Jamali, Ali (2017) 3D indoor topological modelling based on homotopy continuation. PhD thesis, Universiti Teknologi Malaysia, Faculty of Geoinformation and Real Estate.
|
PDF
811kB |
Abstract
Indoor navigation is important for various applications such as disaster management, building modelling and safety analysis. In the last decade, the indoor environment has been a focus of extensive research that includes the development of indoor data acquisition techniques, three-dimensional (3D) data modelling and indoor navigation. 3D indoor navigation modelling requires a valid 3D geometrical model that can be represented as a cell complex: a model without any gap or intersection such that the two cells, a room and corridor, should perfectly touch each other. This research is to develop a method for 3D topological modelling of an indoor navigation network using a geometrical model of an indoor building environment. To reduce the time and cost of the surveying process, a low-cost non-contact range-based surveying technique was used to acquire indoor building data. This technique is rapid as it requires a shorter time than others, but the results show inconsistencies in the horizontal angles for short distances in indoor environments. The rangefinder was calibrated using the least squares adjustment and a polynomial kernel. A method of combined interval analysis and homotopy continuation was developed to model the uncertainty level and minimize error of the non-contact range-based surveying techniques used in an indoor building environment. Finally, a method of 3D indoor topological building modelling was developed as a base for building models which include 3D geometry, topology and semantic information. The developed methods in this research can locate a low-cost, efficient and affordable procedure for developing a disaster management system in the near-future.
Item Type: | Thesis (PhD) |
---|---|
Additional Information: | Thesis (Doktor Falsafah (Geoinformatik)) - Universiti Teknologi Malaysia, 2017; Supervisors : Prof. Dr. Alias Abdul Rahman, Dr. Pawel Boguslawski, Prof. Dr. Francois Anton |
Subjects: | G Geography. Anthropology. Recreation > G Geography (General) > G70.212-70.215 Geographic information system |
Divisions: | Geoinformation and Real Estate |
ID Code: | 79231 |
Deposited By: | Widya Wahid |
Deposited On: | 14 Oct 2018 08:39 |
Last Modified: | 14 Oct 2018 08:39 |
Repository Staff Only: item control page