CONTROLLING TUNNEL INDUCED GROUND SURFACE AND PILE MOVEMENTS USING MICROPILES

HOUMAN SOHAEI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

AUGUST 2017
I dedicated this thesis to my beloved father and mother for their support and encouragement
ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Prof. Dr. Aminaton binti Marto for her guidance, advice, constructive feedback, and critical review of this thesis. Her support, time and help are the motivations for me to strive harder in my academic journey. I sincerely thanks Universiti Teknologi Malaysia for giving me the opportunity to do my research in a supportive academic environment.

My fellow friends should also be recognized for their supports in particular Dr. Mohsen Hajijassani and Dr. Eshagh Namazi. I also would like to thank all researchers in the Soft Soil Engineering Research Group (SSRG) for their friendship and critical feedbacks on my research. My sincere appreciation also extends to all colleagues and friends who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space.

Last but not least, I would like to acknowledge the emotional and financial supports given by my family members. Their continued support and encouragement are the motivation for me to complete my study in due time. I appreciate it very much and will cherish it forever.
ABSTRACT

Tunnelling in densely populated areas is generally associated with undesirable ground movement and subsequent damage to adjacent buildings. Hence, the main concern of designers are to accurately predict ground movements and propose mitigation measures in severe cases. Nowadays, different techniques are used as a mitigation measure to reduce the impact of tunnel construction on ground settlement. Nevertheless, implementation of some of these methods is a source of unpredictable damage or undesirable effects such as the effect of installing micropiles between existing pile building foundation and tunnel which have yet to be understood. Hence, this research aims to establish a micropiles method as a mean to minimise ground surface settlement, and the settlement and lateral movement of the existing pile due to tunnelling through cohesionless soils. The study was carried out by means of laboratory physical model tests and numerical simulation using ABAQUS software. Three different relative densities of sand; 30%, 50%, and 75% were investigated while the overburden (cover to diameter) ratios used were 1, 2, and 3. A row of 3.7 mm diameter micropiles, d_{mp} with two different lengths (11 cm and 14.5 cm) was embedded in between the tunnel (5 cm diameter, D) and the existing pile at four different locations. In model tests, settlement, bending moment and axial force of the existing pile were monitored accordingly. Generally, the results showed that increasing the value of relative density of sand reduces the ground movements. However, shallow tunnelling in loose sand produces remarkable movement on the ground surface. With the usage of micropiles, the ground surface settlement was reduced to nearly 40%. The micropiles also reduced over 85% and 75% of the piles lateral and axial movements respectively. A good compatibility was found between the experimental and numerical approaches which illustrates that the presented numerical simulation is a reliable model to predict tunnel-pile-soil and tunnel-pile-soil-micropiles interactions. Within the limitation of the study, it is recommended that the most suitable length and location of micropiles to use is 14.5 cm or about 40d_{mp} (closest to the tunnel crown) and located at 0.5D (in the middle between tunnel and pile), based on the reduction observed on the vertical and lateral movements of pile as well as the bending moment and axial force.
ABSTRAK

Penerowongan di kawasan penduduk yang padat secara umumnya dikaitkan dengan pergerakan tanah yang tidak diinginkan dan kerosakan bangunan berdekatan. Oleh itu, kebimbangan utama perekbentuk adalah untuk meramal pergerakan tanah yang tepat dan mengusulkan langkah-langkah mitigasi pada kes yang teruk. Pada masa ini teknik yang berbeza digunakan sebagai langkah mitigasi untuk mengurangkan kesan pembinaan terowong pada enapan tanah. Walau bagaimanapun, pelaksanaan beberapa kaedah ini adalah punca kerosakan yang tidak dapat diramalkan atau kesan yang tidak diingini seperti kesan memasang cerucuk mikro antara asas cerucuk bangunan sedia ada dan terowong yang masih belum difahami. Oleh itu, kajian ini bertujuan untuk mewujudkan kaedah cerucuk mikro sebagai kaedah meminimumkan enapan permukaan tanah dan enapan serta pergerakan sisi cerucuk sedia ada akibat pembinaan terowong melalui tanah tak jeleket. Kajian ini dilakukan melalui ujian model fizikal makmal dan simulasi numerikal menggunakan perisian ABAQUS. Tiga kepadatan relatif pasir; 30%, 50%, dan 75% telah dikaji sementara nisbah tanah atas (penutup dan diameter) yang digunakan adalah 1, 2, dan 3. Sederet cerucuk mikro berdiameter, d_{mp}, 3.7 mm dengan dua kepanjangan yang berbeza (11 cm dan 14.5 cm) telah dipasang antara terowong (diameter, D = 5 cm) dan cerucuk sedia ada di empat lokasi berbeza. Dalam ujian model, enapan, momen lentur dan daya paksi cerucuk sedia ada telah dipantau dengan sewajarnya. Secara umumnya hasil kajian menunjukkan bahwa peningkatan nilai kepadatan relatif pasir mengurangkan pergerakan tanah. Namun, penerowongan cetek dalam pasir longgar menghasilkan pergerakan yang luar biasa di permukaan tanah. Dengan penggunaan cerucuk mikro, enapan permukaan tanah dikurangkan kepada hampir 40%. Cerucuk mikro juga berkurang masing-masing lebih dari 85% dan 75% dari pergerakan sisi dan enapan cerucuk. Keserasian yang baik telah ditunjukkan antara pendekatan eksperimental dan numerikal yang menggambarkan bahawa simulasi numerikal yang dibuat oleh model tersebut dapat digunakan bagi meramal interaksi terowong-cerucuk-tanah dan terowong-cerucuk-tanah-cerucuk mikro. Dalam keterbatasan kajian, disyorkan bahawa panjang dan lokasi paling sesuai bagi cerucuk mikro adalah 14.5 cm atau lebih kurang 40d_{mp} (paling dekat dengan atas terowong) dan terletak 0.5D (tengah-tengah di antara terowong dan cerucuk) iaitu berdasarkan pengurangan pada pergerakan tegak dan sisi cerucuk selain dari momen lentur dan daya paksi.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxiv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Background of the Study 1
1.2 Problem Statement 4
1.3 Aim and Objectives 4
1.4 Scope and Limitation of the Study 5
1.5 Significance of the Study 6
1.6 Hypothesis 6
1.7 Thesis Outline 7

2 LITERATURE REVIEW 9
2.1 Introduction 9
2.2 Ground Surface Settlement Prediction 9
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Empirical Prediction of Ground Deformation</td>
<td>10</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Transverse Settlement</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1.1</td>
<td>Volume Loss</td>
<td>14</td>
</tr>
<tr>
<td>2.3.1.2</td>
<td>Inflection Point</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Longitudinal Settlement</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Analytical Prediction of the Ground Deformations</td>
<td>22</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Virtual Image Technique</td>
<td>22</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Complex Variable Method</td>
<td>29</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Airy Function Technique</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>Analytical Prediction of the Pile Deformations</td>
<td>35</td>
</tr>
<tr>
<td>2.6</td>
<td>Estimation of Pile Bearing Capacity in Granular soil</td>
<td>36</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Static Formula Using Soil Mechanics Principles</td>
<td>37</td>
</tr>
<tr>
<td>2.6.1.1</td>
<td>Skin Friction Capacity</td>
<td>38</td>
</tr>
<tr>
<td>2.6.1.2</td>
<td>End Bearing Capacity</td>
<td>40</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Estimating of Failure Criteria from Pile Load Test</td>
<td>41</td>
</tr>
<tr>
<td>2.7</td>
<td>Numerical Prediction of the Ground Deformation</td>
<td>42</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Two Dimensional Analyses</td>
<td>43</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Three Dimensional Analyses</td>
<td>46</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Numerical Simulation Using ABAQUS Software</td>
<td>50</td>
</tr>
<tr>
<td>2.8</td>
<td>Physical Modelling Applications in Tunnelling Aspects</td>
<td>53</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Physical Modelling of Tunnelling in Greenfield Condition</td>
<td>55</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Physical Modelling of Tunnel-Piles Interaction</td>
<td>60</td>
</tr>
<tr>
<td>2.8.2.1</td>
<td>Tunnelling with the existence of single pile</td>
<td>61</td>
</tr>
<tr>
<td>2.8.2.2</td>
<td>Tunnelling with the existence of group of pile</td>
<td>64</td>
</tr>
<tr>
<td>2.9</td>
<td>Interaction between Tunnel and Existing Piles</td>
<td>67</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Pile Movements due to Tunnelling</td>
<td>67</td>
</tr>
</tbody>
</table>
2.9.1.1 Pile Head Settlement Induced by Tunnelling 68
2.9.1.2 Effect of the Tunnelling on Pile Bearing Capacity 71
2.9.1.3 Pile Lateral Movement Induced by Tunnelling 74
2.9.2 Distribution of Load and Bending Moments along the Pile 75
2.9.2.1 Axial force distribution 75
2.9.2.2 Bending Moments along the Pile Induced by Tunnelling 79
2.10 Controlling Ground and Pile Movements Due to Tunnelling 82
2.11 Field Observation of Tunnel-Soil-Pile Interactions 84
2.12 Micropiles as Means of Improving the Soil Strength 85
2.13 Summary 88

3 RESEARCH METHODOLOGY AND MATERIAL PROPERTIES 90
3.1 Introduction 90
3.2 Research Framework 92
3.3 Selection of Material for Soil 92
3.4 Selection of Soil Improvement Method 93
3.5 Case Study of Tunnelling 94
3.6 Laboratory Physical Model Tests 96
3.6.1 Scaling Factor 96
3.6.2 Basic and Engineering Soil Properties 98
3.6.2.1 Particle Size Distribution 98
3.6.2.2 Specific Gravity 100
3.6.2.3 Relative Density 101
3.6.2.4 Shear Strength 102
3.6.3 Model Box Design 103
3.6.4 Tunnel Excavation Model 104
3.6.5 Models of Pile and Micropiles, and Instrumentation 105
3.6.6 Physical Model Test Programme 109
3.6.7 Physical Model Tests Procedure 110
3.6.8 Sand Deposit Preparation for Model Test 112
3.6.9 Tunnelling in Greenfield Condition 113
3.6.10 Micropiles to Control Tunnel Induced Ground Movement 114
3.6.11 Micropiles to Control Tunnel Induced Pile Movements 117
 3.6.11.1 Pile Load Displacement Test 117
 3.6.11.2 Pile Behaviour Induced by Tunnelling 118
 3.6.11.3 Pile Behaviour Induced by Tunnelling with the Existence of Micropiles 119
3.7 3D Numerical Analysis 121
 3.7.1 Properties of Materials Used in Numerical Simulation 122
 3.7.2 Boundary Condition and Mesh 124
 3.7.3 Modelling the Pile and Micropiles 126
 3.7.4 Tunnel Construction in Numerical Simulation 126

4 RESULTS AND DISCUSSION 129
 4.1 Introduction 129
 4.2 Results and Analyses of Physical Modelling 130
 4.2.1 Greenfield Condition 130
 4.2.1.1 Longitudinal Ground Surface Settlement 130
 4.2.1.2 Transverse Ground Surface Settlement 132
 4.2.1.3 Maximum Ground Surface Settlement 134
4.2.1.4 Inflection Points 135
4.2.1.5 Effect of Overburden on Lost Ground Ratio 137

4.2.2 Using Micropiles to Reduce Ground Surface Settlement 139
4.2.2.1 Longitudinal Ground Surface Settlement 139
4.2.2.2 Transverse Ground Surface Settlement 141
4.2.2.3 Maximum Ground Surface Settlement 143

4.2.3 Micropiles to Control Tunnel Induced Pile Movements 144
4.2.3.1 Ultimate bearing capacity of the pile 144
4.2.3.2 Ground and pile displacements induced by tunnelling 146
4.2.3.3 Effect of Micropiles in Controlling the Pile Capacity 152
4.2.3.3 Pile Lateral Movement 153
4.2.3.4 Pile Bending Moment 156
4.2.3.5 Axial Force 159

4.2.4 Numerical Simulation Results 161
4.2.4.1 Greenfield Condition 162
4.2.4.2 Pile Settlement Induced by Tunnelling 164

5 CONCLUSION AND RECOMMENDATION 167
5.1 Introduction 167
5.2 Conclusion 167
5.3 Contributions of Research 170
5.4 Recommendation for Future Works 171

REFERENCES 172
Appendices A-C 190-199
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Relationship between volume loss, V_L and ground condition</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>(Ahmed and Iskander, 2011)</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Researchers that used ABAQUS in tunnelling simulation</td>
<td>52</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary review of some 1g physical modelling on tunnelling research</td>
<td>54</td>
</tr>
<tr>
<td>2.4</td>
<td>Laboratory physical model tests performed by some researchers on tunnel-pile interaction</td>
<td>61</td>
</tr>
<tr>
<td>2.5</td>
<td>Grout to Ground Bond for Different Rock and Soil Types</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>(Armour, 2000).</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Scaling factor from prototype to model</td>
<td>97</td>
</tr>
<tr>
<td>3.2</td>
<td>Reduction scale from prototype to model</td>
<td>97</td>
</tr>
<tr>
<td>3.3</td>
<td>Basic and engineering properties tests on sand</td>
<td>98</td>
</tr>
<tr>
<td>3.4</td>
<td>Summary of particle size distribution test results</td>
<td>100</td>
</tr>
<tr>
<td>3.5</td>
<td>Summary of specific gravity test</td>
<td>101</td>
</tr>
<tr>
<td>3.6</td>
<td>Physical properties of the sand sample</td>
<td>102</td>
</tr>
<tr>
<td>3.7</td>
<td>Sand properties from direct shear test</td>
<td>103</td>
</tr>
<tr>
<td>3.8</td>
<td>List of instrumentation used in physical model test</td>
<td>107</td>
</tr>
<tr>
<td>3.9</td>
<td>Test programme in greenfield condition (G series)</td>
<td>109</td>
</tr>
<tr>
<td>3.10</td>
<td>Test programme with micropiles in controlling tunnel (C/D=3) induced ground movement in 50% relative density of sand (M series)</td>
<td>110</td>
</tr>
<tr>
<td>3.11</td>
<td>Test programme on pile behaviour induced by tunnelling (C/D=3) in 50% relative density of sand with and without micropiles (P-T-M series)</td>
<td>110</td>
</tr>
<tr>
<td>3.12</td>
<td>Physical properties of sand with 50% relative density</td>
<td>123</td>
</tr>
<tr>
<td>4.1</td>
<td>Inflection points from back analysis using Peck (1969) Equation</td>
<td>133</td>
</tr>
<tr>
<td>4.2</td>
<td>Empirical coefficient of settlement trough parameter, K</td>
<td>137</td>
</tr>
<tr>
<td>4.3</td>
<td>Maximum pile and ground displacement induced by tunnelling</td>
<td>147</td>
</tr>
<tr>
<td>4.4</td>
<td>Pile ALPC induced by tunnel excavation</td>
<td>152</td>
</tr>
<tr>
<td>4.5</td>
<td>Maximum pile lateral movement induced by tunnelling</td>
<td>154</td>
</tr>
<tr>
<td>4.6</td>
<td>Measured and predicted transverse surface settlements in greenfield condition</td>
<td>164</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>2.1</td>
<td>Tunnel geometry induced ground settlement (after Attewell et al., 1986)</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Influence lines (boundary of influence zones) proposed from previous studies induced by tunnelling</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>A typical transverse settlement trough (after Peck, 1969)</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Trough volume of surface settlement relationship with volume loss (after Standing and Burland, 2006)</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Relationship between width of settlement trough, i and dimensionless depth of tunnel, H/D, for different ground conditions (Peck, 1969)</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Typical longitudinal settlement trough (after Attewell and Woodman, 1982)</td>
<td>21</td>
</tr>
<tr>
<td>2.7</td>
<td>The virtual image analysis steps (Sagaseta, 1987)</td>
<td>23</td>
</tr>
<tr>
<td>2.8</td>
<td>Subsidence model incorporates the combined effects of ground loss and ovalization (Gonzales and Sagasel, 2001)</td>
<td>24</td>
</tr>
<tr>
<td>2.9</td>
<td>(a) Ground loss and ovalization induced by tunnel (b) singularity and its image (Verruijt and Booker, 1996)</td>
<td>25</td>
</tr>
<tr>
<td>2.10</td>
<td>Definition of the gap parameter (Rowe and Kack, 1983)</td>
<td>26</td>
</tr>
<tr>
<td>2.11</td>
<td>The ground loss simulation (Lee et al., 1992)</td>
<td>27</td>
</tr>
<tr>
<td>2.12</td>
<td>Non-uniform soil displacements around deforming tunnel boundary (Loganathan and Poulos, 1998)</td>
<td>28</td>
</tr>
<tr>
<td>2.13</td>
<td>Half-plane with hole (Strack and Verruijt, 2002)</td>
<td>30</td>
</tr>
<tr>
<td>2.14</td>
<td>Shallow tunnel representations in Airy Function Technique (Chou and Bobet, 2002)</td>
<td>31</td>
</tr>
<tr>
<td>2.15</td>
<td>Ground deformation pattern around the tunnel (Park, 2005)</td>
<td>32</td>
</tr>
</tbody>
</table>
2.16 The distribution of stresses around deep and shallow circular tunnels, (Park, 2004) 33
2.17 Boundary conditions of the soil movements around the tunnels (Park, 2004) 34
2.18 Pattern of the soil movements around the tunnel illustrated by Pinto and Whittle (2006) 35
2.19 Pile-tunnel interaction analytical solution (Marshall and Haji, 2015) 36
2.20 Unit frictional resistances for piles in sand (Das, 2007) 39
2.21 Values of N_q and ϕ relationship (Meyerhof, 1976) 40
2.22 Failure surface at the pile tip (after Janbu, 1976) 41
2.23 Tunnelling-induced ground surface settlements wider in FE analysis (Stallebrass et al., 1997) 44
2.24 Ground surface settlement trough from 2D and 3D FE analyses, and field observation (Dasari et al., 1996) 45
2.25 Longitudinal settlement troughs developed in 3D FE analysis (Vermeer et al., 2002) 47
2.26 Longitudinal settlement troughs developed by 3D FE analysis (Möller et al., 2003) 47
2.27 Comparison of transverse settlement troughs between field data, 2D and 3D analyses in different stages (Franzius et al., 2005) 48
2.28 Different K_0 values affects to transverse settlement troughs for 2D and 3D analyses (Franzius et al., 2005) 49
2.29 Longitudinal settlement profiles for different Lexc (Tang et al., 2000) 51
2.30 Tunnel modelling using transparent sand (Ahmed and Iskander, 2011) 56
2.31 Direction of ground movements (Ahmed and Iskander, 2011) 56
2.32 Test set-up for physical model test using transparent sand (Sun and Liu, 2014) 57
2.33 Internal influenced zone in different depth excavated (Sun and Liu, 2014) 58
2.34 EPB shield model developed for laboratory physical model test (He et al., 2012) 58
2.35 Schematic diagram of a typical plane strain centrifuge twin-tunnel model (Divall et al., 2012)
2.36 Elevation view of centrifuge model tests on tunnel-pile interaction study (Ng et al., 2013)
2.37 Model tunnels and model pile in centrifuge model test (Ng et al., 2013)
2.38 Model test set up for tunnel-pile interaction study in centrifuge model test (Lee and Chiang, 2007)
2.39 Elevation view of centrifuge model tests on tunnel-piles interaction study (Ng et al., 2013)
2.40 Tunnel and pile group models in centrifuge model test (Ng et al., 2014)
2.41 Steel casing, threaded rod and inner surface of lining with strain gauge locations (Meguid and Mattar, 2009)
2.42 Maximum pile settlement induced by twin tunnel (Ng et al., 2013)
2.43 Settlement of pile group induced by twin tunnel (Ng et al., 2014)
2.44 Zones of influence induced by tunnelling with the respect of pile toe location (Selemetas et al., 2005)
2.45 Pile failure mechanisms induced by tunnelling (Cheng, 2003)
2.46 Load settlement relationship of pile with and without tunnelling (Ng et al., 2013)
2.47 Axial force along the pile without working load induced by tunnelling (Lee and Chiang, 2007)
2.48 Axial forces along the pile with working load of 1600 kN (Lee and Chiang, 2007)
2.49 Bending moment along the pile with working loads of 1600 kN (Lee and Chiang, 2007)
2.50 Bending moment in a pile during the tunnelling process (Ng et al., 2014)
2.51 Typical micropile construction sequence (Armour, 2000)
3.1 Flowchart of research methodology
3.2 Overall framework of research
3.3 Tunnels beneath the building founded on piles between station TS15 and station TS16 at the Thomson Line project, Singapore:
 (a) plan view and (b) cross-section view
3.4 Sieves test on granular material
3.5 Particle size distribution curve
3.6 Box dimensions using for physical modelling
3.7 Casing technique for simulation of the tunnel volume loss
3.8 Installation of the bored pile adjacent to the tunnel
3.9 Micropile models at 1/2 pile length and 2/3 pile length
3.10 Driving the micropile into the sand
3.11 Overview of the whole test system
3.12 Schematic diagram of a typical 3D laboratory physical model test
3.13 Mobile Pluviator system
3.14 Cross-sections of greenfield condition tests
3.15 Location of LVDTs on ground surface in greenfield condition (G series)
3.16 Cross-sections of the tests of the micropiles model with 11 and 14.5 cm in length relative to the tunnel position
3.17 Plan views of the M series laboratory physical model tests
3.18 A row of micropiles placed at various distances from tunnel axis line
3.19 Pile load displacement test
3.20 Installation of the measurement devices and the test completion
3.21 Cross-sections of the tests of the micropile model 14.5 cm in length relative to the tunnel and pile position
3.22 Side views of the tests of the micropile model relative to the tunnel and pile position
3.23 Micropile placed in between the pile and the tunnel axis line
3.24 Calculated Young's Modulus with depth
3.25 Schematic view of FE model dimensions
3.26 Model-generated mesh in FEM
3.27 Simulation of tunnel construction in step 7 and step 9
4.1 Comparison between longitudinal ground surface settlement troughs obtained by physical modelling for a C/D ratio of 1, 2, and 3 and various relative densities 131
4.2 Comparison between transverse ground surface settlement troughs obtained by physical modelling for C/D ratio of 1, 2, and 3 and various relative densities 133
4.3 Effect of overburden ratio to the maximum ground surface settlement for loose, medium dense and dense sands 135
4.4 Comparison between the effect of overburden ratio of 1, 2, and 3 at relative densities of 30, 50, and 75% to the width of settlement trough 136
4.5 Relationship between width of settlement trough and dimensionless depth of tunnel for different ground conditions (after Peck, 1969) 137
4.6 Ratio of the volume of settlement trough to the volume loss and against the overburden ratio for different densities of sand 138
4.7 Micropiles located in the different influence zones induced by tunnelling 139
4.8 Comparison between longitudinal surface settlement trough for greenfield condition and with micropiles for a C/D ratio of 3 and relative density of 50% 141
4.9 Comparison between transverse surface settlement troughs with and without micropiles obtained by physical modelling for a C/D ratio of 3 and relative density of 50% 142
4.10 Comparison between maximum ground surface settlement controlled by micropiles obtained by physical modelling for a C/D ratio of 3 and relative densities of 50% 143
4.11 Pile load–settlement curve for 1.2 m pile diameter and 23.45 m embedded length in medium dense sand 145
4.12 Pile and micropiles located in the different influence zones induced by tunnelling 147
4.13 Pile axial displacement due to tunnelling in the presence of micropiles with constant length and constant distance 149
4.14 Effect of micropile location and length to the maximum pile settlement and maximum ground settlement

4.15 Effect of various numbers of micropiles in a row, located at the centre between tunnel and pile, on the maximum pile and ground settlement

4.16 Load–settlement curve obtained from the pile load test

4.17 Effect of micropile location and length to the maximum pile lateral movement

4.18 Effect of various numbers of 14.5 cm length micropiles in a row, located at the centre between tunnel and pile, on the maximum pile lateral movement

4.19 Effect of micropiles (six numbers in a row) to the maximum bending moments along the pile: (a) 11 cm micropiles length and (b) 14.5 cm micropiles length

4.20 Effect of various numbers of 14.5 cm length micropiles, located at the centre between tunnel and pile, to the maximum bending moments along the pile

4.21 Plan view of pile row and equivalent sheet pile wall (Ellis and Springman, 2001)

4.22 Impact of micropiles in six numbers in a row to the axial force along the pile: (a) 11 cm micropiles length and (b) 14.5 cm micropiles length

4.23 Effect of micropiles to the maximum axial force along the pile in a row of various numbers of micropiles

4.24 Ground displacements around the tunnel and at the surface in greenfield condition obtained by FE analysis

4.25 Comparison between longitudinal settlement troughs in greenfield condition obtained by physical modelling and FE analysis

4.26 Comparison between transverse settlement troughs in greenfield condition obtained by physical modelling and FE analysis

4.27 Comparison between longitudinal settlement troughs obtained by physical modelling and FE analysis
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.28</td>
<td>Ground displacements around the tunnel and at the surface in tunnel-pile interactions condition obtained by FE analysis</td>
<td>165</td>
</tr>
<tr>
<td>4.29</td>
<td>Ground displacements around the tunnel and at the surface in tunnel-pile-micropiles interaction condition obtained by FE analysis</td>
<td>166</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NATM</td>
<td>New Austrian Tunneling Method</td>
</tr>
<tr>
<td>UTM</td>
<td>Universiti Teknologi Malaysia</td>
</tr>
<tr>
<td>TBM</td>
<td>Tunnel Boring Machine</td>
</tr>
<tr>
<td>EPB</td>
<td>Earth Pressure Balance</td>
</tr>
<tr>
<td>MC</td>
<td>Mohr-Coulomb</td>
</tr>
<tr>
<td>FE</td>
<td>Finite Element</td>
</tr>
<tr>
<td>P-T</td>
<td>Pile tunnel</td>
</tr>
<tr>
<td>P-T-M</td>
<td>Pile tunnel micropiles</td>
</tr>
<tr>
<td>PLM</td>
<td>Pile lateral movement</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

C - Cover of tunnel

c - Cohesion

D - Tunnel Diameter

E - Young’s modulus

d_p - Pile diameter

d_{mp} - Micropile diameter

H - Tunnel depth to the axis level

i - Horizontal distance from tunnel centre line to inflection point

i_x - Initial position of the tunnel

k - Empirical constant

l_p - Pile lateral movement

L_p - Pile length

L_{mp} - Length of micropile

L_{exc} - Excavation length

m - Auxiliary elastic constant

R - Tunnel radius

S - Ground surface settlement

S_p - Pile settlement

S_v - Vertical settlement

S_{v,max} - Maximum surface settlement

S_c - Vertical settlement at the tunnel crown

S_h - Horizontal ground movement

V_L - Ground loss

V_S - volume of any surface trough

V_d - volume lost due to dilation

z_0 - Tunnel depth

X_M - Distance from tunnel axis
X - Distance from tunnel centre

x - Distance from the tunnel centre line

Z - Pile depth

x_f - Location of the tunnel face

ε_h - Horizontal strain

ε - Uniform radial ground loss

δ - Long term ground deformation

ν - Poisson’s ratio

G_p - Physical gap

δ_l - Clearance required for erection of the lining

u_{3D}^∗ - Three dimensional elasto-plastic deformation

ω - Quality of workmanship

u_z - Vertical displacements

ρ - Ovalization

α - Coefficient in elastic region

μ - Elastic constant of shear modulus

φ(z) - Complex variable

ψ(z) - Complex variable

φ'(z) - Notation

γ - Unit weight

γ_b - Buoyant soil unit weight

γ_w - water unit weight

k_0 - Coefficient of earth pressure at rest

ϕ_p - Peak internal friction angle

ϕ_c - Critical internal friction angle

β - Angular distortion

ψ - Dilation angle
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Direct Shear Tests Results</td>
<td>190</td>
</tr>
<tr>
<td>B</td>
<td>Calibration of Instrumentation</td>
<td>194</td>
</tr>
<tr>
<td>C</td>
<td>ABAQUS Codes</td>
<td>199</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Over the past few decades, the world has been gradually experienced elevation of the urban population. In some countries, speed of the population growth is the most difficult challenge. It is reported that this growth of population in urban areas resulted with the high demand of infrastructures. Demand for the construction of underground infrastructures has increased considerably as a consequence of the growth of urban cities. Tunnels are an inseparable component of underground infrastructures, which have been considered during the last decades. Tunnels as subsurface structures have become ultimate alternative for overcoming the ground surface congestion. Although, tunnels have effectively addressed the ground surface congestion, still a number of challenges and problems occurred when especially tunnelling under urban environment.

The environmental impacts of the tunnel construction have been known as an essential consideration in tunnel design at the urban cities. Tunnelling through densely populated areas is usually associated with undesirable ground movement and damage to adjacent buildings. Consequently, it is essential to investigate the mechanism of the soil movements around the tunnel as well as ground surface and surface structures. An important critical issue in urban tunnelling is the control of ground movement induced by tunnelling in order to protect the surface and subsurface structures and utilities. In this regard, assessment of the potential effects on structures is a necessary aspect of the design and construction of a tunnel in an urban area. Hence
the prediction of the tunnelling-induced ground movements is necessary. Predictions of tunnelling-induced ground movements were first described by Peck (1969) as radial displacements towards the transverse and longitudinal displacements along the cross section of the tunnel. These two sets of movements have been difficult to define and separate, therefore displacements are usually simplified to a plane strain scenario (Franzius et al., 2005).

In urban environments, tunnels are often constructed close to or just below the existing pile foundations of buildings at the ground surface (Lee et al., 1994, Coutts and Wang, 2000, Tham and Deutscher, 2000). The response of a building is governed by the effects of the tunnel excavation on the soil, interaction between soil and piles, and interaction between the piles and the building (Selemetas et al., 2005). The unloading effect of the tunnel excavation leads to displacements of the soil, demolition of the nature of the interface between soil and pile, and therefore soil movements around the piles, causing changes in the vertical and horizontal ground stresses on the piles.

With the increasing the quantity of tunnels in the populated areas, several methods have been developed to provide a comprehensive understanding of the various problems deal with tunnel construction. Empirical, analytical, numerical and artificial intelligence approaches besides the physical modelling techniques have been widely used in analysing the effects of tunnelling on the ground movements and existing surface and subsurface structures. Some general aspects of the surface structural behaviour, in particular pile, are affected by the construction of a tunnel have been studied by previous researchers using different methods such as case studies and full-scale field trials (e.g. Jacobsz et al., 2005; Selemetas et al., 2005; Kaalberg et al., 2005), analytical solutions (e.g. Marshall, 2012, 2013; Marshall and Haji, 2015), numerical analyses (e.g. Lee and Ng., 2005; Bioltta et al., 2006; Yao et al., 2009; Zidan and Ramadan, 2015), physical modelling (e.g. Lee and Chiang, 2007; Meguid and Mattar, 2009; Ng et al., 2013; Sun and Liu, 2014). However, among these methods the laboratory physical model is usually preferred as it is able to provide comprehensive results based on its repeatability. Most of previous studies identified
the zones of different pile behaviours, depending on the zone in which the pile toe is located relative to the tunnel position, both in shallow and deep tunnelling work.

A number of laboratory physical model tests have been conducted under single or multiple gravities to investigate the different tunnelling aspects. The physical modelling such as trap door, pressurized air, soil augering, casing and other techniques of tunnels provide the ability to investigate the most significant factors influencing the tunnel behaviour (Meguid et al., 2008). These techniques have been used to investigate different aspects of tunnelling such as arching effect and tunnel stability (e.g. Lee et al., 2006; Berthoz, 2012), ground movements and collapse mechanism due to tunnelling (e.g. He et al., 2012; Sun and Liu, 2014), interaction of the ground with the existing structures (e.g. Ng et al., 2013; Meguid and Mattar, 2009; Lee and Chiang, 2007), and tunnel face stability (e.g. Berthoz et al., 2012; Wong et al., 2012).

Various studies had been carried out to improve the soil such as the usage of jet-grouting, forepoling, diaphragm wall and piles in order to minimize the surface settlement due to tunnelling. Bilotta et al. (2006) and Bilotta (2008) performed numerical plane strain analyses and centrifuge tests to investigate the effects of a diaphragm wall embedded between a shallow tunnel and an existing pile. A parametric study was performed to optimize the location and length of the diaphragm wall in controlling the ground displacement beneath the building. Bilotta et al. (2006) also conducted a series of centrifuge tests to investigate the effect of a line of piles and their spacing in controlling the ground displacement induced by tunnel excavation. They concluded that the use of more piles with shorter distances results in a more effective reduction of ground movements. In general, micropiles are used to increase the bearing capacity and reduce the settlement of weak or loose soils (Juran et al., 1999 and Bruc 2002). However, the technique of using micropiles is still not well published and understood.
1.2 Problem Statement

Numerous attempts have been conducted to investigate ground deformation mechanism induced by tunnelling, particularly the shallow tunnelling in urban settings. It includes the investigation of pile and tunnel interaction based on ground surface settlement, tilting and lateral movement of pile foundation, and load transfer mechanism. Some methods of soil improvements, such as jet grouting and forepoling to stabilise the soil were used besides using the NATM tunnelling method, to minimize the surface settlement. Although these methods could reduce the surface settlement but there are reports on the occurrence of structural damages, in particular the pile foundation. Moreover, these methods are time consuming, thus increase the project cost. Limitations of existing methods urge for the needs of more research on methods of controlling the ground deformation, particularly for tunnelling through cohesionless soils. The effectiveness of the method in minimising the ground and pile settlement, and the tilting and lateral movement of existing piles due to tunnel construction is also important to be studied, using both the physical modelling and numerical analysis.

This research aimed at establishing the micropile method to control the ground movement and the movements of existing pile in cohesionless soils due to shallow tunnelling. For this purpose, a series of three dimensional (3D) physical modelling tests in dry sand were carried out under single gravity. The tests explore the optimum location and length of micropiles for controlling the pile's settlement and lateral movement. Results were simulated based on 3D finite element analysis using ABAQUS 6.11 software.

1.3 Aim and Objectives

The research aimed at establishing the micropiles method as a mean to minimise the ground surface settlement, and the settlement and lateral movement of existing pile due to tunnelling through cohesionless soils. Hence, the objectives of the research are as follows:
i. To determine the effect of depths of the tunnel and density of the soil on the surface settlements and influence zones, induced by tunnelling in greenfield condition.

ii. To determine the effects of the micropiles in reducing the ground surface settlements due to tunnelling in greenfield condition.

iii. To determine the effects of tunnel excavation on the settlement and lateral movement of existing piles.

iv. To establish the effects of micropiles in controlling the settlement and lateral movement of existing piles due to tunnelling through the development of various graphs, thus determining the optimum location of micropile in between the pile and the tunnel.

1.4 Scope and Limitation of the Study

This research involves both the numerical and the physical modelling. The numerical modelling was carried out using ABAQUS software and the physical modelling has been carried out in the laboratory under single gravity (1g) using a box of 600 mm in length, 600 mm in width and 500 mm in height. In physical modelling test:

i. The circular shape tunnel was made of aluminium tube with 49 mm inner diameter shielded by a tube of 50 mm outer diameter.

ii. The cover to diameter (C/D) ratios of the tunnel were 1, 2 and 3, and the relative densities of the sand used were 30%, 50% and 75%.

iii. The quarry sand used in this study was obtained from a supplier and only the fine sand fractions were used for the physical modelling tests.

iv. The existing pile, made of aluminium and fixed at 9 mm diameter and 220 mm length, has been placed close to the tunnel alignment at 50 mm distance from tunnel centre (zone of influence).

v. The 3.7 mm diameter steel micropiles, wrapped with sand papers, were of 110 mm and 145 mm lengths. The micropiles had been installed in a single row with 3.7 mm side to side spacing above the tunnel and at several distances (1.25, 2.5, and 3.75 cm) from the tunnel axis.
1.5 Significance of the Study

A reliable method to control the tunnelling-induced surface settlement and consequently the risk of adjacent buildings are vital. This research on the use of micropiles and the effect of tunnelling to the existing pile, draw some significant as the followings:

i. The tunnelling-induced surface settlement of different soil density obtained from this research could contribute to the existing body of knowledge. This research considers the relationship among the different tunnel depth and density of the soil on the influence zones and surface settlements induced by tunnelling to better understand the behaviour of the surface settlement due to tunnelling.

ii. The utilization of micropiles to minimize the ground surface settlement induced by tunnel in greenfield condition could be used to control the building damage in shallow foundation such as raft foundation.

iii. The used of micropiles to minimize the surface settlement due to shallow tunnelling through sand has been a breakthrough of the successful method. This method also reduced the settlement and lateral movement of the existing pile.

iv. The numerical modelling using ABAQUS, verified by physical model test results, could be used by the engineer to predict soil and pile movements due to tunnelling in sandy soils.

1.6 Hypothesis

(i) In greenfield condition; increasing the value of the relative density of sand reduces the ground movements induced by tunnelling.

(ii) Micropiles to reduce ground surface settlement; the length and the location of the micropiles affect the ability of micropiles in reducing the maximum ground surface settlement.
(iii) The pile settlement induced by tunnelling; based on the pile toe location (50 cm, tunnel centre to pile centre), it is expected that the pile settlement is less than the maximum ground surface settlement.

(iv) Micropiles to reduce pile displacements; the longer micropiles are more effective than the shorter micropiles to reduce the pile movements in terms of settlement and lateral movement of the pile. The micropiles location can be more significant in terms of the pile lateral movement. Moreover, the more the number of micropiles, the more reduction in pile movements will be achieved.

1.7 Thesis Outline

The thesis is composed of six chapters and three appendices. The summaries of the chapters are as follows:

Chapter 1 explains the background of the study, statement of the problems, aim and objectives, scope and limitation of the study, significance of the study and hypothesis.

Chapter 2 presents and discusses the ground surface settlement and pile movements induced by tunnel construction. The existing methods were reviewed based on transverse and longitudinal surface settlements associated with tunnel construction. Moreover, a number of available methods such as; empirical, analytical, numerical and physical modelling of small-scale tunnel construction in terms of ground settlement and pile movements were reviewed.

Chapter 3 describes the research methodology using the flowchart and overall framework, which have been used for this research. It includes; basic tests on sand, physical modelling tests and numerical analysis.
Chapter 4 shows and discusses all the results obtained from physical modelling tests and numerical analysis. The results of using micropiles in controlling the ground surface settlement, pile settlement and lateral movement induced by tunnelling has been clearly shown in figures and discussed accordingly.

Chapter 5 gives research conclusion, contributions and recommendations for future works.
REFERENCES

EN 1997, Eurocode 7: Geotechnical Design.

Juneja, A., Dutta, S., (2008). Ground loss due to circular tunnel deformation in sands. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, India

Liu, B., and Han, Y. (2006). A FLAC3D-based subway tunneling-induced ground settlement prediction system developed in China. 4th International FLAC Symposium on Numerical Modeling in Geomechanics.

