NOISE INDUCED-HEARING LOSS COMPENSATION MODEL FOR CONSTRUCTION INDUSTRY

AIN NAADIA BINTI MAZLAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

SEPTEMBER 2017
ACKNOWLEDGEMENT

Praise to Allah SWT for the grace and all His blessings

My deepest gratitude towards my supervisor, Dr. Khairulzan Bin Yahya and Assoc. Prof. Dr. Zaiton Binti Haron for their guidance, supports and kind encouragement. Without their continuous support and interest, this thesis would not have been the same presented here.

My sincere appreciation toward the sacrifices that my husband, Mohd Firdaus Bin Mohamed partakes in financial and time to ensure that my Ph.D journey run as smoothly as possible. I love you today and always. Thank you.

I am also indebted to Universiti Teknologi Malaysia, especially Biasiswa Ainuddin Wahid for funding my PhD study. My long list of academic guides; Dr Edrin Nazri Abdul Rasib, Dr. Nizam Jamaluddin from PERKESO and Dr Piers Dawes from University of Manchester. Also during data collection stage; Datin Nik Amsharija, Encik Hafiez, Puan Rogayah and Puan Siti Hawa from PERKESO.

Also, for my extended family; Mama, Papa, Mak and Abah. My siblings and in laws. My sister Ain Farhana and my special support system; Alina, Farah Farhana and Construction Research Centre (CRC-UTM) and Institute for Smart Infrastructure and Innovative Construction (ISIC-UTM) staff: Siti Asiah, Norhaliza , Nor Ainee and Nur Fatimah.

Thank you, thank you for everything
ABSTRACT

Noise-induced hearing loss (NIHL) is considered a chronic occupational disease with widespread prevalence among construction workers. Noise exposure is the main reason for NIHL to occur. Even though a strict regulation of permissible noise level for the industries has been introduced, NIHL cases among workers still increase annually. Severity of NIHL is influenced by multiple factors that should be incorporated to produce an accurate and comprehensive compensation system for construction related industries. The aim of this study is to develop a NIHL compensation predicting model for the construction industry. The study started by establishing the risk factors for NIHL. Subsequently, the relationship between risk factors and hearing loss was analysed and the coefficient value of the risk factors was evaluated. Finally, the NIHL compensation model was developed. NIHL risk factors data were obtained from the Malaysian Social Security Organisation (SOCSO) reports on the workers’ noise exposure, area noise, chemical and heat exposure, smoking habit, medical condition, risky hobby, and working environment site reports. Feedback from related industry and academic experts was also recorded. In addition, the Mann-Whitney U-test, correlation, and scatterplot study were executed to identify the association between risk factors and NIHL value. Three NIHL compensation models namely Models 1, 2, and 3 were developed using linear multiple regression methods based on the significant NIHL risk factors such as daily noise exposure, area noise, smoking habit, cardiovascular disease, and age. The best model was chosen by comparing the Mean Absolute Percentage Error (MAPE) value of each model with an actual compensation value from SOCSO. Model 1 which consisted of daily noise exposure and the smoking habit was selected as the best model with the lowest MAPE value of 14.33 compared to Models 2 and 3 with MAPE values of 84.72 and 50.14, respectively. In conclusion, the study successfully proved the importance of the relationship between hearing impairment and NIHL risk factors by developing the three compensation NIHL models that can be utilised for monetary indemnity scheme in Malaysia.
ABSTRAK

TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF EQUATIONS</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Introduction 1
1.2 Background of Study 2
1.3 Statement of Problem 3
1.4 Aim and Objectives 3
1.5 Scope of Study 4
1.6 Significance of Study 4
1.7 Potential Impact of Study 5
1.8 Methodology 5
1.9 Organisation of the Thesis 7
NOISE INDUCED–HEARING LOSS

2.1 Introduction 10

2.2 Hearing Loss 11
 2.2.1 Tinnitus 13

2.3 Noise Induced-Hearing Loss 14

2.4 Laws and Regulation for NIHL 15

2.5 Global Prevalence of NIHL 16

2.6 Previous Study on NIHL 17

2.7 NIHL Risk Factors 20
 2.7.1 Noise Exposure in Work Place 22
 2.7.2 Chemical Exposure 24
 2.7.3 Heat Stress 26
 2.7.4 Physical Work Load 27
 2.7.5 Age 29
 2.7.6 Cardiovascular Disease 30
 2.7.7 Exercise/Physical Activity 31
 2.7.8 Diabetes 32
 2.7.9 Smoking 33
 2.7.10 Alcohol Consumption 35
 2.7.11 Ototoxic Drugs 35
 2.7.12 Gender 36
 2.7.13 Hobby/Non Occupational Activity 37
 2.7.14 Socio Economic 38
 2.7.15 Early Childhood Experience 38

2.8 Summary 39

COMPENSATION

3.1 Introduction 41

3.2 Concept and History of Compensation 42

3.3 Laws and Regulation for Compensation 43

3.4 Compensation 44
 3.4.1 Compensation in Malaysia 45
 3.4.2 Compensation in Australia 49
3.4.3 Compensation in Brazil 50
3.4.4 Compensation in Canada 51
3.4.5 Compensation in Germany 52
3.4.6 Compensation in Japan 53
3.4.7 Compensation in Singapore 54
3.4.8 Compensation in United Kingdom 55
3.4.9 Compensation in United States 56
3.5 Compensation Process 57
3.6 Medical Board Process 61
3.6.1 Issue of Apportion 62
3.7 Current Compensation Issues 63
3.8 Impact of Compensation 64
3.9 Research Gap 65
3.10 Summary 67

4 METHODOLOGY 70
4.1 Introduction 70
4.2 Research Flowchart 71
4.3 Expert Discussion 75
4.4 Semi Structured Interviews 76
4.5 Literature Review and Record Review Step 78
 4.5.1 Record Reviews 80
 4.5.2 Sample Size 80
 4.5.3 Factors Distribution 81
4.6 Statistical Analysis Procedure 85
 4.6.1 Selection of Variables 86
4.7 Preliminary Study 87
4.8 Valuing NIHL 88
 4.8.1 Contingent Valuation 89
 4.8.2 Hedonic Pricing Method 90
 4.8.3 Model Derivation 91
4.9 Cross Validation of the Model 93
 4.9.1 Adjusted R² 93
4.9.2 Mean Absolute Percentage Error (MAPE) 94
4.10 Study Comparison 95
4.11 Summary 95

5 RESULT AND DISCUSSION 97
5.1 Introduction 97
5.2 Preliminary Study 98
5.3 Expert Discussion 100
5.4 Demographic Analysis 101
 5.4.1 Worker’s Distribution 101
 5.4.2 Monthly Income Distribution 103
 5.4.3 Age Distribution 104
 5.4.4 Daily Noise Exposure Range 106
 5.4.5 Area Noise Level Range Distribution 107
 5.4.6 Age Distribution According to Work Group 108
 5.4.7 Chemical Exposure According to Work Group 109
 5.4.8 Heat Exposure According to Work Group 111
 5.4.9 Smoking Habits among Worker Group 113
 5.4.10 Diabetes Cases among Work Group 115
 5.4.11 Cardiovascular Disease Cases among Worker Group 116
 5.4.12 Risky Hobby/ Non Occupational Activity among Work Group 118
5.5 Objective 1: To Establish Risk Factors of Noise Induced-Hearing Loss 119
 5.5.1 Operationalise the Variables 121
5.6 Objective 2: Relationship between Risk Factors and Hearing Loss 123
 5.6.1 Scatterplot Study 125
 5.6.1.1 Hearing Impairment Plot for Daily Noise Exposure 125
5.6.1.2 Hearing Impairment Plot for Area Noise Level 127
5.6.1.3 Hearing Impairment Plot for Age 129
5.6.1.4 Hearing Impairment Plot for Chemical Exposure 131
5.6.1.5 Hearing Impairment Plot for Heat Exposure 132
5.6.1.6 Hearing Impairment Plot for Smoking Habits 133
5.6.1.7 Hearing Impairment Plot for Diabetes 134
5.6.1.8 Hearing Impairment Plot for Cardiovascular Disease 136
5.6.1.9 Hearing Impairment Plot for Non-Occupational Activity/Hobby 137

5.6.2 Correlation 138
5.6.2.1 Risk Factors Correlation with Respect to Daily Noise Exposure 138
5.6.2.2 Risk Factors Correlation with Respect to Area Noise Level 140

5.6.3 Mann-Whitney U-Test 141

5.7 Objective 3: Coefficient Value of Risk Factors 144

5.7.1 Regression Analysis 145
5.7.1.1 All Factors Regressions Analysis with Respect to Daily Noise Exposure 146
5.7.1.2 Occupational and Non-Occupational Factor Classification Regression Analysis with Respect to Daily Noise Exposure 148
5.7.1.3 Significant Factors Regression Analysis with Respect to Daily 150
Noise Exposure

5.7.1.4 All Factors Regressions Analysis with Respect to Area Noise Level 151

5.7.1.5 Occupational and Non-Occupational Factor Classification Regression Analysis with Respect to Area Noise Level 152

5.7.1.6 Significant Factors Regression Analysis with Respect to Area Noise Level 153

5.7.1.7 Significant Area Noise Cases 155

5.7.1.8 Area Noise Regressions Analysis 156

5.8 Objective 4: Noise Induced-Hearing Loss Compensation Model 158

5.8.1 Cross validation 160

5.8.1.1 MAPE for NIHL Compensation Model 1 160

5.8.1.2 MAPE for NIHL Compensation Model 2 161

5.8.1.3 MAPE for NIHL Compensation Model 13 162

5.9 Acceptability of the Model 163

5.9.1 PERKESO model vs NIHL Compensation Model 1 164

5.9.2 PERKESO model vs NIHL Compensation Model 2 165

5.9.3 PERKESO model vs NIHL Compensation Model 3 166

5.9.4 Comparison of all models 167

5.10 Summary 168
6 CONCLUSION AND RECOMMENDATION 170

6.1 Introduction 170
6.2 Research Findings 171
6.3 Conclusion 172

6.3.1 Risk Factors of Noise Induced-Hearing Loss 173
6.3.2 Relationship between Risk Factors and Hearing Loss 174
6.3.3 Coefficient Value of Risk Factors 174
6.3.4 Noise Induced-Hearing Loss Compensation Model 175
6.4 Significant of the Study Outcome 176
6.4 Limitation 177
6.5 Recommendation 178

REFERENCES 180

Appendices A - H 213 - 244
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Literature comparison for NIHL</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of risk factor studies</td>
<td>21</td>
</tr>
<tr>
<td>2.3</td>
<td>Noise limit according to construction phase</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>Task-specific average noise levels by construction trade (Seixas et al., 2004)</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Common construction workplace chemical (Nies, 2012)</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Predicted hearing threshold levels (dB) for advancing ages in an unscreened male population (ISO 1990:1999, 1999)</td>
<td>30</td>
</tr>
<tr>
<td>2.7</td>
<td>Ototoxic drugs (Thorne et al., 2006)</td>
<td>36</td>
</tr>
<tr>
<td>3.1</td>
<td>Person impairment (Employees’ Social Security Act 1969, Section 2, Second schedule)</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Appointed insurance panel for foreign worker in Malaysia (Jabatan Tenaga Kerja Sabah, 2015)</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>Injuries deemed to result in permanent incapacity (Work Injury Compensation Act (Chapter 354), 2009, First schedule)</td>
<td>55</td>
</tr>
<tr>
<td>3.4</td>
<td>List of questions for good compensation plan (Aquila and Rice, 2009)</td>
<td>57</td>
</tr>
<tr>
<td>3.5</td>
<td>Monaural hearing loss and impairment (SOCSO, 2010)</td>
<td>59</td>
</tr>
<tr>
<td>3.6</td>
<td>Relationship of binaural hearing impairment for the entire person (SOCSO, 2010)</td>
<td>60</td>
</tr>
<tr>
<td>3.7</td>
<td>Frequencies on the audiogram used for calculation for different countries</td>
<td>61</td>
</tr>
<tr>
<td>4.1</td>
<td>Record review methodological steps summary</td>
<td>79</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.2</td>
<td>Sample distribution according to year</td>
<td>80</td>
</tr>
<tr>
<td>4.3</td>
<td>Form description</td>
<td>81</td>
</tr>
<tr>
<td>4.4</td>
<td>Activities of daily living</td>
<td>84</td>
</tr>
<tr>
<td>4.5</td>
<td>Age factor coefficient</td>
<td>92</td>
</tr>
<tr>
<td>4.6</td>
<td>Interpretation of value of r (Field, 2009)</td>
<td>94</td>
</tr>
<tr>
<td>4.7</td>
<td>MAPE classification (Idris, 2012)</td>
<td>94</td>
</tr>
<tr>
<td>5.1</td>
<td>Logistic regression model for occupation, demographic, noise and lifestyles factors and hearing impairment</td>
<td>99</td>
</tr>
<tr>
<td>5.2</td>
<td>Experts interview and discussion</td>
<td>100</td>
</tr>
<tr>
<td>5.3</td>
<td>Daily noise exposure among worker distribution</td>
<td>107</td>
</tr>
<tr>
<td>5.4</td>
<td>Area noise level among worker workplace</td>
<td>108</td>
</tr>
<tr>
<td>5.5</td>
<td>Age range distribution</td>
<td>109</td>
</tr>
<tr>
<td>5.6</td>
<td>Chemical exposure cases reported</td>
<td>110</td>
</tr>
<tr>
<td>5.7</td>
<td>Heat cases reported</td>
<td>112</td>
</tr>
<tr>
<td>5.8</td>
<td>Heat Index (OSHA, n.d.)</td>
<td>113</td>
</tr>
<tr>
<td>5.9</td>
<td>Smoking habits reported</td>
<td>114</td>
</tr>
<tr>
<td>5.10</td>
<td>Diabetes cases reported</td>
<td>115</td>
</tr>
<tr>
<td>5.11</td>
<td>Cardiovascular disease cases reported</td>
<td>118</td>
</tr>
<tr>
<td>5.12</td>
<td>Risky hobby reported</td>
<td>119</td>
</tr>
<tr>
<td>5.13</td>
<td>Summary of risk factors</td>
<td>120</td>
</tr>
<tr>
<td>5.14</td>
<td>Grades of hearing impairment (modified from WHO, 2008)</td>
<td>124</td>
</tr>
<tr>
<td>5.15</td>
<td>Correlation for all risk factors with respect to daily noise</td>
<td>139</td>
</tr>
<tr>
<td>5.16</td>
<td>Correlation for all risk factors with respect to area noise</td>
<td>141</td>
</tr>
<tr>
<td>5.17</td>
<td>Mann Whitney test for categorical variables</td>
<td>143</td>
</tr>
<tr>
<td>5.18</td>
<td>List of assumption</td>
<td>144</td>
</tr>
<tr>
<td>5.19</td>
<td>Variables category</td>
<td>145</td>
</tr>
<tr>
<td>5.20</td>
<td>Multiple regression for all factors</td>
<td>146</td>
</tr>
<tr>
<td>5.21</td>
<td>Multiple regression for occupational factors</td>
<td>148</td>
</tr>
<tr>
<td>5.22</td>
<td>Multiple regression for non-occupational factors</td>
<td>149</td>
</tr>
<tr>
<td>5.23</td>
<td>Multiple regression for significant factors</td>
<td>150</td>
</tr>
<tr>
<td>5.24</td>
<td>Multiple regression for all factors</td>
<td>151</td>
</tr>
<tr>
<td>5.25</td>
<td>Multiple regression for occupational factors</td>
<td>152</td>
</tr>
<tr>
<td>5.26</td>
<td>Multiple regression for non-occupational factors</td>
<td>153</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>5.27</td>
<td>Multiple regression for significant factors</td>
<td>154</td>
</tr>
<tr>
<td>5.28</td>
<td>Example of cases</td>
<td>155</td>
</tr>
<tr>
<td>5.29</td>
<td>Multiple regression for area noise factor</td>
<td>157</td>
</tr>
<tr>
<td>5.30</td>
<td>Multiple regression for area noise and age factor</td>
<td>157</td>
</tr>
<tr>
<td>5.31</td>
<td>List of significant risk factor and coefficient value according to model</td>
<td>159</td>
</tr>
<tr>
<td>5.32</td>
<td>MAPE for NIHL Compensation Model 1</td>
<td>161</td>
</tr>
<tr>
<td>5.33</td>
<td>MAPE for NIHL Compensation Model 2</td>
<td>162</td>
</tr>
<tr>
<td>5.34</td>
<td>MAPE for NIHL Compensation Model 3</td>
<td>163</td>
</tr>
<tr>
<td>6.1</td>
<td>Summary of findings</td>
<td>171</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Brief research methodology</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>Ear structure related to conductive hearing loss</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Ear structure related to sensorineural hearing loss</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Ear structure related to mixed hearing loss</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Sensorineural hearing loss audiogram result (Swanepoel and Laurent, 2015)</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Wet Bulb Globe Temperature (WBGT) monitoring devices (Left: Kestrel 4400 Heat Stress Tracker, Right: QuestTemp)</td>
<td>27</td>
</tr>
<tr>
<td>2.6</td>
<td>Relation between physical work capacity and physical work demands with age</td>
<td>29</td>
</tr>
<tr>
<td>2.7</td>
<td>Swimmer’s ear</td>
<td>32</td>
</tr>
<tr>
<td>2.8</td>
<td>Negative effect of smoking</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Study research gap</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Research methodology flowchart</td>
<td>72</td>
</tr>
<tr>
<td>5.1</td>
<td>NIHL cases according to worker group</td>
<td>102</td>
</tr>
<tr>
<td>5.2</td>
<td>Worker’s monthly income distribution</td>
<td>104</td>
</tr>
<tr>
<td>5.3</td>
<td>Worker’s age distribution</td>
<td>105</td>
</tr>
<tr>
<td>5.4</td>
<td>Hearing impairment versus daily noise exposure</td>
<td>126</td>
</tr>
<tr>
<td>5.5</td>
<td>Hearing impairment versus area noise level</td>
<td>127</td>
</tr>
<tr>
<td>5.6</td>
<td>Hearing impairment versus age</td>
<td>130</td>
</tr>
<tr>
<td>5.7</td>
<td>Chemical exposure distribution with respect to hearing impairment versus area noise</td>
<td>131</td>
</tr>
<tr>
<td>5.8</td>
<td>Heat exposure distributions with respect to hearing</td>
<td>133</td>
</tr>
</tbody>
</table>
impairment versus area noise

5.9 Smoking habits distribution with respect to hearing impairment versus area noise 134

5.10 Diabetes distribution with respect to hearing impairment versus area noise 135

5.11 Cardiovascular disease distribution with respect to hearing impairment versus area noise 136

5.12 Risky hobby distribution with respect to hearing impairment versus area noise 137

5.13 Permissible noise exposure (OSHA, 2011) 148

5.14 Data segregation according to yes/no condition (2 × 2 × 2 × 2 × 2 model) 156

5.15 Comparison between PERKESO compensation value and value obtained from NIHL Compensation Model 1 164

5.16 Comparison between PERKESO compensation value and value obtained from NIHL Compensation Model 2 165

5.17 Comparison between PERKESO compensation value and value obtained from NIHL Compensation Model 3 166

5.18 Comparison between PERKESO value with value from NIHL Compensation Model 1, 2 and 3 167
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA</td>
<td>American Medical Association</td>
</tr>
<tr>
<td>MAPE</td>
<td>Mean Absolute Percentage Error</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute of Occupational Safety and Health</td>
</tr>
<tr>
<td>NIHL</td>
<td>Noise Induced-Hearing Loss</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PERKESO</td>
<td>Pertubuhan Keselamatan Sosial</td>
</tr>
<tr>
<td>SOCSO</td>
<td>Social Security Organization</td>
</tr>
<tr>
<td>WBGT</td>
<td>Wet Bulb Globe Temperature</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WPI</td>
<td>Whole Person Impairment</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

dB - decibel
dB(A) - decibel A-weighted
LIST OF EQUATIONS

<table>
<thead>
<tr>
<th>EQUATION</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Insurance agency compensation calculation</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Compensation in Australia WPI</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Current compensation model</td>
<td>91</td>
</tr>
<tr>
<td>4.2</td>
<td>Proposed compensation model</td>
<td>92</td>
</tr>
<tr>
<td>4.3</td>
<td>Adjusted R²</td>
<td>93</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean Absolute Percentage Error</td>
<td>94</td>
</tr>
<tr>
<td>5.1</td>
<td>New Compensation Model</td>
<td>158</td>
</tr>
<tr>
<td>5.2</td>
<td>NIHL Compensation Model 1</td>
<td>159</td>
</tr>
<tr>
<td>5.3</td>
<td>NIHL Compensation Model 2</td>
<td>159</td>
</tr>
<tr>
<td>5.4</td>
<td>NIHL Compensation Model 3</td>
<td>159</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APP.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Computation of binaural hearing impairment</td>
<td>213</td>
</tr>
<tr>
<td>B</td>
<td>Medical Form</td>
<td>215</td>
</tr>
<tr>
<td>C</td>
<td>Field Officer Report</td>
<td>217</td>
</tr>
<tr>
<td>D</td>
<td>Record review extraction: Daily noise exposure</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>Record review extraction: Area noise limit</td>
<td>221</td>
</tr>
<tr>
<td></td>
<td>Record review extraction: Chemical exposure</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>Record review extraction: Heat exposure</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Record review extraction: Age</td>
<td>224</td>
</tr>
<tr>
<td></td>
<td>Record review extraction: Cardiovascular disease and diabetes</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>Record review extraction: Smoking</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>Record review extraction: Hobby</td>
<td>227</td>
</tr>
<tr>
<td>E</td>
<td>MAPE result</td>
<td>228</td>
</tr>
<tr>
<td>F</td>
<td>Surat Kerjasama PERKESO - UTM</td>
<td>235</td>
</tr>
<tr>
<td>G</td>
<td>Summary of Interview</td>
<td>237</td>
</tr>
<tr>
<td>H</td>
<td>Publication</td>
<td>243</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Noise induced-hearing loss (NIHL) is a condition during which a person loses his ability to hear due to high-intensity noise exposure. It is caused by loud noise exposure intensity transmitted through the auditory system and damages the ear hair cells (Safework, 2008). It is a permanent and irreversible impairment. Furthermore, it is a nondramatic injury and occurs gradually over a longer period of time, which can be prevented (NIH, 1990; NIOSH, 1998).

NIHL is one of the most common occupational injuries, particularly in the construction industry and most prevalent among construction workers (Arndt et al., 1996; Roberts, 1985). In America, more than 30 million workers are exposed to loud noise that results in hearing loss (Hong, 2005). It was published from 2006 to 2012 that a total number of 1047 cases of NIHL were reported with 499 cases involved in Malaysian manufacturing and construction industries (SOCSO, 2014).
1.2 Background of Study

NIHL that occurs in worksites can increase safety risks because noise distracts the worker’s attention and drowns out the sound of malfunctioning machine, an alarm signal or warning shout (Edwards, 2009a), and it also interferes with communication which leads to accidents (Safework, 2008). Excessive noise can be disturbing and may harm the activity or balance of human life (Senate Public Works Committee, 1972; Hogan & Latshaw, 1973).

Hearing loss caused by exposure to work-related noise is referred to as occupational noise induced hearing loss (NIHL) (Morata & Dunn, 1995; Tak et al., 2009). This occurs when workers are exposed to loud noise (Bogardus et al., 2003; Johnson & Morata, 2010; Kim, 2010). It is estimated that 24% of the cases for hearing difficulty in the United States are attributable to occupational exposure (Tak & Calvert, 2008; Masterson et al., 2013). Previous researchers demonstrated that noise exposure to workers in different construction sectors, trades, and operations frequently exceed 90 dB(A) which is the recommended exposure limit by OSHA for eight hours of work duration (Neitzel et al., 1999).

Furthermore, noise casualties can be very expensive. Workers do not only suffer from exorbitant health care cost to compensate hearing disability but also deal with loss of sleep, hearing problem or stress. Additionally, their productivity in the workplace is also decreasing due to communication difficulties and fatigue. Researchers have unveiled that among environmental hazards, noise exposure is only second after air pollution to cause damage (WHO, 2011; Prochnik, 2013). The Western Europeans lose more than one million healthy lives annually as the consequence of noise-related disability and disease (WHO, 2011).
1.3 Statement of Problem

Controlling noise exposure in occupational sites is not sufficient to stop the increasing NIHL prevalence. It must correspond with awareness on the effect of NIHL risk factors. These risk factors have synergistic and in some cases additive effect towards NIHL severity (Ferrite & Santana, 2005). Only few of the previous studies have dealt with the post-incident cost, especially for the construction industry. Although noise has been explored intensively, only a small percentage of the risk factors issue has been highlighted.

The risk factors are limited and few studies have ever related to the compensation process. PERKESO and insurance company have produced current compensation models. Studies have shown that the selection of appropriate metric for noise mechanism, either pre or post action in relation to NIHL is particularly relevant (Seixas et al., 2005, Haron et al., 2011). However, there is also little agreement to the standard formula for calculating impairment (Dobie, 2001; Edwards et al., 2010) for the current models. Lack of a standard produced a subjective compensation process that in extreme cases will be biased and imbalanced.

1.4 Aim and Objectives

The aim of this study is to develop a noise induced-hearing loss compensation predicting model for the construction industry. The objectives of the study are as follows:
1. To establish the risk factors of noise induced-hearing loss,
2. To analyse the relationship between risk factors and hearing loss,
3. To evaluate the coefficient value of risk factors, and
4. To develop a noise induced-hearing loss compensation model.
1.5 Scope of Study

This study was done to find out how much a noise victim (sufferer) has to pay medical-wise to reimburse for his/her hearing loss. A survey was conducted which involved the construction industry, social security organisation, health and occupational safety professionals and insurance companies. Based on the survey, 110 historical data and medical cases were evaluated to answer all the project questions (aim and objectives). A final report was produced which incorporated the analysis of the collected data, conclusion, and recommendations.

The data consist of construction related industries workers. Construction industries related are defined as a sector responsible for the preparation of land, construction, alteration, and maintenance of structure and buildings. The scope also includes manufacturing industries that produce construction materials such as cement, steel works and pavement materials. The restriction to construction related industry is limited to the researcher’s ability to decipher historical data and medical cases during data analysis and extraction process.

1.6 Significance of the Study

The findings of the study will contribute to the benefit of the society, especially for the construction industry. The greater demands for better health care will justify the need for more effective NIHL compensation approaches. The study outcome will directly benefit occupational safety and health practitioners, social security government, and private agency and indirectly benefit those who are affected by NIHL. The developed model could be used in appraising for the financial burden of NIHL sufferers. It can be implemented for the estimation of future expenditure in order to compensate the hearing loss.
1.7 Potential Impact of the Study

The impact of the current study is potentially for the improvement of occupational health and safety processes, particularly in the field of monetary compensation and NIHL prevention practice. The inclusion of intangible variable in terms of NIHL risk factors will increase the accuracy for calculating the complete coverage amount of NIHL compensation. While NIHL is mainly the result of exposure to high-intensity noise, the study shows that other factors can accelerate the deterioration of hearing ability as well.

Research outcomes from this study stands to positively impact the field of hearing conservation practices within Malaysia and many other countries. Prevention practice currently adopted in the Malaysian construction industry focuses on the factors that occur during the occupational hour with little regard towards the buffer time required for hearing conservation action. Findings from this study will provide evidence that the mentioned risk factors are the essential parts that need to be highlight more as prevention action towards the increasing number of NIHL cases. The potential impact for the inclusion of utilisation for the comprehensive system as an integral and required part of the process of NIHL compensation claim is that policies and legislation should be influenced and changed at the national level.

1.8 Methodology

There are three distinct phases of the study; Phase 1 involves literature review and preliminary interview, Phase 2 deals with data collection and analysis using retrospective record review, and Phase 3 comprises of developing a framework and model to assess the cost of NIHL in construction workers. Detailed discussion of the
research methodology is provided in Chapter 3. Figure 1.1 outlines the methodology for this study.

![Diagram of research methodology]

Figure 1.1 Brief Research Methodology

Phase 1: Literature Review and Preliminary Interview

Phase 1 is aimed at reviewing information on noise in general, the parameter of noise, hearing issues in construction and the hearing loss trend among construction workers to establish the problem area. Preliminary interview with established occupational safety and health practitioners were conducted to find evidence and establish that NIHL is a common health issue in the construction industry. This preliminary interview also provides direction on what the industry demands for the
problem-based research to be conducted. It is essential as the goal of the study is to contribute for the well-being of society to a greater extend and the construction community, in particular. Subsequently, factors which influence the deterioration of hearing were also being investigated. Published academic reports were reviewed to uncover these risk factors. Risk factors considered for this study are based on those which provide significant impacts toward hearing deterioration while being measurable and appropriate for the national climate and culture considered for this study.

Phase 2: Retrospective Record Review

The majority of data analysis is contained within Phase 2. The medical report and health background record of construction workers suffering from NIHL were collected from Pertubuhan Keselamatan Sosial (PERKESO). These records were reviewed to find out the relationship between risk factors that have been established in Phase 1 with hearing loss.

Phase 3: Model Development

The result obtained from Phase 2 formed the basis for the model development phase. The relationship was later interpreted and analysed. The Hedonic Regression Model was adopted to evaluate the relationship.

1.9 Organisation of the Thesis

Chapter 1 of the thesis provides the direction for the study pursued. It also serves as the introductory chapter to the current study with an overview of justification, rationale, and approach adopted for the study. This chapter also includes the scope of study that explains the boundary of the study undertaken. A
brief methodology is also discussed, which will be explained thoroughly in the methodology chapter.

Chapter 2 clarifies noise induced-hearing loss while highlighting the effect of noise exposure and global prevalence of NIHL. It focuses on the occurrence of NIHL, especially among construction workers. This chapter also explains further about risk factors that influence the severity of NIHL. The risk factors are classified into two categories which are occupational and non-occupational risk factors. The explanation will also be complemented with a description of the mentioned risk factors for a better understanding.

Chapter 3 discusses compensation. It explores the history of compensation to provide background information for the overall research. Additionally, it provides international perspective on compensation. Compensation process from all around the world is also discussed. The countries included Australia, Singapore, German, the United Kingdom and United States. This chapter also explains the process and legislation used by Malaysian entity bodies. This chapter also contains the research gap for the study.

Chapter 4 consists of the procedure applied throughout the research. In addition, the rationale for using retrospective record review is explained. It also lists the steps executed for retrospective record review and hedonic pricing method to show the systematic approach in analysing the data. As the justification for the methodology was established in the previous chapter, this chapter explains the action taken for the analysis process.

Chapter 5 provides the result of this study. Relationship between each selected risk factor with hearing impairment is explained for better understanding. The calculation for noise exposure in monetary values is tabulated for future referral.
The discussion of the results follows each result to facilitate and clarify the findings. The frameworks for NIHL models are also developed.

Finally, chapter 6 concludes the discussion of significant findings during this study and implication towards the calculation of compensation value. Recommendations for further research are also included to encourage more comprehensive meaning towards the quantification of compensation cost, especially in the construction industry.
REFERENCES

Nies, E. (2012). Ototoxic substances at the workplace: a brief update. *Archives of Industrial Hygiene and Toxicology, 63*(2), 147-152.

obstructive pulmonary disease (UK BiLEVE): a genetic association study in

Laryngologie, Rhinologie, Otologie, 57(4), 320-327.

[online] State of West Virginia. Available at: http://www.wvinsurance.gov/
Portals/0/2015 – Commissioners – Annual - Report. pdf

Wilson, R. H., and Strouse, A. (2002). Northwestern University Auditory Test No. 6

Occupational Health & Safety (Waco, Tex.), 76(6), 90-92.

Workers Compensation Board of Manitoba. (2016). *Permanent Impairment Rating
for Hearing Loss*. Manitoba, Canada.

Victoria Melbourne.

Committee on Emerging and Newly Identified Health Risks. Potential health
risks of exposure to noise from personal music players and mobile phones
including a music playing function* (2008), Section 3.4.1, page 22. European
Commission.

