IDENTIFICATION AND CHARACTERISATION OF QUANTITATIVE TRAIT LOCi LINKED WITH TOLERANCE TO SALINE-ALKALINE STRESS AT GERMINATION STAGE IN INDICA RICE (Oryza sativa L.)

SAMIULLAH KHAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Biosciences)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

JUNE 2017
Specially dedicated to my father Umar Hayat Khan Niazi
for his endless support, encouragement and love.
ACKNOWLEDGEMENT

The Allah, Most Merciful, and Most Beneficent; Pursuing this Ph.D. is both challenging and enjoyable experience. It is just like climbing a high peak, gradually, accompanied with bitterness, hardships, frustration, encouragement, and trust and with so many people's kind help. When I found myself at the top enjoying the beautiful scenery, I realized that it was, in fact, teamwork that got me there. Though it will not be enough to express my gratitude in words to all those people who were always there to help me; I would still like to give my many, many thanks to all these people.

First of all, I would like to give my sincere thanks to my honorific supervisor, Dr. Muhammad Arshad Javed, who accepted me as his Ph.D. student without any hesitation when I presented him my research proposal. Thereafter, he offered his valuable advices, patiently supervising, and always guiding me in the right direction, I have learned a lot from him, without his help, I could not have finished my dissertation successfully.

My sincere thanks to my co-supervisor Dr. Fazilah Bt. Abd Manan for her support and guidance throughout my PhD. I also appreciate her advice and critical comments, which enabled me to notice the weaknesses of my dissertation and make the necessary improvements according to her valuable comments.

Special thanks are also given to Dr. Rashid Ahmed (Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia) for allowing me to analyze my QTL data on heavy computational system (Intel Xeon-7th Generation) at Scientific Computing and Instrumentation Lab.
I also appreciate my local research fellows: Ms. Farah Abu Kasim and Mrs. Atiqah Zain ul Alam; My colleagues: Ms. Nusrat Jahan, Ms. Fakhra Ramzan and Dr. Jamil Ahmed, and my friends: Muhammad Waseem Chughtai, Muhammad Gohram Khan, Adnan Nizamani, Sajjad Anbaran, Sayed Yaser Mousavi, Muhammad Saeed, Farhan Elahi, Muhammad Khalil, and Tayyab Hunsain Khan, for their generous help, support and companionship.

I am very grateful for my mother. Her understanding and her love encouraged me to work hard and to continue pursuing a Ph.D. abroad. Her firm and kind-hearted personality has affected me to be steadfast and never bend to difficulty. She always lets me know that she is proud of me, which motivates me to work harder and do my best. Finally, yet importantly, I am greatly indebted to my sisters and brothers for their continuous support and encouragement during this journey. They form the backbone and origin of my happiness. Their love and support without any complaint or regret has enabled me to complete this Ph.D. I owe my every achievement to all of them.

I would like to remember this sentence always, “Things always never travel in the way you want, but patience, hard work and ALLAH’s help brings you to the way you want.”
ABSTRACT

As the direct seeding of rice is getting popular, the farmers have shifted from traditional transplantation method to direct seeding method. The problem with this method however is the direct exposure of seeds to abiotic stresses that affect crop establishment. Studies have not been conducted so far to improve the germination tolerance in saline-alkaline conditions. Therefore, the present study was conducted to perform the genomic analysis of tolerance to saline-alkaline stress at germination stage in rice. Parental varieties *Pokkali* and *Pak Basmati* were selected out of six rice varieties on the basis of their performance in saline-alkaline conditions. A mapping population (F$_{2:3}$) was constructed using *Pokkali* as tolerant and *Pak Basmati* as sensitive parent. Germination parameters such as final germination percentage (FGP), germination value (GV), germination energy (GE), germination velocity (GVe), speed of germination (SG), peak value (PV), germination capacity (GC), germination index (GI) and mean germination time (MGT) while growth parameters like germination vigour index (GVI), shoot length (SL), root length (RL) and total dry biomass (DBM) were recorded. Parental varieties were optimised for saline-alkaline stress limits. Phenotyping of F$_3$ progenies was conducted with the saline-alkaline limits (pH8/15 dS.m$^{-1}$) optimised in parental varieties. Correlation studies show that germination and growth parameters are positively correlated. It was also found that growth parameters were affected more than germination parameters. The genotypic data of 129 F$_2$ plants for 84 polymorphic markers was used to construct molecular linkage map, with an average interval size of 7.63cM with four gaps of ≤40cM and the total length of 3435.5cM. Quantitative Trait Loci (QTL) Cartographer was used for genomic analysis using three mapping techniques i.e. simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM). Thirty-three QTLs (17 major and 16 minor) were identified using SIM. Forty QTLs (14 major and 26 minor) were identified by CIM. Sixty QTLs were identified using MIM technique. The parental varieties used in this study are potential candidates for abiotic stress studies. These findings would be beneficial in rice breeding programs to develop tolerant cultivars for the saline-alkaline environment through marker assisted selection.
ABSTRAK

Memandangkan pembenihan tabur terus padi semakin popular, petani telah beralih dari kaedah menanam secara tradisional ke kaedah tabur terus. Masalah dengan kaedah ini bagaimanapun adalah pendedahan benih secara terus kepada tekanan abiotik telah menjejaskan pertumbuhan tanaman. Sehingga kini kajian untuk meningkatkan toleransi percambahan dalam keadaan masin-alkali tidak pernah dijalankan. Oleh itu, kajian ini dijalankan untuk melaksanakan analisis genom toleransi kepada tekanan masin-alkali pada peringkat percambahan dalam padi. Jenis ibu bapa *Pokkali* dan *Pak Basmati* telah dipilih daripada enam jenis padi berdasarkan prestasi mereka dalam keadaan masin-alkali. Pemetaan Populasi (*F*₂⁻³) telah dibina menggunakan *Pokkali* sebagai toleran dan *Pak Basmati* sebagai induk yang sensitif. Percambahan parameter seperti peratus percambahan akhir (FGP), nilai percambahan (GV), percambahan tenaga (GE), kelajuan percambahan (SG), nilai puncak (PV), kapasiti percambahan (CA), indeks percambahan (GI) dan min masa percambahan (MGT) manakala parameter pertumbuhan seperti indeks percambahan tenaga (GVI), tempoh bertunas (SL), tempoh asal (RL) dan jumlah biojisim kering (DBM) telah direkodkan. Saluran induk telah dioptimumkan untuk had tekanan masin-alkali. Penelitian lapangan (Phenotyping) progeni *F*₃ telah dijalankan dengan had masin-alkali (pH8 / 15 dS.m⁻¹) yang dioptimumkan dalam jenis ibu bapa. Kajian korelasi menunjukkan bahawa percambahan dan pertumbuhan parameter berkorelasi secara positif. Ia juga mendapati bahawa parameter pertumbuhan lebih terjejas daripada parameter percambahan. 129 data genotip tumbuhan *F*₂ untuk 84 penanda polimorf telah digunakan untuk membina peta rangkaian molekul, dengan saiz selang purata sebanyak 7.63cM dengan empat jurang sebanyak ≤ 40cm dan jumlah panjang sebanyak 3435.5cM. Ciri Kuantitatif Loci (QTL) telah digunakan untuk analisis genom menggunakan tiga teknik pemetaan iaitu Pemetaan Selang Mudah (SIM), Pemetaan Selang Komposit (CIM) dan Pemetaan Selang Berganda (MIM). Tiga puluh tiga QTLs (17 utama dan 16 kecil) telah dikenal pasti menggunakan SIM. Empat puluh QTLs (14 utama dan 26 kecil) telah dikenal pasti oleh CIM. Enam puluh QTLs telah dikenal pasti menggunakan teknik MIM. Jenis ibu bapa yang digunakan dalam kajian ini adalah calon berpotensi untuk kajian tekanan abiotik. Hasil kajian ini memberi manfaat dalam program pembenihan padi untuk membangunkan kultivar toleran untuk persekitaran masin-alkali melalui bantuan penanda pilihan.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxvii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION
1.1 Background of Study 1
1.2 Problem Statement 4
1.3 Research Objectives 6
1.4 Research Scope 6
1.5 Significance of Research 7

2 LITERATURE REVIEW
2.1 Description of Rice 8
 2.1.1 Rice and food Security 8
 2.1.2 Classification of Rice 9
 2.1.3 Rice Genome and Diversity 9
 2.1.4 Main Causes of Low Rice Yield 10
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.5</td>
<td>Rice Production in Malaysia</td>
<td>11</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Rice Production, Abiotic Stress and Saline-alkalinity in Malaysia</td>
<td>12</td>
</tr>
<tr>
<td>2.1.7</td>
<td>Rice Varieties tolerant to Saline Soils in Malaysia</td>
<td>13</td>
</tr>
<tr>
<td>2.1.8</td>
<td>Mechanisms of Resistance, Tolerance and Susceptibility of Rice to Saline Soils</td>
<td>13</td>
</tr>
<tr>
<td>2.1.9</td>
<td>MAS-QTL Research in Malaysia</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Abiotic Stresses</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Salt-affected Soils and Classification</td>
<td>16</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Saline Soils</td>
<td>17</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Sodic Soils or Alkaline Soils</td>
<td>18</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Origin of Salts</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Effects of Salinity and Sodicity on Rice Crop</td>
<td>20</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Morphological Effects</td>
<td>20</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Physiological and biochemical effects</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Salt Tolerance Mechanisms</td>
<td>22</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Osmotic Tolerance</td>
<td>23</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Sodium ion (Na⁺) Exclusion</td>
<td>24</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Sodium ion (Na⁺) Tissue Tolerance</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Direct Seeding Culture in Rice</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Seed Germination and Stress</td>
<td>25</td>
</tr>
<tr>
<td>2.8</td>
<td>Mapping Population</td>
<td>26</td>
</tr>
<tr>
<td>2.9</td>
<td>Overview of Markers, QTL Mapping and Marker-Assisted Selection</td>
<td>28</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Morphological Markers</td>
<td>28</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Biochemical Markers</td>
<td>28</td>
</tr>
<tr>
<td>2.9.3</td>
<td>DNA markers</td>
<td>29</td>
</tr>
<tr>
<td>2.9.4</td>
<td>Construction of Genetic Linkage Map</td>
<td>31</td>
</tr>
<tr>
<td>2.9.5</td>
<td>QTLs Mapping</td>
<td>32</td>
</tr>
<tr>
<td>2.9.5.1</td>
<td>Principle of QTL Analysis</td>
<td>33</td>
</tr>
<tr>
<td>2.9.5.2</td>
<td>Traditional QTL Mapping (Linkage Analysis)</td>
<td>33</td>
</tr>
<tr>
<td>2.9.5.3</td>
<td>Mapping Populations Used in QTL Identification Studies</td>
<td>34</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>MATERIALS AND METHODS</td>
<td>41</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview</td>
<td>41</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Mapping Population Development</td>
<td>43</td>
</tr>
<tr>
<td>3.1.1.1</td>
<td>Selection of Appropriate Parental Lines/Varieties</td>
<td>43</td>
</tr>
<tr>
<td>3.1.1.1.1 Plant Material</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>3.1.1.2</td>
<td>Stress Level</td>
<td>44</td>
</tr>
<tr>
<td>3.1.1.3</td>
<td>Germination Parameters</td>
<td>44</td>
</tr>
<tr>
<td>3.1.1.4</td>
<td>Experimental Design and Growth Conditions</td>
<td>45</td>
</tr>
<tr>
<td>3.1.1.5</td>
<td>Analysis of Data</td>
<td>46</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Crossing between Pokkali and Pak Basmati</td>
<td>46</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Pedigree Analysis Verification</td>
<td>47</td>
</tr>
<tr>
<td>3.1.3.1</td>
<td>DNA Extraction</td>
<td>47</td>
</tr>
<tr>
<td>3.1.3.2</td>
<td>Estimation of Quality, Quantity and Purity of DNA</td>
<td>48</td>
</tr>
<tr>
<td>3.1.3.3</td>
<td>Polymerase Chain Reaction (DNA Amplification)</td>
<td>49</td>
</tr>
<tr>
<td>3.1.3.4</td>
<td>Gel Electrophoresis</td>
<td>50</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Polymorphic Survey of Parental Lines</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>Optimization of Saline-alkaline Conditions for Parental Lines</td>
<td>52</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Plant Material</td>
<td>52</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Stress Level</td>
<td>52</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Experimental Design and Growth Conditions</td>
<td>52</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Parameters for the Parental Lines</td>
<td>53</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Selection of Optimised Level</td>
<td>54</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Phenotyping of F₃ Progenies</td>
<td>54</td>
</tr>
<tr>
<td>3.2.6.1</td>
<td>Statistical Analysis</td>
<td>54</td>
</tr>
</tbody>
</table>
3.2.7 Parameters for F₃ Progenies
 3.2.7.1 Germination Parameters
 3.2.7.2 Growth Parameters

3.3 Developing Genetic Linkage Map
 3.3.1 Genotyping and Scoring of F₂ Population
 3.3.2 Molecular Linkage Map Construction

3.4 Identification of Microsatellites Linked with Tolerance to Saline-alkaline Stress Tolerance
 3.4.1 QTL Nomenclature
 3.4.2 Analysis of Data

4 RESULT AND DISCUSSION

Overview

4.1 Construction of Mapping Population
 4.1.1 Selection of Parental Lines
 4.1.2 Percentage reduction for the germination parameters studied in parental lines
 4.1.3 Correlational Studies
 4.1.4 Hybridization of selected parents and molecular pedigree evaluation
 4.1.5 Determination of F₁ hybrid seed purity using microsatellite DNA markers
 4.1.6 DNA Extraction
 4.1.6.1 Selection of polymorphic primers
 4.1.6.2 F₁ pedigree evaluation
 4.1.7 Construction of mapping population
 4.1.8 Summary

4.2 Optimisation of Stress Levels for the Parental Lines and Phenotyping of F₃ Progenies
 4.2.1 Optimisation of saline-alkaline stress levels for the parental lines at germination stage
 4.2.2 Phenotyping of F₃ progenies
 4.2.2.1 Distribution of trait measurements in F₃ progenies
4.2.2.2 Phenotypic relationship between the traits 98

4.2.3 Summary 102

4.3 Construction of Genetic Linkage Map 102

4.3.1 F$_2$ genotyping 103

- **4.3.1.1** DNA extraction 103
- **4.3.1.2** Quantification of DNA 103
- **4.3.1.3** Polymorphic survey of microsatellite DNA markers 103
- **4.3.1.4** Segregation of markers and their distortion 105

4.3.2 MapMaker 107

- **4.3.2.1** Chromosome 1 107
- **4.3.2.2** Chromosome 2 108
- **4.3.2.3** Chromosome 3 108
- **4.3.2.4** Chromosome 4 108
- **4.3.2.5** Chromosome 5 109
- **4.3.2.6** Chromosome 6 109
- **4.3.2.7** Chromosome 7 109
- **4.3.2.8** Chromosome 8 110
- **4.3.2.9** Chromosome 9 110
- **4.3.2.10** Chromosome 10 110
- **4.3.2.11** Chromosome 11 110
- **4.3.2.12** Chromosome 12 110

4.3.3 Summary 111

4.4 QTL Mapping Based on Cross Between Pak Basmati × Pokkali 112

4.4.1 Simple interval mapping (SIM) as implemented in WinQTLCart version 2.5 112

- **4.4.1.1** SIM QTLs for Final Germination Percentage 114
- **4.4.1.2** SIM QTLs for Germination Velocity 114
- **4.4.1.3** SIM QTLs for Peak Value 115
- **4.4.1.4** SIM QTLs for Germination Capacity 115
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1.5</td>
<td>SIM QTLs for Germination Index</td>
<td>118</td>
</tr>
<tr>
<td>4.4.1.6</td>
<td>SIM QTLs for Germination Value</td>
<td>118</td>
</tr>
<tr>
<td>4.4.1.7</td>
<td>SIM QTLs for Mean Germination Time</td>
<td>118</td>
</tr>
<tr>
<td>4.4.1.8</td>
<td>SIM QTLs for Vigour Index</td>
<td>120</td>
</tr>
<tr>
<td>4.4.1.9</td>
<td>SIM QTLs for Root Length</td>
<td>120</td>
</tr>
<tr>
<td>4.4.1.10</td>
<td>SIM QTLs for Shoot Length</td>
<td>122</td>
</tr>
<tr>
<td>4.4.1.11</td>
<td>SIM QTLs for Dry Biomass</td>
<td>122</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Composite interval mapping (CIM) as implemented in WinQTLCart version 2.5</td>
<td>125</td>
</tr>
<tr>
<td>4.4.2.1</td>
<td>CIM QTLs for Final Germination Percentage</td>
<td>126</td>
</tr>
<tr>
<td>4.4.2.2</td>
<td>CIM QTLs for Germination Energy</td>
<td>127</td>
</tr>
<tr>
<td>4.4.2.3</td>
<td>CIM QTLs for Germination Velocity</td>
<td>130</td>
</tr>
<tr>
<td>4.4.2.4</td>
<td>CIM QTLs for Speed of M Germination</td>
<td>131</td>
</tr>
<tr>
<td>4.4.2.5</td>
<td>CIM QTLs for Peak Value</td>
<td>133</td>
</tr>
<tr>
<td>4.4.2.6</td>
<td>CIM QTLs for Germination Capacity</td>
<td>134</td>
</tr>
<tr>
<td>4.4.2.7</td>
<td>CIM QTLs for Germination Index</td>
<td>136</td>
</tr>
<tr>
<td>4.4.2.8</td>
<td>CIM QTLs for Germination Value</td>
<td>136</td>
</tr>
<tr>
<td>4.4.2.9</td>
<td>CIM QTLs for Mean Germination Time</td>
<td>140</td>
</tr>
<tr>
<td>4.4.2.10</td>
<td>CIM QTLs for Germination Vigour Index</td>
<td>140</td>
</tr>
<tr>
<td>4.4.2.11</td>
<td>CIM QTLs for Root Length</td>
<td>141</td>
</tr>
<tr>
<td>4.4.2.12</td>
<td>CIM QTLs for Shoot Length</td>
<td>144</td>
</tr>
<tr>
<td>4.4.2.13</td>
<td>CIM QTLs for Dry Biomass</td>
<td>144</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Multiple interval mapping (MIM) as implemented in WinQTLCart version 2.5</td>
<td>148</td>
</tr>
<tr>
<td>4.4.3.1</td>
<td>MIM QTLs for Final Germination Percentage</td>
<td>149</td>
</tr>
</tbody>
</table>
4.4.3.2 MIM QTLs for Germination Energy
4.4.3.3 MIM QTLs for Germination Velocity
4.4.3.4 MIM QTLs for Speed of Germination
4.4.3.5 MIM QTLs for Peak Value
4.4.3.6 MIM QTLs for Germination Capacity
4.4.3.7 MIM QTLs for Germination Index
4.4.3.8 MIM QTLs for Germination Value
4.4.3.9 MIM QTLs for Mean Germination Time
4.4.3.10 MIM QTLs for Germination Vigour Index
4.4.3.11 MIM QTLs for Root Length
4.4.3.12 MIM QTLs for Shoot Length
4.4.3.13 MIM QTLs for Dry Biomass
4.4.4 Summary

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

5.2 Recommendations

REFERENCES

Appendices A – G
<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Rice production, consumption and ending stock growth in Malaysia: 1970-2013 (adopted from Rajamoorthy and Munusamy, 2015)</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Commonly used DNA molecular markers for QTL analyses (adopted from Collard et al., 2005). Whereas C = Codominant and D = Dominant</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>QTL studies in rice under salt stress</td>
<td>37</td>
</tr>
<tr>
<td>3.1</td>
<td>Rice varieties used in the present study along with their geographical locations</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Saline-alkaline conditions adopted for the optimisation of parental lines Pokkali and Pak Basmati (Liang et al., 2015)</td>
<td>53</td>
</tr>
<tr>
<td>4.1</td>
<td>ANOVA for the selection of parental lines</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>Performance comparison of parental lines under saline-alkaline conditions for the selection process</td>
<td>66</td>
</tr>
<tr>
<td>4.3</td>
<td>Matrix for correlation coefficients showing a linear relationship among germination characters in rice varieties studied as potential candidates for the QTL identification study under saline-alkaline conditions at germination stage</td>
<td>77</td>
</tr>
<tr>
<td>4.4</td>
<td>Polymorphic primers used for the F₁ pedigree evaluation along with their PCR product and the sequence for the forward and reverse primer and annealing temperature.</td>
<td>79</td>
</tr>
<tr>
<td>4.5</td>
<td>ANOVA for the saline-alkaline conditions with pH8 at all three salinity levels with ECₑ of 10, 15 and 20 dS.m⁻¹</td>
<td>85</td>
</tr>
<tr>
<td>4.6</td>
<td>ANOVA for the saline-alkaline conditions with pH10 at all three salinity levels with ECₑ of 10, 15 and 20 dS.m⁻¹</td>
<td>87</td>
</tr>
</tbody>
</table>
4.7 ANOVA for the saline-alkaline conditions with pH12 at all three salinity levels with EC_e of 10, 15, and 20 dS.m⁻¹

4.8 Matrix for correlation coefficients showing a linear relationship among germination and growth characters in F₃ progenies

4.9 Mapped markers distribution and distorted segregation

4.10 QTLs identified using SIM by WinQTLCart version 2.5 for final germination percentage for the mapping population obtained from cross between Pak Basmati×Pokkali

4.11 QTL identified using SIM by WinQTLCart version 2.5 for germination velocity for the mapping population obtained from cross between Pak Basmati×Pokkali

4.12 QTL identified using SIM by WinQTLCart version 2.5 for peak value for the mapping population obtained from cross between Pak Basmati×Pokkali

4.13 QTL identified using SIM by WinQTLCart version 2.5 for germination capacity for the mapping population obtained from cross between Pak Basmati×Pokkali

4.14 QTL identified using SIM by WinQTLCart version 2.5 for germination index for the mapping population obtained from cross between Pak Basmati×Pokkali

4.15 QTLs identified using SIM by WinQTLCart version 2.5 for germination value for the mapping population obtained from cross between Pak Basmati×Pokkali

4.16 QTLs identified using SIM by WinQTLCart version 2.5 for mean germination time, for the mapping population obtained from cross between Pak Basmati×Pokkali

4.17 QTLs identified using SIM by WinQTLCart version 2.5 for vigour index, for the mapping population obtained from cross between Pak Basmati×Pokkali

4.18 QTLs identified using SIM by WinQTLCart version 2.5 for root length, for the mapping population obtained from cross between Pak Basmati×Pokkali

4.19 QTLs identified using SIM by WinQTLCart version 2.5 for shoot length, for the mapping population obtained from cross between Pak Basmati×Pokkali

4.20 QTLs identified using SIM by WinQTLCart version 2.5 for dry biomass, for the mapping population obtained from cross between Pak Basmati×Pokkali
4.21 QTLs identified using CIM by WinQTLCart version 2.5 for final germination percentage, for the mapping population obtained from cross between Pak Basmati × Pokkali

4.22 QTLs identified using CIM by WinQTLCart version 2.5 for germination energy, for the mapping population obtained from cross between Pak Basmati × Pokkali

4.23 QTLs identified using CIM by WinQTLCart version 2.5 for germination velocity, for the mapping population obtained from cross between Pak Basmati × Pokkali

4.24 QTLs identified using CIM by WinQTLCart version 2.5 for speed of germination, for the mapping population obtained from cross between Pak Basmati × Pokkali

4.25 QTLs identified using CIM by WinQTLCart version 2.5 for peak value, for the mapping population obtained from cross between Pak Basmati × Pokkali

4.26 QTLs identified using CIM by WinQTLCart version 2.5 for germination capacity, for the mapping population obtained from cross between Pak Basmati × Pokkali

4.27 QTLs identified using CIM by WinQTLCart version 2.5 for germination index, for the mapping population obtained from cross between Pak Basmati × Pokkali

4.28 QTLs identified using CIM by WinQTLCart version 2.5 for germination value, for the mapping population obtained from cross between Pak Basmati × Pokkali

4.29 QTLs identified using CIM by WinQTLCart version 2.5 for mean germination time, for the mapping population obtained from cross between Pak Basmati × Pokkali

4.30 QTLs identified using CIM by WinQTLCart version 2.5 for germination vigour index, for the mapping population obtained from cross between Pak Basmati × Pokkali

4.31 QTLs identified using CIM by WinQTLCart version 2.5 for root length, for the mapping population obtained from cross between Pak Basmati × Pokkali

4.32 QTLs identified using CIM by WinQTLCart version 2.5 for shoot length, for the mapping population obtained from cross between Pak Basmati × Pokkali

4.33 QTLs identified using CIM by WinQTLCart version 2.5 for dry biomass, for the mapping population obtained from cross between Pak Basmati × Pokkali
4.34 MIM QTLs for germination and growth traits for the mapping population obtained from cross between *Pak Basmati* x *Pokkali*
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Illustration of problem statement</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Availability of nutrients bases on soil pH (Source: www.ext.colostate.edu)</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Salt tolerance mechanisms in plants (Source: Khan et al., 2016)</td>
<td>23</td>
</tr>
<tr>
<td>2.3</td>
<td>Diagram of main types of mapping populations for self-pollinating species P<sub>1</sub>: parent 1 used in crossing, P<sub>2</sub>: parent 2 used in crossing, F<sub>1</sub>: first filial generation, ×: crossed with, F<sub>2</sub>: second filial generation, BC<sub>1</sub>: first backcross generation, BC<sub>1</sub>F<sub>2</sub></td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Research flow sheet with respect to all four objectives</td>
<td>42</td>
</tr>
<tr>
<td>3.2</td>
<td>Specific order for QTL nomenclature</td>
<td>60</td>
</tr>
<tr>
<td>4.1</td>
<td>Schematic representation of the pathway from parental lines selection to the identification QTLs. For further details of F<sub>2</sub> population and F<sub>3</sub> progenies, see Appendix C</td>
<td>63</td>
</tr>
<tr>
<td>4.2</td>
<td>Specific responses of Pokkali, Pak Basmati, Panderas, Firt, MR211 and MR219 grown in saline-alkaline conditions with a pH level8 and 7.5, 15.0, 22.5, and 30.0 dS.m<sup>-1</sup> respectively, for final germination percentage, Germination velocity, Germination energy and speed of germination</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Specific responses of Pokkali, Pak Basmati, Panderas, Firt, MR211 and MR219 grown in saline-alkaline conditions with a pH level8 and 7.5, 15.0, 22.5, and 30.0 dS.m<sup>-1</sup> respectively, for Peak value, Germination capacity, Germination index and germination value.</td>
<td>71</td>
</tr>
<tr>
<td>4.4</td>
<td>Pak Basmati × Pokkali and the panicle showing potentially F<sub>1</sub> hybrid seeds. Part A shows Pak Basmati after hybridization while Part B shows the panicle with potentially hybrid F<sub>1</sub> seeds</td>
<td>78</td>
</tr>
</tbody>
</table>
true hybrid verification gel image with parental lines (Pokkali=Pok and Pak Basmati=PB) along with 4 crosses tested with 4 molecular markers RM7, RM19, RM421, and RM526. The image clearly indicates that F_1 was true hybrid of Pokkali and Pak Basmati. Whereas, 1, 2, 3, and 4 are F_1 DNAs and $H = \text{hybrid}$ and $S = \text{self-crossed}$

Optimization of Saline-alkaline stress limits in parental lines, (a) Pokkali and (b) Pak Basmati at pH8/15dS.m$^{-1}$. The differences in terms of rate of germination and growth are significant phenotypically

Frequency distribution of growth parameters (GVI, SL, RL, DBM, FGP, and GV) after 15 days of saline-alkaline stress with a pH level of 8 and EC$_e$ 15dS.m$^{-1}$ for the 129 F_3 progenies derived from Pokkali (saline-alkaline tolerant) and Pak Basmati (saline-alkaline sensitive) rice varieties.

Frequency distribution of germination parameters (GE, GC, SG, GVe, MGT, PV, and GI) after 15 days of saline-alkaline stress with a pH level of 8 and EC$_e$ 15dS.m$^{-1}$ for the 129 F_3 progenies derived from Pokkali (saline-alkaline tolerant) and Pak Basmati (saline-alkaline sensitive) rice varieties

PAGE gel results showing SSR markers for chromosome 7 to identify the polymorphic SSR markers for the selected parental lines Pokkali and Pak Basmati DNA. The SSR markers names are shown at the top while the blue lines were drawn for the polymorphic analysis. The physical location of marker loci was determined through Gramene (http://www.gramene.org) and Rice Genome Research Project (http://rgp.dna.affrc.go.jp/).

PAGE gel results showing SSR markers for chromosome 6 to identify the polymorphic SSR markers for the selected parental lines Pokkali and Pak Basmati DNA. The SSR markers names are shown at the top while the blue lines were drawn for the polymorphic analysis. Polymorphic molecular markers are highlighted with cubes.

Gel electrophoresis image for F_2 genotyping with 129 F_2 individuals for RM560 on chromosome 7

Genetic linkage map of rice Chromosomes (1-4) based on cross Pak Basmati×Pokkali. Left side of the map of each Chromosome are distances in cM and on right side is the name of rice SSR DNA markers

QTLs positions on genetic linkage map of rice, based on the cross Pak Basmati×Pokkali, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 1, 2, 3, and 6 for final germination percentage under saline-alkaline stress conditions
4.14 QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 1 and 7 for germination energy under saline-alkaline stress conditions. No QTLs were identified for simple interval mapping for germination energy.

4.15 QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 1, 2, 4, 5, and 6 for germination velocity under saline-alkaline stress conditions.

4.16 QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 1, 6, and 11 for speed of germination under saline-alkaline stress conditions. No QTLs were identified for simple interval mapping for speed of germination.

4.17 QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 1, 6, and 11 for peak value under saline-alkaline stress conditions.

4.18 QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 1, 2, and 6 for germination capacity under saline-alkaline stress conditions.

4.19 QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 1, 2, 4, and 6 for germination index under saline-alkaline stress conditions.

4.20a QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 1, 2, and 3 for germination value under saline-alkaline stress conditions.

4.20b QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 4, 5, and 6 for germination value under saline-alkaline stress conditions.
4.21a QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 1, 2, and 3 for mean germination time under saline-alkaline stress conditions.

4.21b QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 4, 6, and 12 for mean germination time under saline-alkaline stress conditions.

4.22a QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 1, 3, and 4 for vigour index under saline-alkaline stress conditions.

4.22b QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 5 and 6 for vigour index under saline-alkaline stress conditions.

4.23 QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 1, 2, 3, and 4 for root length (cm) under saline-alkaline stress conditions.

4.24 QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 1, 2, 5, and 6 for shoot length (cm) under saline-alkaline stress conditions.

4.25 QTLs positions on genetic linkage map of rice, based on the cross *Pak Basmati* × *Pokkali*, detected by simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) on chromosomes 1, 5, and 10 for dry biomass (grams) under saline-alkaline stress condition.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>µmol.m².s⁻¹</td>
<td>Micromole per meter square. per second</td>
</tr>
<tr>
<td>1N</td>
<td>One Normal</td>
</tr>
<tr>
<td>AFLP</td>
<td>Amplified Fragment Length Polymorphism</td>
</tr>
<tr>
<td>AFLPs</td>
<td>Amplified Fragment Length Polymorphisms</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulfate</td>
</tr>
<tr>
<td>BC</td>
<td>Backcross</td>
</tr>
<tr>
<td>BC₁F₂</td>
<td>First Backcross Generation</td>
</tr>
<tr>
<td>BC₁F₂</td>
<td>Second Backcross Generation after selfing</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>C</td>
<td>Codominant</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>Calcium ion</td>
</tr>
<tr>
<td>Chr</td>
<td>Chromosome</td>
</tr>
<tr>
<td>Chr No</td>
<td>Chromosome Number</td>
</tr>
<tr>
<td>CIM</td>
<td>Composite Interval Mapping</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>Chloride anion</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>cM</td>
<td>centiMorgan</td>
</tr>
<tr>
<td>CO₃²⁻</td>
<td>Carbonate ion</td>
</tr>
<tr>
<td>CTAB</td>
<td>Cetyl Trimethyl Ammonium Bromide</td>
</tr>
<tr>
<td>D</td>
<td>Dominant</td>
</tr>
<tr>
<td>DBM</td>
<td>Dry Bio Mass</td>
</tr>
<tr>
<td>df</td>
<td>Degree of Freedom</td>
</tr>
<tr>
<td>DH</td>
<td>Double Haploids</td>
</tr>
<tr>
<td>DH</td>
<td>Double haploid</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>DHLs</td>
<td>Double Haploid Lines</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>dS.m(^{-1})</td>
<td>deciSiemens per meter</td>
</tr>
<tr>
<td>EC</td>
<td>Electric Conductivity</td>
</tr>
<tr>
<td>EC(_e)</td>
<td>Electrical Conductivity</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>E-QTLs</td>
<td>Epistatic Quantitative Trait Loci</td>
</tr>
<tr>
<td>ESP</td>
<td>Exchangeable Sodium Percentage</td>
</tr>
<tr>
<td>F(_1)</td>
<td>First filial generation</td>
</tr>
<tr>
<td>F(_2)</td>
<td>Second filial generation</td>
</tr>
<tr>
<td>F(_{2:3})</td>
<td>Second filial generation advanced to third filial generation</td>
</tr>
<tr>
<td>F(_{2:4})</td>
<td>Second filial generation advanced to fourth filial generation</td>
</tr>
<tr>
<td>F(_3)</td>
<td>Third filial generation</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FGP</td>
<td>Final Germination Percentage</td>
</tr>
<tr>
<td>Fwd</td>
<td>Forward</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GC</td>
<td>Germination Capacity</td>
</tr>
<tr>
<td>GE</td>
<td>Germination Energy</td>
</tr>
<tr>
<td>GI</td>
<td>Germination Index</td>
</tr>
<tr>
<td>GV</td>
<td>Germination Value</td>
</tr>
<tr>
<td>GVe</td>
<td>Germination Velocity</td>
</tr>
<tr>
<td>GVI</td>
<td>Germination Vigour Index</td>
</tr>
<tr>
<td>ha</td>
<td>Hectare</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrogen Chloride</td>
</tr>
<tr>
<td>HCO(_3^-)</td>
<td>Bicarbonate ion</td>
</tr>
<tr>
<td>IM</td>
<td>Interval Mapping</td>
</tr>
<tr>
<td>IRRI</td>
<td>International Rice Research Institute</td>
</tr>
<tr>
<td>K(^+)</td>
<td>Potassium ion</td>
</tr>
<tr>
<td>kb</td>
<td>kilo base</td>
</tr>
</tbody>
</table>
LED - Light emitting diode
LOD - Logarithm of Odd
LRT - Likelihood Ratio Test
MapQTL - Mapping Quantitative Trait Loci
MAS - Marker Assisted Selection
Mg\(^{2+}\) - Magnesium ion
MgCl\(_2\) - Magnesium Chloride
mgkg\(^{-1}\) - milligram per kilogram
MGT - Mean Germination Time
MIM - Multiple Interval Mapping
min - Minute
mM - milliMolar
mmol - Millimolar
MPa - Mega Pascal
M-QTLs - Main effect Quantitative Trait Loci
Na\(^+\) - Sodium ion
NaCl - Sodium chloride
NaCl - Sodium Chloride
NaOCl - Sodium Hypochlorite
ngμl\(^{-1}\) - Nano gram per microliters
NO\(_3^-\) - Nitrate ion
OD - Optical Density
\(p\) - Significance Level
\(P_1\) - Parent 1 used in crossing
\(P_2\) - Parent 2 used in crossing
PAGE - Poly Acrylamide Gel Electrophoresis
PCR - Polymerase Chain Reaction
pH - Power of hydrogen
PIC - Polymorphism information content
PV - Peak Value
QTL - Quantitative Trait Loci
\(r\) - Pearson correlation
\(R^2\) - Phenotypic Variation
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev</td>
<td>Reverse</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction Fragment Length Polymorphism</td>
</tr>
<tr>
<td>RILs</td>
<td>Recombinant Inbred Lines</td>
</tr>
<tr>
<td>RL</td>
<td>Root Length</td>
</tr>
<tr>
<td>RM</td>
<td>Rice Marker</td>
</tr>
<tr>
<td>sec</td>
<td>Second</td>
</tr>
<tr>
<td>SG</td>
<td>Speed of Germination</td>
</tr>
<tr>
<td>SIM</td>
<td>Simple Interval Mapping</td>
</tr>
<tr>
<td>SL</td>
<td>Shoot Length</td>
</tr>
<tr>
<td>SNPs</td>
<td>Single Nucleotide Polymorphisms</td>
</tr>
<tr>
<td>SO$_4^{2-}$</td>
<td>Sulfate ion</td>
</tr>
<tr>
<td>SSRs</td>
<td>Simple Sequence Repeats</td>
</tr>
<tr>
<td>TBE</td>
<td>Tris Boric acid EDTA buffer</td>
</tr>
<tr>
<td>TE</td>
<td>Tris EDTA buffer</td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethlenediamine</td>
</tr>
<tr>
<td>Tris-HCl</td>
<td>Tris hydrochloride</td>
</tr>
<tr>
<td>V or v</td>
<td>Version</td>
</tr>
<tr>
<td>WinQTLCart</td>
<td>Windows Quantitative Trait Loci Cartographer</td>
</tr>
<tr>
<td>χ^2</td>
<td>Chi Square</td>
</tr>
<tr>
<td>μL</td>
<td>Microliters</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DNA quantification data for F<sub>2</sub> population of 129 individuals using Ikeda method</td>
<td>213</td>
</tr>
<tr>
<td>B</td>
<td>Polymorphic markers data for F<sub>2</sub> genotyping</td>
<td>217</td>
</tr>
<tr>
<td>C</td>
<td>F<sub>2</sub> and F<sub>3</sub> Experiment Layout</td>
<td>220</td>
</tr>
<tr>
<td>D</td>
<td>Passport DATA for the ANOVA for Parental Lines Selection</td>
<td>227</td>
</tr>
<tr>
<td>E</td>
<td>Glasshouse Pictures of plant breeding and growing: F<sub>1</sub> seeds and F<sub>2</sub> population</td>
<td>231</td>
</tr>
<tr>
<td>F</td>
<td>Germination and growth parameters used in this study along with their justification</td>
<td>234</td>
</tr>
<tr>
<td>G</td>
<td>List of Published (Journal and Conference) Papers</td>
<td>235</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Rice (Oryza sativa L.) is one of the most important cereal crops of the world. It is essential source of staple food for more than 2.7 billion people all around the globe, most of them living in developing countries (FAO, 2016). It is cultivated on one-tenth of the arable land of the planet earth. By the year 2025, a total increase of 21% would be needed to meet the food requirements compared to the needs in year 2000 (Bhowmik et al., 2007). Second only to wheat, rice production contributes to almost 20% of the total cereal crop production of the world (Acquaah, 2007). Rice is second biggest crop produced all over the world with a total of 740.95 million tons produced from 163.1 million hectares at an average of 4.54 tons of rice per hectare (FAO, 2010). In addition to its importance as one of the biggest sources of food, rice is rich in genetic diversity as there are thousands of varieties and accessions all over the world (Ammar et al., 2007). There are two main methods being practised for rice cultivation. Traditional transplanting system (TPR), an important plant establishment technique where pre-germinated seedlings are transferred to the fields (Farooq et al., 2007). The seedlings are provided ideal growth conditions before being transplanted. The second method is direct seeding of rice (DSR) which entails broadcasting the seeds directly through hands or machines (Farooq et al., 2011). Both these methods have their own pros and cons.

TPR requires labour and time, and it is economically expensive as well. Handling the pre-germinated seeds is difficult (Farooq et al., 2007). While DSR has a major drawback that seeds are directly exposed to abiotic stresses (Farooq et al.,
Cultivation areas are shrinking because of rapid urbanization and industrialization (Jiang and Li, 2016). Therefore, utilisation of less productive or saline-sodic marginal soils would be a suitable option to bring under cultivation by improving the crops tolerance to saline-alkalinity. Ever increasing population demands higher amounts of rice and other food crops. This can be achieved by producing high yielding varieties, by expanding the total area presently under cultivation or by following the latest management practices to increase the overall rice production. However increased population and natural disasters causing a direct threat to the food security (Gardi et al., 2015; Gardner, 1996; Nath et al., 2015) hence expanding the cultivated areas is becoming hard. There are variety of abiotic and biotic stresses affecting the food production adversely, in general and rice production in particular. Only in Asia these stresses cause a total of 23% of production decrease compared to its full potential (Hossain, 1997). Salinity is second biggest abiotic stress condition after drought, in rice cultivating areas. Thirty percent of total rice grown area all over the world is severely affected by high salinity levels. These levels adversely affect the normal growth of rice plants.

A total of 1.5×10^9 ha land area is cultivated all over the world out of which 23% area is saline and another 37% are sodic in nature (Shi and Wang, 2005). The cations present in the saline and sodic soils are Na^+, Ca^{2+}, Mg^{2+} and K^+ and anions Cl^-, SO_{4}^{2-}, HCO_{3}^-, CO_{3}^{2-} and NO_{3}^- are present. Studies have shown that alkali stress results mainly from certain levels of sodium bicarbonate and sodium carbonate (Shi and Yin, 1993). Quite a lot of literature is available on salt stress (Munns and Tester, 2008) while a little attention was paid to the saline-alkaline stress. Saline-sodic soils occur within the boundaries of 75 countries and the area under saline-alkalinity is gradually increasing (Qadir et al., 2007). Sodic and saline-sodic soils are grouped together because of sharing same characteristics and the management practices (Qadir et al., 2007). Rice seeds are affected by these abiotic stresses when broadcasted directly through DSR. It was observed that alkalinity was more damaging than salinity at germination stage (Guo et al., 2010). Plants accumulate more Na^+ at the expense of K^+. They also start accumulating soluble osmolytes which are compounds affecting osmosis. Severe inhibition in wheat root and shoot under saline-alkaline conditions has also been reported (Guo et al., 2010). Grain
security is becoming a major concern and urbanization is one of the factors behind food crisis. Effective land use planning is critical for food security but soil erosion, land degradation and climatic changes are causing a rapid increase in marginal lands (Kang et al., 2013). Scherr, (1999) has emphasized on the reduced annual yields and role of soil quality in overall crop production and also emphasized on the need to improve the soil quality. We have marginal soils i.e. the soils with problems but we do not have the varieties that could grow there because we do not have much knowledge or data about tolerance to abiotic stress. Because of these factors, the crops are becoming low yielding. Already cultivated area is shrinking because of growing salinity, sodicity and drought (Valipour, 2014).

A prudent measure to address the salinity and sodicity issue is to develop tolerant varieties. The recent developments in the field of quantitative genetics have greatly influenced the study of complex quantitative traits and this has made it possible to dissect the complex quantitative traits or polygenes for certain traits to Mandelian factors. Identification of loci controlling genetic variations in segregating populations has become possible with the use of molecular markers and QTL analysis technology. Characterisation of these loci according to their position on genetic map, their mode of action, phenotypic and pleiotropic effects and epistatic interactions with other QTLs have also become possible (Dufey et al., 2015; Ogawa et al., 2016; Zhao et al., 2016). Several studies have been conducted for salinity tolerance in rice at different stages (Heenan et al., 1988b; Kumar et al., 2015; Rahman et al., 2016), however, 37% of the total cultivated land is sodic as well, and it is urgently needed to see and dissect combined effects of salinity and sodicity. Rice is considered as the moderately salinity sensitive cereal crop plant which can tolerate saline levels of 4-8 dS.m\(^{-1}\) (Sairam and Tyagi, 2004).

The genetic variation that a rice plant possesses makes it suitable candidate for quantitative trait studies. This variation helps not only in understanding the mechanisms behind biotic and abiotic stress studies but also to develop new varieties with improved abiotic and biotic stress tolerance. There have been efforts to develop salt tolerant rice varieties (Flowers, 2004; Khan et al., 2016; Lutts et al., 1995). Genetic variability for salinity tolerance has been reported among a large number of
economically important crops including rice (Flowers, 2004). This genetic information about salt tolerance is essential for developing salt tolerant rice cultivars. This information can later be used in marker assisted selection (MAS) and plant breeding studies to exploit the identified genomic regions known as quantitative trait loci (QTLs).

Saline soils have high pH levels (alkaline) and affect the uptake of nutrients and limit the germination. Studies to improve tolerance to saline-alkaline stress in rice at germination stage has not been conducted yet. QTL identification is another way to speed up breeding tolerant rice varieties through marker assisted selection. Present study focused on genetic dissection of saline-alkaline tolerance mechanisms.

Farmers follow two methods for rice cultivation; transplantation and direct seeding of rice (Singh, 2013). Transplantation is done both manually and mechanically where seedlings are provided with the ideal growth conditions and are transferred to the field when seedlings are 3 to 4 weeks old (Farooq et al., 2007) depending on type of rice varieties. Therefore, it is considered expensive because of labour (Coelli et al., 2002) and water use (Bhushan et al., 2007). Reduced tillage and direct seeding on flat land and raised beds can result in significant water savings (Gupta et al., 2003). Thus, direct seeding is an efficient and economical rice planting option. Plants grown by direct seeding get mature 7-10 days earlier than those transplanted (Farooq et al., 2011).

1.2 Problem Statement

Rapid urbanization and industrialization resulted in labour shortage for the rice transplantation from nurseries to the irrigated paddy fields. It motivated the farmers to shift from transplantation method to direct seeding of rice. Direct seeding of rice is also suitable for the farmers because they can obtain maximum plant density and productivity with lesser labours and low economic inputs. Direct seeded rice reduces the crop water requirements, soil organic-matter turnover, nutrient
relations, carbon sequestrating, weed biota and greenhouse-gas emissions (Farooq et al., 2011). Therefore, direct seeding is more popular among farming community. Majority of the saline soils are alkaline in nature (Vega-Jarquin et al., 2003). When direct seeding method method is used where the soils are affected with salinity or alkalinity the seed is exposed directly to the stresses. These abiotic stresses inhibit the seed germination adversely affecting the crop establishment (Vinocur and Altman, 2005). There are two ways to address this problem. One of them is to do the chemical amendments to improve saline-alkaline soil which is not durable and often not environmental friendly (Hai et al., 2010). The second way is to develop the plant saline-alkaline tolerance genetically at germination stage.

Rice is reported sensitive to salinity at different growth stages (Al-Karaki, 2001). The genetic studies revealed the quantitative trait loci (QTLs) linked with tolerance at these growth stages (Koyama et al., 2001; Cheng et al., 2008). However, direct seeding is a new rice culture method and the studies regarding tolerance to saline-alkaline stress at germination stage in rice has not been conducted yet. Present study as shown in Figure 1.1 focused on identification of QTLs linked with tolerance to saline-alkaline stress using $F_{2:3}$ segregating population.

Figure 1.1 Illustration of problem statement
1.3 Research Objectives

i. To develop a mapping population to dissect the genetic background for tolerance to saline-alkaline stress at germination stage in *Indica* rice.

ii. To investigate the tolerance potential in F₃ progenies against the stress limits optimized in parental lines.

iii. To construct a microsatellite molecular linkage map based on F₂ microsatellite data using MapMaker.

iv. To identify the microsatellite loci associated with seed germination tolerance to saline-alkalinity based on molecular linkage map and F₃ progenies stress tolerance data using QTL cartographer.

1.4 Research Scope

A preliminary study was conducted to select tolerant and sensitive rice varieties under saline-alkaline conditions to develop mapping population. *Pokkali* and *Pak Basmati* were selected as tolerant and sensitive varieties, respectively. These varieties were crossed and F₂ population was developed after confirming the pedigree of F₁ seedlings. F₂ (129) population was used to get marker data by using 84 microsatellite markers. Marker data was used to construct molecular linkage map by MapMaker. F₃ progenies (129) were phenotyped under an optimised stress level. Potential QTLs were identified linked to germination traits under saline-alkaline conditions by three methods simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval mapping (MIM) using QTL cartographer.
1.5 **Significance of Research**

This study was carried out in order to identify the QTLs responsible for tolerance to saline-alkaline stress at germination stage in rice. The QTLs identified in this study would be used for molecular screening of breeding population i.e. marker assisted breeding. Therefore, it would speed up the rice breeding program to induce tolerance against saline-alkaline stress to develop new rice varieties for such affected soils where direct seeding rice culture is dominated.
REFERENCES

Liang, J. L., Qu, Y. P., Yang, C. G., Ma, X. D., Cao, G. L., Zhao, Z. W., Zhang, S. Y., Zhang, T., and Han, L. Z. (2015). Identification of QTLs associated with salt or alkaline tolerance at the seedling stage in rice under salt or alkaline stress. *Euphytica*, 201(3), 441-452.

