ALUMINIUM (III) BIOSORPTION MAGNETOTACTIC
ALCALIGENES SP. SUM 123 ISOLATED FROM
SKUDAI RIVER JOHOR

LAILA MUFTAH ALI ZARGOUN

UNIVERSITI TEKNOLOGI MALAYSIA
ALUMINIUM (III) BIOSORPTION MAGNETOTACTIC
ALCALIGENES SP. SUM 123 ISOLATED FROM
SKUDAI RIVER JOHOR

LAILA MUFTAH ALI ZARGOUN

A thesis submitted in fulfilment of the
requirements for the award of the degree of
Doctor of Philosophy (Bioscience)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

JUNE 2017
This thesis work is dedicated to my husband, Abdelhafid, who has been a constant source of support and encouragement during the challenges of graduate school and life. I am truly thankful for having you in my life. This work is also dedicated to my parents, Muftah and Fatima, who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve.
ACKNOWLEDGEMENT

First and foremost, all praise be to Allah the Almighty, thanks to Him for giving me the opportunity and will to finish this research and to complete this dissertation. I would like to express my sincere appreciation and gratitude to my research supervisor, Dr. Nor Azimah Mohd Zain and co-supervisor Dr. Shafinaz Shahir for her knowledge, guidance, supervision, critics, evaluation, encouragement, and for supporting me throughout the undertaking of this dissertation.

This thesis is the culmination of my journey of Ph.D which was just like climbing a high peak step by step accompanied with encouragement, hardship, trust, and frustration. When I found myself at top experiencing the feeling of fulfillment, I realized though only my name appears on the cover of this dissertation, a great many people including my family members, well-wishers, my friends, colleagues and various institutions have contributed to accomplish this huge task. A thousand thanks also to all of the staff at faculty of Biosciences and Medical Engineering for helping me during this research, particularly, the lab assistants.

I owe thanks to a very special person, my husband, Abdelhafid for his continued and unfailing love, support and understanding during my pursuit of Ph.D degree that made the completion of thesis possible. You were always around at times I thought that it is impossible to continue, you helped me to keep things in perspective. I greatly value his contribution and deeply appreciate his belief in me. I appreciate my sons, for abiding my ignorance and the patience they showed during my thesis working. Words would never say how grateful I am to you. I consider myself the luckiest in the world to have such a lovely and caring family, standing beside me with their love and unconditional support. My heartfelt regard goes to my father, mother, and mother in-law, sister, and brothers for their love and moral support.
The increasing application of aluminium metals in various industrial processes have raised significant concerns and health risks for humans and its environments. In its ionic form, aluminium poses higher threats to human health due to its ability to cause cellular impairment. As a remediation tool, biosorption by magnetotactic bacteria (MTB) is considered in this study for the removal of this metallic pollutant due to its ability to adsorb heavy metals. The isolation of iron oxide-producing *Alcaligenes* sp. strain SUM 123 for aluminium(III) biosorption was conducted from samples collected from Skudai River. Biochemical tests and 16S rRNA characteristic was employed for the identification of the isolated magnetotactic bacterium (MTB). The characterization of this MTB was determined using a High Resolution Transmission Electron Microscope (HRTEM), X-Ray Diffraction (XRD), Scanning Transmission Electron Microscope and Energy Dispersive x-ray Spectroscopy (STEM-EDX) and the Fourier Transform Infrared Spectroscopy (FTIR). Observation by HRTEM shows the lattice spacing of iron oxide at 0.24 nm and 0.31 nm while the XRD analysis depicts the presence of crystalline planes of iron oxide at (311) and (220). The magnetosomes observed via STEM-EDX analysis confirms the presence of iron oxide and the composition of P-granules containing different heavy metals in the isolated *Alcaligenes* sp. strain SUM 123. The appearance of Fe-O groups of magnetosomes were observed via FTIR analysis. In addition, the decomposition of these iron oxide components was at 270-500 °C according to thermogravimetric analysis (TGA). The MTB growth and magnetosomes formation were studied at different pH (5-8), temperature (20-40 °C), and ferric quinate concentration (20-120 µM). It was observed that magnetosomes formation is significantly influenced by pH change and relatively unaffected by variations in temperature and ferric quinate concentrations. Aluminium(III) adsorption by the isolated *Alcaligenes* sp. strain SUM 123 was examined at pH 2-9, temperature 10-40 °C, initial Al(III) concentration 80-500 mg.L⁻¹, contact time 10-60 mins and adsorbent dosage 2-12 g.L⁻¹. The optimal adsorption of Al(III) by SUM 123 was observed at pH 5, temperature 25 °C, 80 mg.L⁻¹ initial Al(III) concentration, 60 mins contact time and an adsorbent dosage of 10 g.L⁻¹. The biosorption process of Al(III) by SUM 123 was best fitted to the Langmuir isotherm model, while the pseudo-second order was found to be the best describe the experimental data. According to FTIR analysis, it was found that the hydroxyl, amide, and amine groups of the magnetosomes were involved in the biosorption process. It is therefore established from this study that the iron oxide-producing *Alcaligenes* sp. strain SUM 123 is a potentially effective and economical remediation tool for aluminium(III) removal in industrial applications.
ABSTRAK

Penggunaan logam aluminium dalam pelbagai industri telah menimbulkan kebimbangan dan risiko kesihatan yang tinggi terhadap manusia dan persekitarannya. Logam aluminium dalam bentuk ion membawa ancaman yang lebih besar kepada kesihatan manusia kerana keupayaan untuk menyebabkan kemerdatan sel. Sebagai alat rawatan, bioerapan menggunakan bakteria magnetotaktik (MTB) digunakan dalam kajian ini untuk penghapusan pencemar metalik disebabkan oleh kebolehan penjerapan logam beratnya. Pengasingan ferum oksida yang menghasilkan Alcaligenes sp. strain SUM 123 bagi bioerapan aluminium(III) dijalankan melalui sampel yang dikutip daripada Sungai Skudai. Ujian biokimia dan protokol analisis gen 16S rRNA digunakan untuk mengenal pasti bakteria magnetotaktik terpencil (MTB). Pencirian MTB ditentukan dengan menggunakan Mikroskop Pancaran Elektron Beresolusi Tinggi (HRTEM), Pembelauan Sinar-X (XRD), Mikroskop Pengimbas Transmisi Elektron dan Spektroskopi Sinar-X Tenaga Serakan (STEM-EDX) dan Spektroskopi Inframerah Transformasi Fourier (FTIR). Kajian HRTEM menunjukkan ruang kekisi ferum oksida pada 0.24 nm dan 0.31 nm manakala analisis XRD menggambarkan kehadiran satah berhablur ferum oksidapada (311) dan (220). Tinjauan ke atas magnetosom melalui analisis STEM-EDX mengesahkan kehadiran ferum oksida dan komposisi granul-P yang mengandungi pelbagai jenis logam berat dalam Alcaligenes sp strain SUM 123. Kemunculan kumpulan magnetosom Fe-O dicerap melalui analisis FTIR. Berdasarkan Analisis Termogravimetrik (TGA) penguraian ferum oksida adalah pada 270-500 ºC. Pertumbuhan MTB dan pembentukan magnetosom telah dikaji pada pelbagai julat pH (5-8), suhu (20-40 ºC), dan kepekatan ferik quinate (20-120 µM). Hasil tinjauan menunjukkan bahawa pembentukan magnetosom dipengaruhi oleh perubahan pH dan secara relatifnya tidak terjejas oleh perubahan suhu dan kepekatan ferik quinate. Penjerapan aluminium(III) oleh Alcaligenes sp. strain SUM 123 dikaji pada pH 2-9, suhu 10-40 ºC, kepekanawal Al(III) 80-500 mg.L⁻¹, masa sentuhan 60-60 minit dan dos penjerap 2-12 g.L⁻¹. Penjerapan optimum Al(III) oleh SUM 123 yang ditinjau adalah pada pH 5, suhu 25 ºC, kepekanawal Al(III) 80 mg.L⁻¹, masa sentuhan 60 minit dan dos penjerap 10 g.L⁻¹. Proses bioerapan Al(III) dengan SUM 123 paling menepati model isoterma Langmuir, manakala model aturan pseudo-kedua didapati paling baik menggambarkan data eksperimen. Analisis FTIR menunjukkan penglibatan kumpulan hidroksil, amida dan amina daripada magnetosom dalam proses bioerapan. Hasil daripada kajian ini menunjukkan Alcaligenes sp. strain SUM 123 yang menghasilkan ferum oksida merupakan alat rawatan yang berkesan dan ekonomikal untuk penyingkiran aluminium(III) dalam aplikasi industri.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>Error! Bookmark not defined.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xxiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiv</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Introduction 1
1.2 Problem Statement 5
1.3 Research Objectives 6
1.4 Scope of the Study 7
1.5 Significance of the Study 8

2 LITERATURE REVIEW 9
2.1 Magnetotactic Bacteria 9
2.2 Ecology of Magnetotactic Bacteria 12
 2.2.1 Freshwater Habitats 12
 2.2.2 Marine Habitats 13
2.3	Isolation and Cultivation	14
2.4	The Detection of Magnetotactic Bacteria (MTB)	17
2.5	Bacterial Magnetosomes	18
2.6	Magnetosomes Formation Mechanism	21
2.7	Properties of Magnetosome Crystals	25
2.7.1	Features of Magnetosome Crystals	25
2.7.2	Magnetosome Size	28
2.8	Influence of Extrinsic Factors on Magnetosome Characteristics	29
2.8.1	Effect of iron Concentration	30
2.8.2	Effect of Chemical Impurities	31
2.8.3	Effect of Nitrogen and Carbon Source	32
2.9	Applications of MTB and Magnetosomes	33
2.9.1	Medicine and Genetic Engineering	34
2.9.2	Material Science	37
2.9.3	Geology and Geochemistry	38
2.9.4	Water and Waste Treatment	38
2.9.5	Nano and Micro-robotics	39
2.10	Toxicity of Metals	40
2.10.1	Aluminium Toxicity	41
2.11	Microbial Mediated Metal Recovery	43
2.11.1	Bioaccumulation	43
2.11.2	Biosorption	44
2.12	Desorption	45
2.13	Biosorption Parameters	46
2.13.1	pH	46
2.13.2	Temperature	47
2.13.3	Biosorbent Dosages	47
2.13.4	Adsorbate Concentration	48
2.14	Equilibrium Isotherms	48
2.14.1	Langmuir Isotherm	49
2.14.2	Freundlich Isotherm	50
2.15	Kinetic Modelling	51
2.15.1	Pseudo Kinetic Equation	51

2.15.1.1 Pseudo-First Order 51
2.15.1.2 Pseudo-Second Order 52

2.16 Biomass Separation 53

3 RESEARCH METHODOLOGY 56

3.1 Chemicals 56
3.2 Experimental Methods 57

3.2.1 Sampling and Collection of Magnetotactic Bacteria 57
3.2.2 Enrichment and Isolation of Magnetotactic Bacteria 58
3.2.3 Magnetotactic Bacteria Observation using Light Microscope 59
3.2.4 Magnetotactic Bacteria Observation using Transmission Electron Microscope (TEM) 60
3.2.5 Growth Media (Selective Growth Culture Medium) 61
3.2.6 Colony Formation and Purification 63
3.2.7 The Growth of Magnetotactic Bacterium under Different Oxygen Concentration 63
3.2.8 Identification of Magnetotactic Bacteria 64
 3.2.8.1 Gram Staining 64
 3.2.8.2 Physical and Biochemical Experiments 64
 3.2.8.3 16S rRNA Gene Analysis 65
3.2.9 Sediment and Water Sampling Metals Analysis 70
3.2.10 Characterization of Magnetotactic Bacteria Properties 71
 3.2.10.1 Crystal Structure of Magnetosomes in MTB by X-ray Diffraction (XRD) 71
 3.2.10.2 Thermogravimetric Analysis (TGA) 72
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.10.3</td>
<td>Determination Functional Group</td>
<td>72</td>
</tr>
<tr>
<td>3.2.10.4</td>
<td>Transmission Electron Microscope (TEM)</td>
<td>72</td>
</tr>
<tr>
<td>3.2.10.5</td>
<td>Scanning Transmission Electron Microscope-Energy Dispersive X-ray Analysis (STEM-EDX)</td>
<td>73</td>
</tr>
<tr>
<td>3.2.10.6</td>
<td>Domain Analyses by Isolated MTB</td>
<td>73</td>
</tr>
<tr>
<td>3.2.11</td>
<td>Influence of Different Factors on MTB Growth and Magnetosome Formation</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>3.2.11.1 Effect of pH</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>3.2.11.2 Effect of Temperature</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>3.2.11.3 Effect of Ferric Quinate</td>
<td>75</td>
</tr>
<tr>
<td>3.2.12</td>
<td>Observation of Shapes and Size of Magnetosomes using Electron Microscope after Studying the Effect of Different Parameters</td>
<td>75</td>
</tr>
<tr>
<td>3.2.13</td>
<td>Tolerance of Isolated MTB Towards Aluminium Concentration</td>
<td>76</td>
</tr>
<tr>
<td>3.3</td>
<td>Glassware</td>
<td>76</td>
</tr>
<tr>
<td>3.4</td>
<td>Aluminium (III) Stock Solution</td>
<td>77</td>
</tr>
<tr>
<td>3.5</td>
<td>Preparation of MTB Biomass for Biosorption</td>
<td>77</td>
</tr>
<tr>
<td>3.6</td>
<td>Batch Biosorption Experiments</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>3.6.1 Influence of pH Aluminium Biosorption</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>3.6.2 Influence of Contact Time on Aluminium Biosorption</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>3.6.3 Influence of Temperature on Aluminium Biosorption</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>3.6.4 Influence of Biomass Concentration on Aluminium Biosorption</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>3.6.5 Initial Al (III) Concentration Study</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Aluminium Biosorption</td>
<td>81</td>
</tr>
<tr>
<td>3.7</td>
<td>Biosorption Isotherm Models</td>
<td>81</td>
</tr>
<tr>
<td>3.8</td>
<td>Kinetics Study of Al (III) Biosorption</td>
<td>81</td>
</tr>
</tbody>
</table>
3.9 Desorption and Recovery of Al (III) Ion 82
3.10 Analytical Procedures 83
 3.10.1 Aluminium Concentration Determination by Atomic Absorption Spectrophotometer (AAS) 83
3.11 Biosorbent Characterization 83
 3.11.1 Morphological Properties and Elemental Composition Analyses of Biosorbent 83
 3.11.2 Functional Group of Biosorbent 84
 3.11.3 Thermogravimetric Analyses 84

4 RESULTS AND DISCUSSION 87

4.1 Sampling of Magnetotactic Bacteria 87
4.2 Isolation of Magnetotactic Bacteria 88
4.3 Observation of Magnetotactic Bacteria 90
 4.3.1 Light Microscopy Images 90
 4.3.2 Transmission Electron Microscopy (TEM) Images 92
4.4 Colony Formation and Purification 93
4.5 Identification and Characterization of SUM 123 MTB 94
 4.5.1 Microscopic Analysis of Gram Stain 94
 4.5.2 Physical and Biochemical Features of SUM 123 95
 4.5.3 Analysis of 16S rRNA 96
4.6 *Alcaligenes* sp SUM 123 MTB 100
4.7 Characterization of Magnetotactic Bacteria Properties 102
 4.7.1 Structural and Morphological Properties of MTB 102
 4.7.2 Scanning Transmission Electron Microscope (STEM) Images 103
 4.7.3 Scanning Transmission Electron Microscope-Energy-dispersive X-ray
Spectroscopy (STEM-EDX) Analysis for Intracellular Composition of MTB 105

4.7.4 Structural Properties of Magnetosomes of MTB 107

4.7.4.1 X-ray Diffraction (XRD) Analysis 107

4.7.4.2 High Resolution Transmission Electron Microscope (HRTEM) Analysis 108

4.7.4.3 FTIR Spectra of Magnetosomes of MTB 109

4.7.5 Thermogravimetric Analysis (TGA) of MTB 110

4.7.6 Domain Structure Observation by MTB 111

4.8 Water Quality Parameters Analysis 113

4.9 Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-ray Analysis for Metals in Soil Sample 113

4.10 Atomic Absorption Spectroscopy Analysis of Metals in Sediments and Water 116

4.11 Concentration Optimization of Growth Medium 119

4.11.1 Optimization of Sodium Acetate as Carbon Source 120

4.11.2 Optimization of Sodium Nitrate as a Nitrogen Source 122

4.11.3 Optimization of Potassium Dihydrogen Phosphorus as a Phosphorus Source 123

4.12 Growth Curve of MTB 124

4.13 Effect of Different Conditions on Growth SUM 123

4.13.1 Effect of pH 126

4.13.2 Effect of Temperature 129

4.13.3 Effect of Ferric Quinate Concentration 132

4.14 The Tolerance of Alcaligenes sp SUM 123 in the presence
of Aluminium 135
4.15 Aluminium Biosorption Performance Evaluation 137
 4.15.1 Effect of pH 137
 4.15.2 Effect of Contact Time 139
 4.15.3 Effect of Temperature 141
 4.15.4 Effect of MTB Cells Concentration 145
 4.15.5 Effect of Aluminium Concentration 146
4.16 Biosorption Isotherm Models 148
 4.16.1 Langmuir Model 149
 4.16.2 Freundlich Model 151
4.17 Kinetic Study 152
4.18 Characterization of Alcaligenes sp SUM 123 Biosorbent 155
 4.18.1 FTIR Analysis 155
 4.18.2 FESEM-EDX Analysis 159
 4.18.3 Thermogravimetric Analyses (TGA) 161
4.19 Desorption of Al (III) from Alcaligenes sp SUM 123 Adsorbent 163
4.20 Summary 164

5 CONCLUSION AND FUTURE WORK 166
 5.1 Conclusion 166
 5.2 Future Work 168

REFERENCES 170
Appendices A-F 199-209
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>List of Cultured Mesophilic Magnetotactic Bacterial Strains</td>
<td>15</td>
</tr>
<tr>
<td>3.1</td>
<td>The composition of growth medium</td>
<td>61</td>
</tr>
<tr>
<td>3.2</td>
<td>The components in the PCR reaction for isolated bacteria gene amplification</td>
<td>67</td>
</tr>
<tr>
<td>3.3</td>
<td>Steps in PCR cycle</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td>Biochemical and physical tests results of strain SUM 123</td>
<td>95</td>
</tr>
<tr>
<td>4.2</td>
<td>The result of BLASTn showed the similarity between bacterium SUM 123 and other species</td>
<td>98</td>
</tr>
<tr>
<td>4.3</td>
<td>The water quality result of water sample from Skudai river</td>
<td>113</td>
</tr>
<tr>
<td>4.4</td>
<td>EDX analysis of Skudai river sediment</td>
<td>116</td>
</tr>
<tr>
<td>4.5</td>
<td>Metal contents of sediment and water in Skudai River detected by AAS</td>
<td>117</td>
</tr>
<tr>
<td>4.6</td>
<td>Types of industries at Skudai river system (Thanapalasingam, 2005)</td>
<td>119</td>
</tr>
<tr>
<td>4.7</td>
<td>Thermodynamic data for SUM 123 biosorbent.</td>
<td>143</td>
</tr>
<tr>
<td>4.8</td>
<td>Langmiur constant of strain SUM 123</td>
<td>149</td>
</tr>
<tr>
<td>4.9</td>
<td>Values of R_L for Alcaligenes sp SUM 123 biomass</td>
<td>150</td>
</tr>
<tr>
<td>4.10</td>
<td>Freundlich constant for biosorption of Al (III) on MTB</td>
<td>152</td>
</tr>
<tr>
<td>4.11</td>
<td>Kinetic parameters obtained using pseudo-first-order and pseudo-second-order model with 100 mg/l of Al (III) metal at biomass concentration of 10 g/l.</td>
<td>154</td>
</tr>
</tbody>
</table>
FTIR band assignments with positions for the functional groups present on the biomass SUM 123 before and after Al (III) adsorption
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Transmission Electron Micrographs of Magnetotactic Bacteria showing diverse morphological MTB forms including large rods (a, b, c), vibrios (d), spirilla (e, f), and coccoids (g, h, i) at bar equivalence of 0.5 mm (Schüler, 1999).</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>The chain of magnetosome in MTB cell (Zhang et al., 2011)</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Movement patterns of NS and SS bacteria (Frankel et al., 2006)</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Different crystal habits of MTBs (Bazylinski and Frankel, 2004)</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>Theoretical Model for Magnetospirillum Biomineralization (Lei et al., 2012)</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Theoretical model proposed by Jogler and Schüler (2006) for magnetite biomineralization in cultured strains of Magnetospirillum (Lei et al., 2010)</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Hypothetical Model for Magnetite Biomineralization (Lei et al., 2010)</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>The Morphology and Arrangement of Magnetosomes.</td>
<td>27</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic diagram of magnetic separator. (1) Inlet; (2) liquid distributor; (3) fixed frame; (4) outlet; (5) plexiglass container; (6) nickel wires (Song et al., 2008)</td>
<td>54</td>
</tr>
<tr>
<td>3.1</td>
<td>Diagram of magnetotactic bacteria collection using a simple magnet bar</td>
<td>58</td>
</tr>
</tbody>
</table>
3.2 Procedures of magnetic collection and isolation of MTB cells from sample using a plastic tube 59
3.3 Observation MTB using light microscope by hanging drop method 60
3.4 Schematic diagram summarizing the overall experimental approach 86
4.1 The map of Skudai River and the sampling location 88
4.2 The alignment of MTB towards the south pole of magnet (a) the swimming of strain SUM 123 to magnetic field, (b) the incapacity of non-magnetotactic bacterium (E.coli) motility towards the south pole of magnet 91
4.3 TEM images of MTB showing diverse morphological MTB forms including different shapes and sizes of MSs. The shapes of bacteria appeared rod with rounded MSs (a), while (b) the rod bacterium included rectangular shape of MSs. (c-d) showed the rod shapes of bacteria including big sizes of MSs 93
4.4 The bacterium stained in red color as Gram-negative type (at magnification of 40x) 95
4.5 (a) Gel electrophoresis of purified DNA; where Lane 1 indicates the DNA Ladder (1 kb) and Lane 2, 3 displays the control include the primer, and chromosomal DNA from SUM 123, respectively. (b) Gel electrophoresis of PCR product (16S rRNA gene) for bacterium SUM 123 detected under UV light. 97
4.6 Evolutionary relationships of Alcaligenes sp SUM 123 99
4.7 (a) a single Flagellum on Alcaligenes sp SUM 123 MTB observed under light microscope with 100x magnification. (b) a single flagellum bacteria cell as control. 101
4.8 (a) STEM image of strain SUM 123, the rod shape of bacterium was appeared with visible magnetosomes inside. The phosphorus granules (p-granules) also displayed in bacterium with large size marked as big
yellow circles with red arrow. (b) STEM images of non-magnetotactic bacteria that appeared without magnetosomes or P-granules inside the bacterium cell

4.9 Illustrate the EDX analysis on P-granules that contained different elements

4.10 XRD pattern showing the crystalline structures of MSs in *Alcaligenes sp* SUM 123

4.11 High-resolution transmission electron microscopic image of (a) single MSs, (b and c) lattice-resolved HRTEM of magnetite magnetosome

4.12 FTIR spectra showing the presence of magnetosomes (Fe₃O₄) vibrational modes in MTB

4.13 TGA curves at heating rate R = 10 °C/min

4.14 Bacteria domain pattern visualization under light microscope after stain with Gram stain to allow the clear domain configuration. (a) domain configuration of suspensions MTB before purification showed different direction toward the magnetic field, (b) domain configuration of SUM 123 strain showed arranged lines that resulting of pushing of MTB in magnetic field lines, (c,d) showed similar results of domain configuration by MTB when response to magnetic field (Futschik et al., 1989)

4.15 Structure of sediment collected from Skudai River

4.16 The result of EDX in soil sample.

4.17 The growth of *Alcaligenes sp* SUM at different concentration of sodium acetate in growth medium kept at 35 °C and pH 7

4.18 The growth of strain SUM 123 in growth medium containing different concentration of sodium nitrate as a nitrogen source kept at 35 °C, pH 7 without shaking in microaerobic condition

4.19 The growth of strain SUM 123 in medium containing different concentration of potassium dihydrogen sulphate
(KH₂PO₄) as a phosphors source kept at 35 ºC, pH 7 in microaerobic

4.20 Growth profile of bacterium Alcaligenes sp SUM 123 in optimum medium 124

4.21 The effect of different pH of growth medium on the on the growth of SUM 123 strain, 35 ºC, microaerobic condition without shaking 125

4.22 TEM images of magnetite crystals synthesized by Alcaligenes sp SUM 123 cells grown at 35 ºC at different pH values: (a) 5.0; (b) 6.0; (c) 7.0; (d) 8.0. The best magnetosomes formation sizes were observed with pH 6.0 and pH 7.0 127

4.23 The effect of different temperature on the growth of strain SUM 123 with pH 7 at microaerobic condition 128

4.24 TEM images of magnetite crystals synthesized by Alcaligenes sp SUM 123 cells grown at pH 7.0 at different temperatures: (a) 25 ºC; (b) 30 ºC; (c) 35 ºC; (d) 40 ºC 130

4.25 The results of Alcaligenes sp strain SUM 123 growth at different concentration of Ferric quinate (FeQ), 35 ºC and pH 7 in microaerobic condition 133

4.26 TEM images of magnetite crystals synthesized by Alcaligenes sp SUM 123 cells grown at pH 7.0, 35 ºC and at different ferric quinate (FeQ) concentrations 134

4.27 The results of growth tolerance of Alcaligenes sp strain SUM 123 at different concentration of Al quinate in growth medium 136

4.28 Effect of pH on Al (III) biosorption onto SUM 123 biosorbents. 139

4.29 Contact time of Al (III) ions biosorption capacity of MTB in aqueous solution with pH 5, MTB 10.0 g.L⁻¹ (wet biomass), C₀= 80mg.L⁻¹, 160 rpm, 25 ºC. 140
Temperature dependent Al (III) ions biosorption capacity of MTB in aqueous solution with pH 5, MTB 10.0 g.L\(^{-1}\) (wet biomass), \(C_0=80\text{mg.L}^{-1}\), 160 rpm, and 1 hour.

The equation plot for SUM 123 a biosorbents.

The effect of biomass concentration (strain SUM 123).

The effect of Aluminium concentration.

Adsorption isotherm for *Alcaligenes sp* SUM 123 MT bacterium

Adsorption isotherm for *Alcaligenes sp* SUM 123 MT bacterium using Frundlich model

Kinetic model for pseudo-first-order biosorption process of Al (III) onto *Alcaligenes sp* SUM 123

Kinetic model for pseudo-second-order biosorption process of Al (III) onto *Alcaligenes sp* SUM 123

The SUM 123 biomass before Al (III) biosorption of 100 mg/L of Al (III) onto *Alcaligenes sp* SUM 123

The SUM 123 biomass after Al (III) biosorption of 100 mg/l of Al (III) onto *Alcaligenes sp* SUM 123

FESEM images of *Alcaligenes sp* SUM 123 (a) before, and (b) after Al (III) ion biosorption

EDX spectra of *Alcaligenes sp* SUM 123: (a) the EDX spectra before Al (III) ion biosorption, while (b) illustrate the loaded *Alcaligenes sp* SUM 123 with Al (III) ion

TGA curves of SUM 123 (a) before Al (III) ion loaded, (b) after Al (III) biosorption onto MTB

Al (III) recovery from biomass *Alcaligenes sp* SUM 123 with different desorbed. The working volume was 50 mL agitated at 160 rpm
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>µm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>AAS</td>
<td>Atomic Absorption Spectroscopy</td>
</tr>
<tr>
<td>BCM</td>
<td>Biological-Controlled Mineralization</td>
</tr>
<tr>
<td>CRM</td>
<td>Capillary method</td>
</tr>
<tr>
<td>CSD</td>
<td>Crystal Size Distribution</td>
</tr>
<tr>
<td>DDW</td>
<td>Distilled deionized water</td>
</tr>
<tr>
<td>DIC</td>
<td>Differential Interference Contrast</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Environment</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy X-ray diffraction</td>
</tr>
<tr>
<td>EMA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug and Administration</td>
</tr>
<tr>
<td>FESEM-EDX</td>
<td>Field Emission Scanning Electron Microscopy-Energy X-ray Diffraction</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>GM</td>
<td>Growth medium</td>
</tr>
<tr>
<td>HRTEM</td>
<td>High Resolution Transmission Electron Microscope</td>
</tr>
<tr>
<td>IM</td>
<td>Isolation medium</td>
</tr>
<tr>
<td>LM</td>
<td>Light microscopy</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>mbar</td>
<td>millibar</td>
</tr>
<tr>
<td>MMP</td>
<td>Multicelled magnetic prokaryote</td>
</tr>
<tr>
<td>MSs</td>
<td>Magnetosomes</td>
</tr>
<tr>
<td>MTB</td>
<td>Magnetotactic bacteria</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center of Biotechnology Information</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>nmol</td>
<td>Nanomole</td>
</tr>
<tr>
<td>NS</td>
<td>North Seeking</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>OTAZ</td>
<td>Oxic-anoxic transition zones</td>
</tr>
<tr>
<td>ppm</td>
<td>part per million</td>
</tr>
<tr>
<td>RLS</td>
<td>rate limiting step</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
</tr>
<tr>
<td>SD</td>
<td>Single-magnetic Domain</td>
</tr>
<tr>
<td>SP</td>
<td>Superparamagnetic</td>
</tr>
<tr>
<td>SS</td>
<td>South Seeking</td>
</tr>
<tr>
<td>STEM</td>
<td>Scanning Transmission Electron Microscope</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric Analysis</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlCl₃,6H₂O</td>
<td>Aluminium chloride</td>
</tr>
<tr>
<td>Cₑ</td>
<td>Equilibrium aluminium concentration (ppm)</td>
</tr>
<tr>
<td>Cₒ</td>
<td>Initial aluminium concentration (ppm)</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>Magnetite</td>
</tr>
<tr>
<td>Fe₃S₄</td>
<td>Greigite</td>
</tr>
<tr>
<td>FeS</td>
<td>Mackinawite</td>
</tr>
<tr>
<td>K₁</td>
<td>Equilibrium rate constant of pseudo-first order kinetic model (1/min)</td>
</tr>
<tr>
<td>K₂</td>
<td>Equilibrium rate constant of pseudo-second order kinetic model (g/mg.min)</td>
</tr>
<tr>
<td>Kₐ</td>
<td>Dissociation constant</td>
</tr>
<tr>
<td>KₐF</td>
<td>Freundlich constant (dm³/mg)</td>
</tr>
<tr>
<td>n</td>
<td>Intensity of adsorption</td>
</tr>
<tr>
<td>qₑ</td>
<td>Amount adsorbed at efficiency condition (mg/g)</td>
</tr>
<tr>
<td>qₜ</td>
<td>Adsorption capacity at time t (mg/g)</td>
</tr>
<tr>
<td>R²</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>RL</td>
<td>Langmuir parameter</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Biochemical Tests</td>
<td>199</td>
</tr>
<tr>
<td>A1</td>
<td>Lactose Utilization Test (MacConkey Agar)</td>
<td>199</td>
</tr>
<tr>
<td>A2</td>
<td>Starch Test</td>
<td>199</td>
</tr>
<tr>
<td>A3</td>
<td>Catalase Test</td>
<td>199</td>
</tr>
<tr>
<td>A4</td>
<td>Indole Test</td>
<td>200</td>
</tr>
<tr>
<td>A5</td>
<td>Oxidase Test</td>
<td>200</td>
</tr>
<tr>
<td>A6</td>
<td>Urease Test</td>
<td>201</td>
</tr>
<tr>
<td>A7</td>
<td>Citrate Test</td>
<td>201</td>
</tr>
<tr>
<td>A8</td>
<td>Motility Test</td>
<td>202</td>
</tr>
<tr>
<td>B</td>
<td>Interim national water quality standards for Malaysia</td>
<td>203</td>
</tr>
<tr>
<td>C</td>
<td>Calibration Data</td>
<td>204</td>
</tr>
<tr>
<td>C1</td>
<td>Data for Calibration curve for the determination of Al (III) ion with AAS</td>
<td>204</td>
</tr>
<tr>
<td>C2</td>
<td>Data of Al (III) biosorption efficiency: effect of pH. Experimental conditions: temperature 25 °C; aluminium concentration, C = 80 ppm; contact time, 1 h; biosorbent dosage concentration (SUM 123) 10 g. L⁻¹; and agitation speed 160 rpm.</td>
<td>204</td>
</tr>
<tr>
<td>C3</td>
<td>Data of Al (III) biosorption efficiency: effect of temperatures. Experimental conditions: pH=5; aluminium concentration, C = 80 ppm; contact time, 1 h; biosorbent dosage concentration (SUM 123) 10 g. L⁻¹; and agitation speed 160 rpm.</td>
<td>205</td>
</tr>
</tbody>
</table>
Data for thermodynamic parameters. Experimental conditions: pH=5; aluminium concentration, C = 80 ppm; contact time, 1 h; biosorbent dosage concentration, 10 g/L, 50 ml; and agitation speed, 160 rpm.

Data of Al (III) biosorption efficiency effect of contact time. Experimental condition pH 5, aluminium concentration C_o 80 ppm; biosorbent dosage concentration (SUM 123) 10 g. L^{-1}; and agitation speed 160 rpm, and temperature 25 C.

Data of Al (III) biosorption efficiency: effect of biomass concentration (SUM 123). Experimental conditions: pH 5, temperature 25 ºC; aluminium concentration, C_o = 80 ppm; contact time, 1 h; and agitation speed 160 rpm.

Data of Al (III) biosorption efficiency: effect of Aluminium concentration. Experimental conditions: pH 5, temperature 25 ºC; SUM 123 concentration, 10 mg/L; contact time, 1 h; and agitation speed 160 rpm.

Data for Al (III) biosorption isotherm modelling

Data for pseudo-first and second-order kinetic models for Al (III) biosorption. Experimental conditions: pH=5; contact time, 1 h; biosorbent dosage concentration, 10 g/L, 50 ml; and agitation speed, 160 rpm.

List of Publications
CHAPTER 1

INTRODUCTION

1.1 Introduction

There are many occasions when there is a direct overlap between geology and biology. Perhaps one of the best examples of this is magnetotactic bacteria (MTBs). They appear to be a distinctive Gram-negative prokaryote that have the ability to synthesize small crystals of magnetite inside their cells. They do this by transporting iron from the surrounding environment into their body. They use a number of proteins to biomineralize the iron into nano-sized magnets of magnetite (Fe$_3$O$_4$), greigite (Fe$_3$S$_4$) or combination of both (Bazylinski et al., 1993a, 1995; Lower and Bazylinski, 2013). These aquatic microorganisms use the magnets to allow them to orient themselves in the Earth’s magnetic field. They use flagella as a source of motility and they are sensitive to the changes in oxygen concentration (Bazylinski and Frankel, 2004).

MTB vary in many aspects but they are united by the presence of magnetosomes. Most discovered MTB are affiliated with *alphaproteobacteria*, but MTB belonging to the *Gammaproteobacteria*, the *Deltaproteobacteria*, and *Nitrospirae* have also been described (Amann et al., 2007; Lefèvre and Bazylinski, 2013). The variations in cell morphology are represented by coccoid, rod-shaped,
spirilla, vibrio and multicellular microorganisms (Keim et al., 2004; Schuler, 2002).

MTBs can be found worldwide in the sediment from various aquatic environments including brackish and fresh water, rivers, lakes, and hot springs (Blackmore, 1975; Moench and Konetzka, 1978; Spring et al., 1994; Rulík and Chaudhary, 2014; Ghazvini et al., 2014; Lin et al., 2009; Oestreicher et al., 2012; Lefèvre et al., 2010b). Bacterial magnetite contributes to the magnetic signal of the sediments and is widely distributed mainly in natural habitats (Oestreicher et al., 2012) such as marine region (Zhu et al., 2010), pond ecosystem (Simmons and Edwards, 2007; Lin et al., 2013), iron ore soil (Liu et al., 2006) and estuarine region (Hergt et al., 2005).

The magnetosome is the defining feature of magnetotactic bacteria. It is denoted as an intracellular, lipid membrane-bound, magnetic iron-containing inorganic crystal (Frankel and Bazylinski, 2006; Lefèvre and Bazylinski, 2013). Two types of iron-containing crystals are known to be produced by magnetotactic bacteria: an iron oxide, magnetite (Fe_3O_4), and an iron sulfide, greigite (Fe_3S_4). Only a unique collection of marine magnetotactic multicellular prokaryotes (MMP), of the Deltaproteobacteria class, are reported to biomineralize both types of minerals (Lefèvre et al., 2011). The crystal morphologies of magnetosomes in MTB include cuboidal (cubo-octahedral), elongated prismatic (quasi-rectangular), arrowhead-shaped (bullet-shaped) and unusually large elongated prismatic crystals (Bazylinski and Frankel, 2003; Lins et al., 2005; Yan et al., 2012). It is shown that each MTB species have their own crystal habits that are different from a biotically produced magnetite particles. The morphology of biologically synthesized magnetic particles is strain specific. The size is almost equal within one strain; however, sizes can range from 35 to 120 nm for different MTB (Bazylinski and Frankel, 2004).

Magnetosomes (MSs) of MTB composed of various sizes and types of amorphous minerals granules such as calcium, oxygen, and phosphorus and to a lesser extent aluminium, iron, and zinc (Balkwill et al., 1980; Ulysses and Marcos,
Some granules containing polyphosphates represent a new category of MSs (Ulysses and Marcos, 1999). Because of their involvement with various metals ions, MTB probably play a significant role in geochemical cycling (Simmons et al., 2007). It is common for MTB to contain internal granules, especially phosphorus (Lins and Farina, 1999), and sulphur (Keim and Farina, 2005). Researchers revealed that MTB can be used to recover precious metals, which is apparently a major solution for industrial processing concerns (Gao et al., 2007). MTB can adsorb heavy metal ions more than other bacteria and it can easily be extracted from an aqueous medium after biosorption (Qu et al., 2014). The presence of magnetosomes helps to separate MTB from their environment using permanent magnet or electromagnetic field.

Globally, toxic metal ions mediated pollution is continuously growing. Industries such as mining, smelting, and metal plating cause heavy metals contamination in water (Vijayaraghavan and Yun, 2008). Heavy metals accumulation in the food chain cause tremendous ecological imbalances and is detrimental unless inhibited. Thus, there is a need to explore the cheap and environmental friendly process which can act as a shield to these threats to increase the standard of living and to make world a better place to live (Magdalena and Małgorzata, 2014). Countries having strong environmental laws to limit the use of contaminant being wasted in the environment (without being treated under consideration) are urged to developed on site or in plant facilities to treat the effluents to make the pollutants under the acceptable concentration (Banat et al., 1996; Vijayaraghavan and Yun, 2008).

Aluminium (Al) is a type of toxic heavy metal. Its exposure to human results in the increase rates of neurological disorder including Alzheimer, Parkinson, and Skeletal diseases (osteomalacia) (Akesson et al., 2014; Stephen, 2010). Often, several industries such as food (canning, and packing), kitchen utensils (Tuzen and Soylak, 2008; Yokel, 2016), transportation (Tuzen and Soylak, 2008) and chemicals
(catalyst, pigment, tanning agent and as a mordant) predominantly use this heavy metal. It is also used to make abrasives, cement, explosives, and ink (Tuzen and Soylak, 2008). Despite its toxicity, it is used in pharmaceutical industry to create antacids and anti-diarrhoea medicines. This predominant usage of Aluminium in industries makes it abundant in the natural environment. Therefore, Scientists and engineers are using several methods to reduce the concentration of metals in the industrial wastewater; it includes agglomeration, neutralization, complexation, ion-exchange resin, separation and elution (Meshram et al., 2014).

Therefore, the development in reducing the metals in environment finds a new method, which is called biosorption. This method has received great attention in the recent years due to its low cost and high capacities. The mechanism of adsorption by biomass can be described as a passive immobilization of metal ions. It is essentially based on physicochemical interaction between functional groups of the cell wall and metal. Likewise, the cell wall of bacteria generally consists of proteins, lipids and polysaccharides which contain functional groups, such as amino groups, phosphate, hydroxyl and carboxylate so these functional groups offer binding sites for metals (Won et al., 2013).

In this study, a new variant of MTB (Alcaligenes sp SUM 123) was isolated from Skudai River water as potential resource to remove Al (III) from aqueous solution. The influence of several external factors such as temperature, pH, Al (III) concentration, and biomass dosage on Aluminium ion biosorption efficacy of such MTB was scrutinized. Earlier studies are mainly focused on the isolation as well as cultivation of MTB and MSs (Schüler and Heyen, 2003; Ghazvini et al., 2014). However their biosorption effectiveness towards heavy metals ions is seldom reported (Wu et al., 2008).
1.2 Problem Statement

Currently, the chemical explosion from rapid industrialization and expansion of modern agriculture area is the main concern of the environment and human health. Toxic Aluminium metal accumulated and degenerations the environment (Denizli et al., 2003). Methods such as chemical precipitation, chemical oxidation or reduction, membrane and evaporation technology, electrochemical treatment, and filtration which are introduced to remove the accumulation of heavy metals are expensive, inaccurate and inefficient (Gunatilake, 2015). To overcome such limitations, an appropriate biological method need to be developed.

Magnetotactic bacteria (MTBs) are ubiquitous in diverse terrestrial and aquatic ecosystem. Malaysia is a tropical country surrounded by oceans, rivers, and lakes and can be a great source of MTB. Thus, it is worth to explore the sediment of Skudai River in Johor, Malaysia as potential resource for MTB isolation. The isolated MTB can be a useful tools in different area of study such as heavy metals biosorption.

Although much attention has been focused on the mechanisms of biominalization in MTB (Bazylinski et al., 1995; Taylor and Barry, 2004; Rahn-Lee and Komeili, 2013), lack information available on MTB growth and magnetosomes formation under different environmental conditions such as pH, temperature, and iron concentration, since these conditions will affect the magnetosome formation and the performance of the MTB in any area of study. Thus, determining the survival and growth conditions of these MTB together with the formation of MSs in a broad range of environmental parameters is a challenging task.

Pervious studies used MTB to remove different types of metals such as Cr (V) ion from wastewater (Qu et al., 2014). In addition, Au (III), Cu (III) ions adsorbed from aqueous solution using MTB (Song et al., 2007). Therefore, the
The present thesis exploits a new variant of MTB (*Alcaligenes sp* SUM 123) isolated from Skudai River as potential resource to remove Al (III) ions metal from aqueous solution with various range of factors such as temperature, pH, Al (III) concentration, and biomass dosages. The magnetotactic bacteria have the ability to adsorb high concentration of heavy metals from aqueous solution in a short time compared to other microorganisms. Besides, the presences of magnetosomes in MTBs will help in extracting them from the treatment system just by using a magnet after the biosorption processes.

1.3 Research Objectives

Based on the problem statement the following objectives are set:

i. To isolate MTB from Skudai River sediment (Johor Bahru, Malaysia) and identify them using 16S rRNA sequencing analysis and biochemical method.

ii. To characterize the structure and properties of MTB and magnetosomes.

iii. To determine the influence of temperature, pH, ferric quinate concentration as iron source on the growth of MTB and magnetosomes formation.

iv. To evaluate the Al (III) ions biosorption efficiency of newly isolated MTB from aqueous solution under varying temperature, pH, biomass concentration and Al concentration.

v. To assess biosorption potency via isotherm (Langmuir and Freundlich model) and kinetics study.
1.4 Scope of the Study

Based on the objectives the research scopes are limited to the following aspects:

i. The MTB was isolated from Skudai River water sediment and was identified using 16S rRNA gene analysis and biochemical methods such as catalase, nitrate, indole, motility, MacConkey, starch, lipase, ureas, and citrate tests.

ii. Characterization of the isolated bacterium as magnetotactic bacteria was conducted using Scanning Transmission Electron Microscope-Energy x-ray diffraction (STEM-EDX) that showed the appearance of magnetosomes inside bacterium and P-granules which is a common trait of MTB. While, X-Ray Diffraction (XRD) detected the crystalline structure of magnetite (Fe₃O₄) in MTB, and High Resolution Transmission Electron Microscope (HRTEM) also confirmed the lattice space of magnetite. Infrared Fourier Transform Spectroscopy (FTIR) revealed the band of Fe-O at 585 cm⁻¹ wavenumber. In addition, the domain structure by magnetotactic bacterium detected the magnetism of magnetite as trait for magnetotactic bacterium.

iii. The effects of pH at (5, 6, 7, 8), temperature at (25, 30, 35, 40 ºC), and ferric quinate as iron source (20-120 µM) on the MTB growth and magnetosomes formation was determined.

iv. The biosorption of Al (III) from aqueous solution by isolated MTB was studied under varying parameters such as pH (2-9), contact time (5-70 minutes), temperature (10-40 ºC), biosorbent dosage (2-12 g/L), and initial Al concentration (100-500 mg/L).

v. The behavior and mechanism of biosorption study conducted via isotherm (Langmuir and Freundlich model), kinetics models (Pseudo-first order and Pseudo-second order), and thermodynamic equations.
1.5 Significance of the Study

The isolation of these MTB is expected to bring new knowledge in terms of their growth, morphology, formation of MSs under various external conditions. Upon understanding their structures, growth mechanisms, and magnetic properties it would be possible to implement them for various potential applications in medicine, biotechnology, and bioremediation. For the first time, this work would attempt to isolate new MTB species from Skudai River mud (Malaysia) as new biological source useful for Al (III) biosorption. Thus, major environmental concern regarding the pollution of water by toxic heavy metals and its consequences in ecological imbalances would be mitigated. The isolation of MTB from polluted soil will aid in the use such MTB for removing heavy metals from wastewater and soil. The use of biomass has received a lot attention nowadays due to it has low cost and high adsorption capacity. Furthermore, the MTB used in this study has been screened for its ability to resist high concentration of Al (III). Thus, it can be an economical adsorbent after we got the motivation to remove high concentration of Aluminum. The outcome of the research can be used to prove the existence of specific microorganism can survives in a polluted environment.
REFERENCES

Uncultivated Member of the Deep-Branching Nitrospira phylum.

Mohamed, I. (2011). Water Quality Assessment of Sg. Skudai. Final Year Project Report, Degree of Civil Engineering, Faculty of Civil Engineering, Universiti Teknologi Malaysia.

