></td>
</tr>
<tr>
<td>4.22</td>
<td>Test statistics for ‘Understanding VE’ between ‘VE 3’ and ‘VE 4’.</td>
<td></td>
</tr>
<tr>
<td>4.23</td>
<td>Mean ranks for ‘Understanding VE’ between ‘VE 3’ and ‘VE 4’.</td>
<td></td>
</tr>
<tr>
<td>4.24</td>
<td>Tabulation of results.</td>
<td></td>
</tr>
<tr>
<td>4.25</td>
<td>Shapiro-Wilk test of normality.</td>
<td></td>
</tr>
<tr>
<td>4.26</td>
<td>Levene’s test of equality of variances.</td>
<td></td>
</tr>
<tr>
<td>4.27</td>
<td>Descriptive table for ‘frequency of ambiguity’ in all VEs.</td>
<td></td>
</tr>
<tr>
<td>4.28</td>
<td>One-way ANOVA result.</td>
<td></td>
</tr>
<tr>
<td>4.29</td>
<td>Tabulation of results.</td>
<td></td>
</tr>
<tr>
<td>4.30</td>
<td>The KMO measure for sampling adequacy.</td>
<td></td>
</tr>
<tr>
<td>4.32</td>
<td>The Bartlett’s test of sphericity.</td>
<td></td>
</tr>
</tbody>
</table>
4.33 The correlation matrix generated.
4.34 Communalities.
4.35 Pattern matrix.
4.36 Variance explained by components.
4.37 The initial components and their component loadings.
4.38 Architectural detailing components and their attributes.
4.39 Hypothesis test summary for ‘Point A legibility’.
4.40 A report table for ‘Point A legibility’.
4.41 The mean ranks for ‘Point A legibility’ score.
4.42 Pairwise comparisons of different VEs.
4.43 General elements acknowledged in VE 1.
4.44 General elements acknowledged in VE 2.
4.45 General elements acknowledged in VE 3.
4.46 General elements acknowledged in VE 4.
4.47 Edge elements acknowledged in VE 1.
4.48 Edge elements acknowledged in VE 2.
4.49 Edge elements acknowledged in VE 3.
4.50 Edge elements acknowledged in VE 4.
4.51 Landmark elements acknowledged in VE 1.
4.52 Landmark elements acknowledged in VE 2.
4.53 Landmark elements acknowledged in VE 3.
4.54 Landmark elements acknowledged in VE 4.
4.55 VEs with the lowest and the highest cognitive understanding of legibility elements at ‘Point A’.
4.56 Hypothesis test summary for ‘Route A to B legibility’.
4.57 A report table for ‘Route A to B legibility’.
4.58 The mean ranks of ‘Route A to B legibility’.
4.59 Tabulation of the result.
4.60 General elements acknowledged in VE 1.
4.61 General elements acknowledged in VE 2.
4.62 General elements acknowledged in VE 3.
4.63 General elements acknowledged in VE 4.
4.64 Edge elements acknowledged in VE 1.
4.65 Edge elements acknowledged in VE 2. 211
5.66 Edge elements acknowledged in VE 3. 212
4.67 Edge elements acknowledged in VE 4. 212
4.68 Landmark elements acknowledged in VE 1. 215
4.69 Landmark elements acknowledged in VE 2. 216
4.70 Landmark elements acknowledged in VE 3. 216
4.71 Landmark elements acknowledged in VE 4. 216
4.72 Skewness and kurtosis values and their standard error for the DV for each ‘related background’. 221
4.73 Levene’s test of equality of variances. 222
4.74 Descriptive table for the time taken to complete the navigation at ‘Route A to B’. 223
4.75 One-way ANOVA result. 224
4.76 Tukey’s post hoc test result. 225
4.77 Tabulation of results. 226
4.78 VEs with the lowest and the highest cognitive understanding of legibility elements at ‘Point A to B’. 226
4.79 Hypothesis test summary for ‘Route B to A legibility’. 229
4.80 A report table for ‘Route B to A legibility’. 230
4.81 The mean ranks of ‘Route B to A legibility’ between all VEs. 230
4.82 General elements acknowledged in VE 1. 232
4.83 General elements acknowledged in VE 2. 232
4.84 General elements acknowledged in VE 3. 232
4.85 General elements acknowledged in VE 4. 234
4.86 Edge elements acknowledged in all VEs. 240
4.87 Landmark elements acknowledged in VE 1. 242
4.88 Landmark elements acknowledged in VE 2. 242
4.89 Landmark elements acknowledged in VE 3 242
4.90 Landmark elements acknowledged in VE 4. 243
4.91 Skewness and kurtosis values and their standard error for the DV for each ‘related background’. 247
4.92 Levene’s test of equality of variances. 249
4.93 Descriptive table for the time taken to complete the wayfinding at ‘Route B to A’ in all VEs. 250
4.94 Welch's ANOVA table. 250
4.95 Tabulation of results. 251
4.96 VEs with the lowest and the highest cognitive understanding of legibility elements at ‘Point B to A’. 252
5.1 Summary of the findings (Legibility perception). 257
5.2 Summary of the findings (Understanding VE). 258
5.3 Summary of the findings (Recalling VE). 261
5.4 Summary of the findings (Finding directions & identifying buildings in VE). 263
5.5 The most and least legible VEs after triangulation. 264
6.1 Recommended operational dimensions of a VE (as an architectural or territorial representation) adhered to different tasks and criteria. 270
6.2 The strength and weakness of different levels of architectural detailing based on the triangulation. 271
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Similar HMD designs in Oculus Rift DK2, Project Morpheus and HTC Vive.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>General outline of this study.</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>The Luminous Table.</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>The overlay projected on the Luminous Table.</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>A physical scale model with a high level of architectural details in 1:50 scale.</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>An example of an urban scale model.</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>The Newcastle wooden model in 1:500 scale.</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>The traditional relationship between physical and digital media in architectural design.</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>An architectural 3D modelling software.</td>
<td>30</td>
</tr>
<tr>
<td>2.8</td>
<td>VEs are classified under visual stimulation.</td>
<td>31</td>
</tr>
<tr>
<td>2.9</td>
<td>A 3D computer game with a realistic environment rendering.</td>
<td>33</td>
</tr>
<tr>
<td>2.10</td>
<td>Different complexity in the level of details.</td>
<td>35</td>
</tr>
<tr>
<td>2.11</td>
<td>Different typology and modelling method of urban scale 3D models.</td>
<td>36</td>
</tr>
<tr>
<td>2.12</td>
<td>3D models in Google Earth generated using photogrammetry technique.</td>
<td>37</td>
</tr>
<tr>
<td>2.13</td>
<td>Milgram’s Reality-Virtual Continuum.</td>
<td>42</td>
</tr>
<tr>
<td>2.14</td>
<td>Number of publication in VR by author affiliations over time of every 4 years.</td>
<td>45</td>
</tr>
<tr>
<td>2.15</td>
<td>Distribution of publications examining VR by category in social sciences based on 230 articles.</td>
<td>46</td>
</tr>
</tbody>
</table>
2.16 Human - VE interaction loop in VR system.

2.17 Oculus Rift HMD axes as data input in VR interaction.

2.18 The pre-warped image distortion corrected through the wide lens put closely to the eyes in the HMD.

2.19 Figure 2.19: The position of urban scale architectural VE in VR simulation.

2.20 A general decision and action flow in a navigation process.

2.21 Legibility components conceptualized by Koseoglu & Onder (2011).

2.22 An effective design framework for navigation.

2.23 Texturing problem using 3D cells.

2.24 Schematization of district using merging of clusters.

2.25 Five-foot walkways with different characteristics.

2.26 Early shophouses style in Melaka.

2.27 Early traditional shophouses style in Melaka.

2.28 Late traditional shophouses style in Melaka.

3.1 The model of research methodology according to Groat & Wang (2013).

3.2 Between groups design outline.

3.3 Red painted buildings create a special character to the street.

3.4 The core zone as the main reference site.

3.5 Darker rendering indicates the higher level of scores signifying higher quality of townscape.

3.6 Potential reference area based on the townscape quality and some identified legibility elements within accessible area.

3.7 A side-by-side comparison between the real environment and a schematized VE.

3.8 A completed VE of Melaka modelled in SketchUp.

3.9 A VE powered in Unity v5 and integrated with Oculus Utilities ver. 1.

3.10 The buildings in the core zone vicinity were given primary attention on details as this zone consists of the navigation route and points.
3.11 The buildings outside the core zone were given minor attention on details, as these buildings are also visible from the core zone.

3.12 The setting of the VR system for this study.

3.13 A depiction of how the pre-warped images of the VE look like inside the HMD.

3.14 The data type gathered from specific routes and points.

3.15 ‘Point A’.

3.16 A scene taken at ‘Point A’.

3.17 ‘Route A to B’ in red dotted line. Blue dotted line indicates an alternative path option.

3.18 Some scenes along ‘Route A to B’.

3.19 ‘Route B to A’ in red dotted line. Blue dotted line indicates an alternative option, based on whichever previous path the respondents have taken.

3.20 Some scenes along ‘Route B to A’.

3.21 The analysis phases.

3.22 Content analysis model for ‘Point A’ maps.

3.23 Coding scheme model for the content analysis.

3.24 Content analysis model for ‘Route A to B’ and ‘Route B to A’ maps.

3.24 The data analysis techniques used in this study.

4.1 Gender distribution among respondents.

4.2 Data collection process with a respondent in UTM Faces, Senai Airport.

4.3 A respondent answering the questionnaire survey.

4.4 A respondent navigating in a VE wearing the ORDK2 HMD.

4.5 Age group distribution among respondents.

4.6 Distribution of respondents associated with the built environment disciplines.

4.7 The boxplot for ‘Understanding VE’.

4.8 The boxplot for ‘Recalling VE’.

4.9 The boxplot for ‘Finding Directions in VE’.
4.10 The boxplot for ‘Identifying buildings in VE’.
4.11 Pairwise comparisons of different VEs.
4.12 The location of critical intersections and points.
4.13 Boxplot for ‘frequency of ambiguity’.
4.14 Scree plot for the principal component analysis.
4.15 VEs prescribed to the components’ attributes.
4.16 The boxplot for ‘Point A legibility’.
4.17 Pairwise comparison of Level of Architectural Details (The orange colour indicates significant difference).
4.18 Map samples drawn by the respondents depicting ‘Point A’.
Other clearer samples available in APPENDIX B.
4.19 Comprehensibility of ‘Point A’ maps.
4.20 General elements acknowledged for ‘VE 1’.
4.21 General elements acknowledged in ‘VE 2’.
4.22 General elements acknowledged in ‘VE 3’.
4.23 General elements acknowledged in ‘VE 4’.
4.24 Path networks’ acknowledgment in ‘Point A’ maps in all VEs.
4.25 Node elements’ position in ‘Point A’ maps.
4.26 Opposite district’s acknowledgment in ‘Point A’ maps.
4.27 Edge elements’ acknowledgment in ‘Point A’ maps.
4.28 Edge elements acknowledged in VE 1.
4.29 Edge elements acknowledged in VE 2.
4.30 Edge elements acknowledged in VE 3.
4.31 Edge elements acknowledged in VE 4.
4.32 Buildings and landmarks’ position in ‘Point A’ maps.
4.33 Landmark elements acknowledged in VE 1.
4.34 Landmark elements acknowledged in VE 2.
4.35 Landmark elements acknowledged in VE 3.
4.36 Landmark elements acknowledged for VE 4.
4.37 The boxplot for ‘Route A to B legibility’.
4.38 Map samples drawn by the respondents depicting ‘Route A to B’.
Comprehensibility of ‘Route A to B’ maps.

General elements acknowledged in VE 1

General elements acknowledged in VE 2.

General elements acknowledged in VE 3.

General elements acknowledged in VE 4.

Path networks’ acknowledgement at ‘Route A to B’.

Turns and angles’ acknowledgment at ‘Route A to B’.

Node elements’ position in ‘Route A to B’ maps.

Juxtaposition of ‘Point A’ and ‘Point B’ at ‘Route A to B’.

Edge elements’ acknowledgment at ‘Route A to B’.

Edge elements acknowledged in VE 1.

Edge elements acknowledged in VE 2.

Edge elements acknowledged in VE 3.

Edge elements acknowledged in VE 4.

Buildings and landmarks’ position in ‘Route A to B’.

Landmark elements acknowledged in VE 1.

Landmark elements acknowledged in VE 2.

Landmark elements acknowledged in VE 3.

Landmark elements acknowledged in VE 4.

Time taken to complete a navigation at ‘Route A to B’ in all VEs.

Normal Q-Q Plots for ‘Related’ and ‘Not related’ background using the data of time taken to complete ‘Route A to B’.

Boxplot for time taken to complete navigation at ‘Route A to B’.

The boxplot for ‘Route B to A legibility’.

Map samples drawn by the respondents showing ‘Route B to A’.

Comprehensibility of ‘Route B to A’ maps.

General elements acknowledged in VE 1.

General elements acknowledged in VE 2.

General elements acknowledged in VE 3.

General elements acknowledged in VE 4.
4.68 Path networks’ acknowledgment in ‘Route B to A’. 237
4.69 Turns and angles’ acknowledgment in ‘Route B to A’. 238
4.70 Node elements’ position in ‘Route B to A’. 238
4.71 Juxtaposition of ‘Point A’ and ‘Point B’ in ‘Route B to A’. 239
4.72 Edge elements’ acknowledgment in ‘Route A to B’. 240
4.73 Relative buildings’ position in ‘Route B to A’. 241
4.74 Landmark elements acknowledged in VE 1. 243
4.75 Landmark elements acknowledged in VE 2. 244
4.76 Landmark elements acknowledged in VE 3. 244
4.77 Landmark elements acknowledged in VE 4. 245
4.78 Time taken to complete wayfinding at ‘Route B to A’. 246
4.79 Normal Q-Q Plots for ‘Related’ and ‘Not related’ background using the data of time taken to complete ‘Route B to A’. 248
4.80 Boxplot for time taken to complete wayfinding at ‘Route B to A’. 249

6.1 Proposed operational dimensions for visual reconnaissance from one viewpoint. 278
6.2 Proposed operational dimensions for linear navigation between two sites along dedicated paths. 278
6.3 Proposed operational dimensions for full-fledged virtual exploration along complex path networks. 279
6.4 Guideline for 3D modelling flow for user experience for large-scale VE simulations in VR. 280
6.5 Guideline for 3D modelling for user experience for large-scale VE simulations in VR. 281
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VE</td>
<td>Virtual environment</td>
</tr>
<tr>
<td>VR</td>
<td>Virtual reality</td>
</tr>
<tr>
<td>ORDK2</td>
<td>Oculus Rift Development Kit 2</td>
</tr>
<tr>
<td>MEMS</td>
<td>Micro-Electro-Mechanical Systems</td>
</tr>
<tr>
<td>HMD</td>
<td>Head-mounted display</td>
</tr>
<tr>
<td>DPOV</td>
<td>Display field of view</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensions/ three-dimensional</td>
</tr>
<tr>
<td>2D</td>
<td>Two-dimensions/ two-dimensional</td>
</tr>
<tr>
<td>LRS</td>
<td>Landmark, Route and Survey</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>KMO</td>
<td>Kaiser-Meyer-Olkin</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Sample size</td>
</tr>
<tr>
<td>N</td>
<td>Population size</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Research questionnaire form</td>
<td>284</td>
</tr>
<tr>
<td>B</td>
<td>Cognitive map samples</td>
<td>290</td>
</tr>
<tr>
<td>C</td>
<td>Movement observation form samples</td>
<td>294</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Virtual Reality (VR) is a technology as described by Steuer (1992) referring to a particular technological system that uses computer generated real-time animation displayed on a head-mounted stereoscopic visual output. It is controlled typically with a system of wired gloves and position tracker. Brooks (1999) defines a VR experience as whenever a user is being effectively immersed in a responsive virtual world. VR in this sense overrides human senses to be absorbed into believing to be in another set of ‘reality’, which often are in digital format. Original works on VR was done by Ivan Sutherland when he was at Harvard University (Myers, 1998). He said in his lecture titled ‘The Ultimate Display’ in 1965, that the challenge for computer graphics is to create a virtual world that moves and responds to real time interactions, as well as feel, look and sound real (Brooks, 1999). This similar pursue towards achieving total immersive environment has become the main motivation for VR developers that today in delivering deliver real feeling, look and sound of an unreal environment. This is not too dissimilar from what Sutherland had come to predict.

As in the late 1980s and early 1990s, VR devices were becoming more widespread and slowly occupying video arcades and research laboratories (Boyen, 2009). However, the technology at that time was considered not capable enough in delivering a fully immersive environment due to limitations such as the weak display
and limited software capabilities (Drettakis et al. 2005; Halley-Prinable, 2013; Zachara & Zagal, 2009), apart from economic constraints (Kahaner, 1994).

In a much recent development, capabilities of electronic components and software have been vastly improved. This has triggered the interest of innovators such as a man named Palmer Luckey to capitalize on the idea of improving the VR technology using components available in the generic technology of today (Stein, 2015). The prototype uses MEMS sensing and video display technology that are already available in modern smartphones. High-fidelity VR contents and wide-angle viewing capability makes Oculus Rift’s level of immersion better than its predecessors (Lavalle et al. 2014). Since then, giant technological corporations, as well as other small companies, have invested their interests in developing similar VR products for the masses. The biggest change in current VR technology is the rapid improvements on software capabilities (Halley-Prinable, 2013). As the software development is more advanced, the physicality of recent VR devices has fairly preserved a similar design as the previous hardware, as shown in Fig. 1.1. Almost all VR hardware designs are becoming similar which most of the available VR products in the market have retained similar method of displaying the VEs. The position reorganization is made possible usually by gyroscopes and accelerometers (Boas, 2013), which is almost similar to all VR products from different companies.

![Figure 1.1: Similar HMD designs in Oculus Rift DK2, Project Morpheus and HTC Vive (Image source: PCMag.com; http://venturebeat.com/2016/01/12/htc-vives-year-of-uncertainty/; http://www.extremetech.com/gaming/178867-sonys-project-morpheus-prototype-is-a-hit-bodes-well-for-the-future-of-virtual-reality)](image)

The competition of creating more capable VR system has become one of the major pursues in technological development recently. As this may lead to more discoveries in terms of its practical prospects ahead, this leaves a myriad of existing
and new potential studies pertaining VR system and contents. From the earlier version of VR products and up until today, the technology is heavily anchored to gaming and entertainment purposes. VR functionalities are slowly being adapted into activities that otherwise were at all unthinkable before. Film production, website building, and product manufacturing are just some real-world, non-gaming activities that are slowly adapting VR technology. Many studies were done in hoping for discovering possible practical uses of VR from various perspectives. This is an advantage for both the academia and technological community, as principally the performance and usability limit of the VR technology is still unknown.

As architectural practice is much involved in spatial evaluations, VR is set to be more relevant as a mean of architectural or insofar, territorial representation. As the decision making in the practice often involves representations that would eventually require much time and cost, the need of recognizing VR as a valid architectural representation tool has become more profound. A virtual environment (VE) in VR can be perceived as the second set of reality that users can interact with, whether they are a small or a large environment. Similarly, the nature of architectural practice itself has no standard of how small or how big does a design decision making should take place. Architects have the liberty to metaphorically construct anything as VEs and this is not just limited to small spaces. A VE in VR in this sense may be treated as a tool to assess small architectural space or even an urban scale environment. The optimal operational dimension of VR, therefore, should be learned through the small concerns such as architectural details to larger components such as the aggregate of buildings in an urban scale VE.

VR system relies heavily on the computing power, which will later affect the fluidity and fidelity of the VE representations. Apart from this, the concern of perfecting the VEs realism and richness in VR has always been the primary concern among industry players as well as academics. However, as highlighted by Balfour (2001), appropriating the tool for the pursue towards creating a richer and realistic hypothetical VE than the real one is simply idiotic. Furthermore, this thesis argues that a VR system should not be more than just an operational representation tool to evaluate space and the environment it represents. This requires the concerns regarding VR as a tool for urban scale architectural representation should be viewed
from the system’s operational side for architectural purposes. Researchers should not neglect the importance of architectural details in VEs while maintaining the best quality and fluidity of the VEs in VR.

Using a conventional way of constructing a 3D model of the VEs, this study examined the influence of the different levels of architectural detailing on 3D buildings upon the legibility of the VEs itself. In other words, this study is based on the concern of leveraging the level of architectural detailing in creating a workable VE as a form of large-scale urban representation in VR. Through this, VR, therefore, can be envisioned to be an operational representation tool for architecture and urban design by appropriating the most legible level of architectural detailing in VEs for architectural design and evaluation.

1.2 Statement of Problem

For ages, architects have been using scale representations such as models to aid design process (Stavrić, 2013). It is an economical solution considering constructing buildings may take years to complete and unexpected circumstances and decisions could come into play in the interim. Using representations in the form of scale models, in particular, allows architects to manage the risks of possible errors and discrepancies in the final design product. However, the operational use of these models may vary depending on the scale and the level of details (Stavrić, 2013). The selection of scale generally depends on the actual size of objects, the size of the workspace and the project stage that is to be illustrated. Another critical consideration for scale models is the selection of the level of details. Reducing the scale of models thus will increase the level of details and vice versa, to the level of their geometric primitives. As presented in Table 1.1, a highly detailed model of a house on a scale of 1:25 may be useful for an interior design study as it bears a realistic resemblance to the real house. A 1:1000 scale model of a city environment may be represented in prismatic blocks and is often monochromatic, as it is laborious to produce huge models with architectural details and colour and therefore, deemed as not effective enough for gathering valid information.
Table 1.1: Common type of scale models (Stavrić, 2013).

<table>
<thead>
<tr>
<th>Type of scale model</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detail model</td>
<td>2:1 or 1:1</td>
</tr>
<tr>
<td>Interior/ furniture model</td>
<td>1:25</td>
</tr>
<tr>
<td>Conceptual/ development model</td>
<td>1:50, 1:100, 1:200 or with no specific scale</td>
</tr>
<tr>
<td>Exhibition model, model of constructed objects</td>
<td>1:100, 1:200</td>
</tr>
<tr>
<td>Site model</td>
<td>1:250 or 1:500</td>
</tr>
<tr>
<td>City/ landscape model</td>
<td></td>
</tr>
<tr>
<td>Small environment</td>
<td>1:250 or 1:500</td>
</tr>
<tr>
<td>Large environment</td>
<td>1:1000 or 1:2500</td>
</tr>
</tbody>
</table>

The practice of using representations historically contributed to the existence of the discipline itself (Losciale, Lombardo, & De Luca, 2012). Architects from the earlier days until now still build scale models to actualize ideas through smaller and therefore, manageable pieces of information. Architects have always relied on representations in communicating design intents to the stakeholders, and sometimes representations are central to architects to establish intimate wanderings through one’s thoughts as a dialogue in the design process (Aroztegui, Solovyova, & Nanda, 1997). As it is impossible to foresee implications of the decision taken during the design process, representations play a critical role for architects in the decision-making process before taking a stake in the end product. Architects often work with 2D representations and would eventually utilize 3D format of representations such as isometric and perspective drawings to explain the designs even further. All these physical representations either in the form of drawings or models are always inadequate in some areas as compared to the digital representations.

Frequently produced in smaller scales, physical models are not suitable agencies for allowing architects to gain spatial experience. Thus, digital 3D models are used by architects and urban designers to explore virtual spaces. The scale of digital models, however, are not accessible in computing and digital models often worked on through interchangeable scales as a scale translation from the VE displayed on the screen to the real world has to be made by the user (Richardson, Montello, & Hegarty, 1999). Metaphorically, all digital models exist within the digital realm are in a full-scale, it is just what is being displayed to the users may not. Additionally, in the end, they are going to be viewed as 2D representations through
the computer screens or to be printed on the physical outputs such as papers. This pushes architects or the system itself to reduce the level of detailing in the 3D models as per what the computer screens can display or depending on the size of the physical outputs they intent to produce on. Either physical or digital format, the level of details and scale remain as two factors distinguishing the operational quality of one representation to another.

In the architectural design process, 3D buildings are usually built with an optimal level of detail. Whereas for a larger scale environment such as a city environment, highly detailed representations are rarely, if not impossible to be built in full-scale. As for the scale models of cities and urban areas, physical models are typically small that it is unlikely for certain vital information to be obtained from studying one. It might also be uneconomical, laborious and just nearly impossible to build physical models in full-scale with adequate detailing.

In a recent development, the vision of making VR be available and affordable to the masses has paved the way to the so-called second wave of VR revolution (Stein, 2015). VR is therefore sought to be more capable and advanced, as it could present the VEs in full-scale through a more intuitive and immersive manner. Digital reinterpretation of the reality itself may trigger some interesting subjects within the architectural realm. As architecture and urban design are major fields involved with the concerns regarding spatial assessments of small to large environments, VR system is envisioned to be a capable tool that may aid these assessments at many levels.

VR systems of today can potentially allow large, full-scale VEs to be explored while maintaining the merit of architectural details. A Higher number of polygons and meshes are required in preserving architectural details on 3D buildings, and this, in turn, demands the diminution of the quality of VEs. Some techniques are already introduced by scholars in reducing the complexity of models in VEs to increase their performance. As highlighted by Gao (2013), commonly used techniques are mesh simplification and through using model simplification algorithms. These techniques, however, are mainly putting emphasis on the fidelity
of the model while ignoring the importance of architectural characteristics and principles.

Studies with the objectives of pursuing legible VEs are commonly from the computer graphics point of view. The entire field of computer graphics has grown out of the tension between realism and speed, between fidelity and frame rate, between rich, highly detailed VE and smooth animation (Luebke, et al., 2003). Many studies are governed by the concern of how complex and realistic VEs should be presented, or at least, perceived. Attentions were given to pursue the aesthetic qualities of VEs towards creating more complex, therefore more realistic looking VEs. Thus, techniques such as photogrammetry are widely used as a reliable method to record parts of reality into a 3D model, but this approach often neglects the geometric quality of architectural details.

The problem with deciding the level of details in representations is mainly controlled by the scale, other than the question of production capability, time and cost (Hudson-Smith, 2007; Kobayashi, 2006). Therefore, deciding on what scale must go concurrently with determining the level of details. In an urban scale VE, the question of the level of details and scale can be more ambiguous, as there are no rules on dictating how to detail a VE this large should be built. For architectural decision making purposes, it is more logical for a higher level of architectural details to be preserved. Additionally, as other cues such as smell and touch are less possible to be recreated in VEs, the information expected to be properly displayed in VR are primarily of visual cues alone. As the actual environment is messy and complex, the relevant components that should be preserved in VEs are left with the visual cues containing the architectural characteristics of the buildings, thus the notion of legibility has to become relevant for this study.

The full-scale VEs in VR will require a high level of details as visual information in VR should be delivered sufficiently, especially for architectural and urban study assessment. Thus, the VEs should be made legible visually and cognitively. It is also important for the disciplines to learn about the operational level of different level of details. This ambiguous boundary of defining how detail buildings in VEs should be represented while maintaining the operational side of the
representations for VR has become the gap that needs to be defined. As discussed by Oxman (2008), “One way in which the clarification of the uniqueness of digital design media can be established is to define a taxonomy for digital design models.” This study is a continuation of this process, induced by the belief that the concern of defining the taxonomy for VEs with different detailing should be primarily based on architectural attributes rather than polygons, mesh numbers and textures. Thus, the term ‘architectural detailing’ (referring to different levels) and ‘architectural details’ (referring to certain detail components) are deemed to be more appropriate to be used rather than the traditional term of ‘level of details’.

1.3 Aim and Objectives

The research aimed to suggest a guideline for the user experience of architectural detailing in a VE for large-scale urban simulation. This expands the possibility of VEs in VR to become a valid urban scale architectural representations. This study was centralized on the notion of legibility of the VEs, achieved through these objectives:

1. To measure differences in the degree of legibility of all VEs;
2. To evaluate the influence of different levels of architectural detailing upon the degree of legibility of VEs;
3. To compare the differences in cognitive knowledge of respondents from all VEs.
1.4 Primary Hypotheses

The primary null and alternative hypotheses that have been established for this study are as follows:

1. Null Hypothesis/ \(H_0 \) – The level of architectural detailing on 3D buildings has no observable influence on the degree of legibility of the VEs;
2. Alternative Hypothesis/ \(H_a \) – The level of architectural detailing on 3D buildings influences the degree of legibility of the VEs.

1.5 Scope of Research

The scope of research was set to describe the boundaries and limitations for this study, which was limited to these parameters:

1. Concerns were only limited to outdoor space legibility evaluation, not including the internal spaces of 3D buildings in the VEs;
2. The study utilized VR system as a tool and not focusing on the technicality of VR technology extensively;
3. The study did not compare the VEs representation with the reference site;
4. Only the data from the respondents who have not been to the reference site were considered for analysis;
5. Explorations within VEs during the data collection process were limited to certain paths as free explorations would only contribute to data redundancies and other unnecessary circumstances. However, a certain degree of freedom in explorations was allowed as discussed later in Chapter 3.
1.6 Outline of Research Methodology

To be elaborated in Chapter 3, the research methodology is the backbone of this study. Prior to the data collection, it is also vital to explain the research methodology briefly as to highlight the basic structure of how this study was executed. In warranting more valid and diverse findings, the research has the data taken through combined research strategy from both quantitative and qualitative approaches, within the post-positivist system of inquiry. This study is mainly of an experimental simulation study, with the primary data are of perception, cognitive and observation data. Thus, questionnaire surveys were used extensively as one of the main research instruments, combined with the data gathered from observations and cognitive maps drawn by the respondents. These were all done through respondents from different VEs with different level of architectural detailing. Overall, there were six main stages of work accomplished in completing this thesis accordingly as illustrated in Fig. 1.2.
1.6.1 Stage 1: Literature Review

This is a preliminary stage of accumulating and reducing all the needed information discussing the related subject from a large body of literature sources (Groat & Wang, 2013). The sources were gathered from the works primarily discussing architectural representations, VEs, VR, computer graphics, the level of details, urban legibility, wayfinding and cognitive knowledge.
1.6.2 Stage 2: Synthesis of Theories and Definition of Variables

From the knowledge and discourse in the previous stage, the theories were synthesized into becoming the basis for the ongoing discussion of this research. The variables for the data collection were developed based on the dimensions that have been established through the theories. The next stage of method development and the data collection process were mainly of proving these theories.

1.6.3 Stage 3: Method Development

The hypotheses were established and research objectives that have been discussed earlier developed into the operational guidelines. The theories formulated became the basis of how the 3D model of the VEs was constructed. The work of preparing the VEs went concurrently with the development of research method. Determining the level of architectural detailing was also established based on the formulated theories. The tactics for collecting data including the way the navigation simulation was strategized and the tasks are given to the respondents were also based on these theories.

1.6.4 Stage 4: Data Collection

Taking precedence from the methods used by scholars such as Lynch (1960) and Appleyard (1981), cognitive knowledge data were gathered through cognitive maps as the respondents attempted to recall urban elements in the VEs within the realm of VR they have experienced. As this study is of ‘between subjects’ tests, each respondent was assigned into a unique group and therefore each respondent was independent of another. This was to discourage the preconceived idea of a place that they may have recognized earlier. The questionnaire survey questions were completed by the respondents after they have completed the cognitive mapping exercise.
1.6.5 Stage 5: Data Analysis

The data collected from the previous stage were analyzed separately in three primary phases. The first phase is the environment specific analysis of the quantitative data gathered from the questionnaire survey and observations. The second phase is the route and point-specific analysis using primarily qualitative cognitive knowledge taken from the cognitive maps, alongside the additional perception and observation data. Various analysis methods including statistics techniques were implemented. The results from the analysis stage are discussed in the third phase, which is the triangulation of the findings from the previous phases.

1.6.6 Stage 6: Results & Discussions

As the analysis of data is separated into three phases, the results from each phase are presented and discussed separately. At the end of this stage, the findings from both phases were triangulated, and the results of the triangulation were synthesized and presented as the conclusion. The established theories and hypotheses from the previous stages are the prelude to the conclusions in the final chapter.

1.7 Significance of Study

The architectural practice itself is an embodiment of multidisciplinary skills and talents. Architectural knowledge is stemmed from disciplines layered from anthropology, economy, engineering, history, geography, environmental psychology, philosophy etc. The assertion of new knowledge into an already rich discipline is, therefore, would not just empower the disciplines itself, but also encourage different disciplines to become mutually relevant over time. Thus, to study a new technological system into an already established concept of architectural representation can be a great commencement towards a total digitization of the concept generally, and the architectural practice mainly. In a long run, more efficient
society can be created and more sustainable approach towards implementing architectural ideas can be achieved.

VR has begun to be used by architects as a representation tool. Through innovative integration technology, the architectural 3D software can now be supported with VR capabilities. At the same time, VR system itself can be acquired easily by the masses and the industry must keep up with this sophistication of the society. This inclusion of VR into architectural practice, especially as a form of representation should be validated through theories and empirical data. Evaluating the influence of architectural detailing upon the legibility of VE will not only enable this validation but also will become the basic guidelines of which operational level of detailing should be achieved in any architectural representation in VR. This study will be one of the studies that touch on this matter, synthesized mainly from architectural and urban design knowledge and hoping to get to impeccably developed further. The taxonomy of architectural representations can be enriched to include VR as one of the tools apart from limited to just digital and physical models. This opens the way of how architects can contribute certain knowledge to the disciplines and technology that are not architecturally related.

This study defines operational levels that will be beneficial especially in maintaining architectural concerns related to computer graphics discourse. Software developers and 3D modelers can refer to the findings from this study to determine the optimal level of details for architectural purposes in future. Urban scale environments in VR with a high level of details may consume much work, time and cost, thus architects and urban designers can work within an optimal boundary set by this study.

As the actual reality and VR are two dichotomous dimensions, evaluating the legibility of a VE in VR is not just critical for architectural representation, but it also opens broader philosophical stance on the reality itself. As the real environment is already complex and messy with details, the schematized representation of that reality in VR based on architectural knowledge will make architects and scholars recognize the concept of redundancy and adequacy of details. While this study
maintains the argument of schematization may influence the degree of legibility of VEs, it also highlights the operational side of it.

Apart from this philosophical stance, this study is also relevant to urban theories in general. The adoption of new technology in the digital era will pave the way for architectural and urban design disciplines to be resonant to this technological development. There are numerous urban legibility studies done in the past decades, and digital intervention may change the way people evaluate these studies and architectural decision process as a whole. There were no possible means to manipulate building details in evaluating how far do architectural details can influence legibility of a large urban environment. This so far can only be done in VR, as it can simulate a full-scale environment where observers can navigate within it. This study explores this possibility and urban theories in future can be built upon the relevant findings.

1.8 Organization of Thesis

This thesis is divided into six main chapters. To highlight the direction of this thesis more clearly, the outline of each chapter as a precursor to the entire thesis are as follows:

• Chapter 1: Introduction
• Chapter 2: Literature Review
• Chapter 3: Research Methodology
• Chapter 4: Results of Experiment
• Chapter 5: Discussion
• Chapter 6: Conclusions

The current chapter (Chapter 1) discusses the preliminary details and the direction of the thesis as an introductory discussion. The problems, especially regarding the emergence of VR technology and architectural representations, are
discussed as the background of this study. The research gap is then discussed further in Chapter 2. Academic and other references especially relevant to the topics of VR, VEs, level of architectural detailing and cognitive study are discussed. The research method is discussed in Chapter 3, which presents the development of the research methodology including the system of inquiry, strategies and tactics as a preparation to proceed to the data collection stage to the next chapter. Chapter 4 presents the results from the data analysis while Chapter 5 discusses the findings from the data collection stage. The findings then used to confirm the theories that have been synthesized in the previous chapters, whether the level of architectural detailing has some influence to the legibility of VEs. After the findings were triangulated, the final chapter (Chapter 6) concludes the influence of the level of architectural detailing on the legibility of VEs, using the researcher’s own remarks. The synthesized operational dimension of the level of architectural detailing is also proposed and finalized into guidelines.

1.9 Chapter Summary

This chapter serves as the point of departure to the overall thesis. It presents the introductory background to the problems that lead to the formation of the research objectives, scope and hypotheses. The objectives and hypotheses are essential to compare and find differences between VEs which reflected through the different architectural detailing. Brief explanations of the research methodology and data collection stages involved are also presented in the introduction chapter. Based on the objectives, it is certain at this point this research would use combined method strategy to gather and analyze the data. The significance of this study is highlighted with the discussion focusing on its possible contributions to various parties. The significance of study was discussed in an optimistic tone that it requires further discussion and actual data analysis to support it. There is also a discussion on the outline of the research chapters that are expected to be in this thesis. The issues regarding VR technology and architectural representations are discussed with regards to the concern of the VE contents and architectural details. Thus, this study is likely to utilize VR system to simulate large-scale VEs for the data collection process. In
this chapter, these are only elementary discussions to establish the problems in setting out the framework. This study requires various references touching on the subject matter, thus the arguments and claims are discussed more thoroughly in next chapters.
REFERENCES

