STRATEGIC AND OPERATIONAL PERFORMANCE FRAMEWORK FOR AUTOMOTIVE SUPPLY CHAIN IN IRAN

GHOLAMREZA GHOLAMPOUR

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

Faculty of Mechanical Engineering
University Technology Malaysia

JUNE 2017
To my beloved mother, father, wife, and daughters
ACKNOWLEDGEMENT

Alhamdulillah, Praise is to Allah, Most Gracious, and Most Merciful for helping me to complete my PhD thesis. I would like to convey my greatest appreciation to my PhD supervisor Associate Professor Dr. Ab Rahman bin Abdul Rahim for his invaluable guidance, constructive advice, thoughtful comments and useful suggestions, which have been all greatly appreciated.

I would like express my most profound gratitude to people of IKCO and Isuzu who have welcomed me in their firms, graciously accepting my inquisitive presence and giving their generous assistance, collaboration and enthusiasm to complete the survey questionnaire and participate in interview. Especial thanks to Dr. Alireza Khorasani training manager of SAPCO, Mr. Mirhakim Hosseini managing director of Isuzu and Mr. Ali Asgari CEO of Isuzu for their cooperation in my research.

I would like to thank all university professors and experts in Iran who have given me suggestions and advice on my research. Very special thanks and my deepest appreciation to my family, who have been with me and prepared good support me throughout my research.
ABSTRACT

Supply Chain Management (SCM) is one of the most important and complex issues for automakers in the world. The main objective of this research is to explore the factors, which influence strategic performance of the supply chain (SPSC) and operational performance of the supply chain (OPSC) through quantitative and qualitative research in automotive industries. One of the most significant objectives of this study is to compare the key findings such as tested hypotheses and developed level of constructs between IKCO and Isuzu as cases of study in the automotive industry in IRAN. A total number of 217 and 201 completed questionnaires were collected respectively from IKCO and Isuzu companies. The reliability of data was evaluated by using SPSS to analyze Cronbach’s Alpha, where all values of Alpha were acceptable strongly. According to SPSC and OPSC as the main dependent variables, path analysis (PA) technique was used to explore casual relationships among variables using multi regression in SPSS. Based on PA technique, SPSC and OPSCs were structured to evaluate supply chain performance of IKCO and Isuzu. The confirmatory factor analyses (CFA) were utilized based on the Maximum Likelihood (ML) to analyze normality, outliers, and composite reliability, validity and to test hypotheses by Amos. In addition, the qualitative research was done to understand deeply the dimensions and to evaluate current status through interview and documentation. In conclusion, research findings imply that strategic performance of the supply chain was influenced by information technology (IT), organizational learning (OL) and product innovation (PRI), while transformational leadership did not influence SPSC. In addition, operational performance of the supply chain was influenced by process innovation (PI) and partnership quality (PQ). The SPSC and OPSCs were examined for the first time in the automotive industry, which as the research gap was concluded and R&D center and SCM were understood as main bases of automakers.
ABSTRAK

Pengurusan Rantaian Bekalan (SCM) adalah salah satu isu kompleks yang paling penting untuk pembuatan kereta di dunia. Objektif utama kajian ini adalah untuk meneroka faktor yang meramalkan prestasi strategic rantaian bekalan (SPSC) dan prestasi operasi rantaian bekalan (OPSC) melalui kajian dan penyelidikan kajian kes di dua syarikat automotif. Berdasarkan teori rantaian bekalan, kesusasteraan sebelumnya, dan penyelidikan kajian kes, strategik pretasi rantaian bekalan telah diramalkan oleh teknologi maklumat (IT), pembelajaran organisasi (OL), dan produk inovasi (PRI). Di samping itu, prestasi operasi rantaian bekalan telah diramalkan (PI) oleh proses inovasi dan perkongsian kualiti (PQ). Salah satu objektif yang paling penting dalam kajian adalah untuk membandingkan penemuan utama antara IKCO dan Isuzu sebagai kes kajian di automotif industry di Iran. Sebanyak 217 dan 201 soal selidik telah siap dibina oleh syarikat IKCO dan Isuzu. Ketelusan data dinilai dengan menggunakan SPSS untuk menganalisa Alpha cronbach, dimana kesemua nilai Alpha boleh diterima dengan tepat. Menurut SPSC dan OPSC sebagai pembolehubah utama, teknik laluan analisa laluan (PA) digunakan untuk meneroka hubungan antara pembolehubah kasual dengan menggunakan pelbagai regresi dalam SPSS. Berdasarkan PA teknik, SPSC dan model OPSC telah distrukturkan untuk menilai rantaian bekalan IKCO dan Isuzu. Analisis faktor pengesahan (CFA) telah digunakan berdasarkan Maxima Kemungkinan (ML) untuk menganalisa kebiasaan, data terpencil, dan kebolehpercayaan komposit, kesahihan ujian berdasarkan Amos. Di samping itu, penyelidikan kualitatif dilakukan untuk memahami lebih mendalam dimensi untuk menilai status semasa melalui wawancara dan dokumentasi.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xix</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of Study 1
 1.1.2 Innovation 2
 1.1.3 Automotive Industry 3
1.2 Statement of Problem 4
 1.2.1 Supply Chain Performance 4
 1.2.2 Innovation 5
1.3 Research Objectives 6
1.4 Research Questions 6
1.5 Research Hypothesis 7
1.6 Significance of the Study 8
1.7 Scope of the Study 9
1.8 Thesis Organization 9
1.9 Summary 10
2 LITERATURE REVIEW

2.1 Supply Chain Management
 2.1.1 Supply Chain as Competitive Advantage 12

2.2 Supply Chain in Automotive Industry
 2.2.1 Automotive Industry in Iran 16

2.3 Evaluation of Supply Chain Performance
 2.3.1 Strategic Performance of Supply Chain (SPSC) 23
 2.3.2 Operational Performance of Supply Chain (OPSC) 24
 2.3.2.1 Order Lead-Time 26
 2.3.2.2 Delivery Performance Metrics 27
 2.3.2.3 Inventory Level 27
 2.3.2.4 Conformance to Technical 28

2.4 Innovation
 2.4.1 Barriers of Successful Innovation 30
 2.4.2 Process Innovation (PI) 31
 2.4.3 Product Innovation (PRI) 32

2.5 Transformational Leadership (TL) 38

2.6 Information Technology (IT) 40

2.7 Partnership Quality (PQ) 45

2.8 Organizational Learning (OL) 46

2.9 Supply Chain and Social Responsibility 47

2.10 Summary of Variables and Dimensions 48

2.11 Research Method on Supply Chain Performance 50
 2.11.1 Evaluation of Normality and Outliers 53
 2.11.2 Reliability and Validity 53
 2.11.3 Convergent Validity 55
 2.11.4 Discriminate Validity 55
 2.11.5 Construct Reliability 56
 2.11.6 Composite/Construct Reliability (CR) 57
 2.11.7 Multicollinearity Test 57
 2.11.8 Measurement Model- Confirmatory Factor Analysis 58
 2.11.9 Structural Model- Confirmatory Factor Analysis (CFA) 59
 2.11.10 Absolute Measure 60
 2.11.10.1 Goodness of Fit Indices (GFI) 61
3 RESEARCH METHODOLOGY

3.1 Introduction 69
3.2 Research Procedure 69
3.3 Population and Sampling 71
3.4 Qualitative Research
 3.4.1 Case Study 74
 3.4.2 Interview 74
 3.4.3 Content Analysis 75
3.5 Quantitative Research
 3.5.1 Survey Questionnaire 76
 3.5.2 Instrument Development 76
 3.5.3 Pilot Study 76
 3.5.4 Data Analysis Methods 77
 3.5.5 Path Analysis (PA) Technique 78
 3.5.6 Research Validity 78
 3.5.7 Research Reliability 79
 3.5.8 Pilot Test and Final Questionnaire 80
3.6 Summary 81

4 QUANTITATIVE DATA ANALYSIS AND RESULTS

4.1 Introduction 82
4.2 Irankhodro (IKCO)
 4.2.1 Structure of Production Plans and Orders at IKCO 84
4.3 Isuzu Case Study 86
 4.3.1 Structure of Production Planning 88
4.4 Overall Comparison Between IKCO and Isuzu 88
4.5 Report of Returned Questionnaire 90
4.6 Background of Respondents 91
 4.6.1 Accuracy of Data Entry and Missing Data 93
4.7 Descriptive Statistic
4.7.1 Evaluation of Outliers and Multivariate Normality
4.7.2 Evaluation of Outliers and Normality Test of SPSC
4.7.3 Construct Reliability
4.8 Path Analysis Technique
4.8.1 Path Analysis of SPSC at IKCO
4.8.2 Path Analysis of OPSC at IKCO
4.9 Construct Validity of this Research
4.9.1 First-Order CFA of SPSC at IKCO
4.9.2 First-Order CFA of OPSC at IKCO
4.9.3 First-Order CFA of SPSC at Isuzu
4.9.4 First-Order CFA of OPSC at Isuzu
4.9.5 Structural Model – Confirmatory Factor Analysis
4.9.6 Structural Model – Confirmatory Factor Analysis
4.9.7 Structural Model – Confirmatory Factor Analysis
4.9.8 Structural Model – Confirmatory Factor Analysis
4.9.9 Convergent and Discriminate Validity
4.9.10 Convergent Validity
4.9.11 Discriminate Validity
4.10 Constructs Correlation
4.11 Composite/Construct Reliability of SPSC and OPSC
4.12 Multicollinearity Test
4.13 Independence Test
4.14 Evaluation of Hypothesis
4.14.1 Hypothesis Evaluation of SPSC
4.15 Frequency of Dependent Variables of SPSC at IKCO
4.16 Frequency of Dependent Variables of SPSC at Isuzu
4.17 Frequency of Dependent Variables of OPSC at IKCO
4.18 Evaluation of Dependent Variables of OPSC at Isuzu
4.19 Summary

5 Qualitative Data Analysis and Results
5.1 Introduction
5.2 Background of Interviewees at IKCO
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2.1 Interview Procedure</td>
<td>139</td>
</tr>
<tr>
<td>5.2.2 Coding of the Dimensions</td>
<td>140</td>
</tr>
<tr>
<td>5.2.3 Status of SPSC at IKCO</td>
<td>141</td>
</tr>
<tr>
<td>5.2.4 Evaluation of the Dimensions of SPSC at IKCO</td>
<td>141</td>
</tr>
<tr>
<td>5.2.4.1 Organizational Learning (OL)</td>
<td>143</td>
</tr>
<tr>
<td>5.2.4.2 Product Innovation (PRI)</td>
<td>144</td>
</tr>
<tr>
<td>5.2.4.3 Strategic Performance</td>
<td>146</td>
</tr>
<tr>
<td>5.2.5 Summary of OPSC at IKCO</td>
<td>149</td>
</tr>
<tr>
<td>5.2.6 Evaluation of the Dimensions of OPSC at IKCO</td>
<td>149</td>
</tr>
<tr>
<td>5.2.6.1 Partnership Quality</td>
<td>151</td>
</tr>
<tr>
<td>5.2.6.2 Operational Performance</td>
<td>152</td>
</tr>
<tr>
<td>5.3 Background of the Interviewees at Isuzu</td>
<td>154</td>
</tr>
<tr>
<td>5.4 Summary of SPSC at Isuzu</td>
<td>155</td>
</tr>
<tr>
<td>5.4.1 Evaluation of Dimensions of SPSC at Isuzu</td>
<td>155</td>
</tr>
<tr>
<td>5.4.1.1 Organizational Learning</td>
<td>157</td>
</tr>
<tr>
<td>5.4.1.2 Product Innovation</td>
<td>157</td>
</tr>
<tr>
<td>5.4.1.3 Strategic Performance</td>
<td>158</td>
</tr>
<tr>
<td>5.5 Summary of OPSC at Isuzu</td>
<td>158</td>
</tr>
<tr>
<td>5.5.1 Evaluation of OPSC at Isuzu</td>
<td>159</td>
</tr>
<tr>
<td>5.5.1.1 Partnership Quality</td>
<td>160</td>
</tr>
<tr>
<td>5.5.1.2 Operational Performance</td>
<td>160</td>
</tr>
<tr>
<td>5.6 Improvement Domains Suggested from Respondents</td>
<td>161</td>
</tr>
<tr>
<td>5.7 Summary</td>
<td>162</td>
</tr>
</tbody>
</table>

DISCUSSION, RECOMMENDATIONS AND SUGGESTIONS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>163</td>
</tr>
<tr>
<td>6.2 Factors Affecting Strategic Performance of Supply Chain</td>
<td>164</td>
</tr>
<tr>
<td>6.2.1 Information Technology (IT) and OL</td>
<td>165</td>
</tr>
<tr>
<td>6.2.2 Information Technology (IT) and PRI</td>
<td>167</td>
</tr>
<tr>
<td>6.2.3 Information Technology (IT) and SPSC</td>
<td>168</td>
</tr>
<tr>
<td>6.2.4 Organizational Learning (OL) and PRI</td>
<td>169</td>
</tr>
<tr>
<td>6.2.5 Organizational Learning and SPSC</td>
<td>169</td>
</tr>
<tr>
<td>6.2.6 Product Innovation and Strategic Performance</td>
<td>170</td>
</tr>
<tr>
<td>6.3 Factors Affecting Operational Performance</td>
<td>171</td>
</tr>
<tr>
<td>6.3.1 Process Innovation and Partnership Quality</td>
<td>171</td>
</tr>
</tbody>
</table>
6.3.2 Process Innovation and Operational Performance 172
6.3.3 Partnership Quality and Operational Performance 173

6.4 The Differences between the Results and Findings 174
6.4.1 Comparison of Quantitative Analysis Results 174
6.4.2 Comparison of Developed Level of SPSC 175

6.5 Contribution of the Research 176
6.5.1 Theoretical Contribution 180
6.5.2 Practical Contribution 182

6.6 Framework Implementation Across SCM 187
6.6.1 Guidelines for SCM Framework Implementation 187
6.6.2 Development Process of R&D Center 189
6.6.3 Implementation Process of Integrated IT 190
6.6.4 Implementation Process of OPSC 192
6.6.5 Implementation Process of SPSC 194

6.7 Implication of the Research 196
6.7.1 Implications for SCM Theory 196
6.7.2 Practical Implications 197
6.7.3 Managerial Implications 198

6.8 Limitation of the Study 199

7 RECOMMENDATION AND CONCLUSION 200
7.1 Recommendations for Future Research 200
7.2 Concluding Remarks 201

REFERENCES 202
Appendices A-D 225-253
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Competitive factors and reaction time of competitors</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Summary of variables, dimensions, and supported literature</td>
<td>49</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of variables, dimensions, and supported literature</td>
<td>50</td>
</tr>
<tr>
<td>2.4</td>
<td>Methods of research validation</td>
<td>54</td>
</tr>
<tr>
<td>2.5</td>
<td>Steps of SEM</td>
<td>60</td>
</tr>
<tr>
<td>2.6</td>
<td>Summary of fit indices (absolute measure)</td>
<td>61</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary of incremental measures</td>
<td>63</td>
</tr>
<tr>
<td>2.8</td>
<td>Supported hypothesis of past researches</td>
<td>67</td>
</tr>
<tr>
<td>3.1</td>
<td>Samples size of quantitative and qualitative research</td>
<td>72</td>
</tr>
<tr>
<td>3.2</td>
<td>Cronbach’s α values for items</td>
<td>80</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison between IKCO and Isuzu</td>
<td>89</td>
</tr>
<tr>
<td>4.2</td>
<td>Rate of questionnaire response of pilot test</td>
<td>90</td>
</tr>
<tr>
<td>4.3</td>
<td>Rate of questionnaire response</td>
<td>91</td>
</tr>
<tr>
<td>4.4</td>
<td>Background of respondents</td>
<td>92</td>
</tr>
<tr>
<td>4.5</td>
<td>Descriptive statistics of strategic performance of supply chain</td>
<td>94</td>
</tr>
<tr>
<td>4.6</td>
<td>Descriptive statistics of operational performance of supply chain</td>
<td>95</td>
</tr>
<tr>
<td>4.7</td>
<td>Assessment of normality (OPSC)</td>
<td>96</td>
</tr>
<tr>
<td>4.8</td>
<td>Assessment of normality (SPSC)</td>
<td>96</td>
</tr>
<tr>
<td>4.9</td>
<td>Overall Cronbach’s α at IKCO and Isuzu</td>
<td>97</td>
</tr>
<tr>
<td>4.10</td>
<td>Cronbach’s α of OPSC</td>
<td>97</td>
</tr>
<tr>
<td>4.11</td>
<td>Cronbach’s α of SPSC</td>
<td>98</td>
</tr>
<tr>
<td>4.12</td>
<td>Coefficients of SPSC at IKCO</td>
<td>99</td>
</tr>
<tr>
<td>4.13</td>
<td>Repeated regression coefficients of SPSC at IKCO</td>
<td>100</td>
</tr>
<tr>
<td>4.14</td>
<td>Coefficients of PRI at IKCO</td>
<td>101</td>
</tr>
<tr>
<td>4.15</td>
<td>Coefficients of OPSC at IKCO</td>
<td>102</td>
</tr>
</tbody>
</table>
4.16 Repeated regression coefficients of OPSC at IKCO
4.17 Factor loadings of SPSC
4.18 Factor loadings of OPSC
4.19 Squared multiple correlations of SPSC
4.20 Squared multiple correlations of OPSC
4.21 Comparing AVE with squared correlation of SPSC
4.22 Comparing AVE with squared correlation of OPSC
4.23 Correlation between constructs of SPSC and OPSC
4.24 Construct reliability of SPSC
4.25 Construct reliability of OPSC
4.26 Multicollinearity of SPSC and OPSC scales at IKCO
4.27 Multicollinearity of SPSC and OPSC scales at Isuzu
4.28 Durbin-Watson coefficients of dependent variables
4.29 Hypothesis results and findings of SPSC
4.30 Hypothesis results and findings of OPSC
5.1 Respondents’ background from IKCO
5.2 Coding of dimensions
5.3 Summary of status of SPSC at IKCO
5.4 Descriptive statistic for developed level of SPSC dimensions
5.5 Summary of OPSC at IKCO
5.6 Descriptive statistic for level of OPSC at IKCO
5.7 Respondents’ background at Isuzu
5.8 The Summary of status of SPSC at Isuzu
5.9 Descriptive statistic for developed level of SPSC dimensions
5.10 Summary of OPSC at Isuzu
5.11 Statistic for developed level of OPSC at Isuzu
5.12 Improvement domains at IKCO
5.13 Improvement domains at Isuzu
6.1 Goodness of fit indices for CFA of structural model
6.2 Comparison of SPSC between IKCO and Isuzu
6.3 Comparison of developed level of OPSC
6.4 Automotive supply chain challenges in Iran
6.5 Timeline for SPSC and OPSC
6.6 Operational planning of SPSC
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.7</td>
<td>Operational planning of OPSC</td>
<td>186</td>
</tr>
<tr>
<td>6.8</td>
<td>Definition matrix of common strategies</td>
<td>196</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Thesis organization</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Number of automotive production in the world</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Automotive production in Iran</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Item-oriented typology of organizational innovations</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>Trend in innovation from 2010-2013</td>
<td>36</td>
</tr>
<tr>
<td>2.5</td>
<td>Innovation power of countries from 2008 until 2013</td>
<td>37</td>
</tr>
<tr>
<td>2.6</td>
<td>Overall trend of innovation in energy consumption</td>
<td>37</td>
</tr>
<tr>
<td>2.7</td>
<td>Innovation power of automotive manufacturer</td>
<td>38</td>
</tr>
<tr>
<td>2.8</td>
<td>Conceptual OL and TL framework</td>
<td>40</td>
</tr>
<tr>
<td>2.9</td>
<td>Technology structure</td>
<td>42</td>
</tr>
<tr>
<td>2.10</td>
<td>Conceptual IT and process innovation framework</td>
<td>44</td>
</tr>
<tr>
<td>2.11</td>
<td>Procedure for qualitative research</td>
<td>52</td>
</tr>
<tr>
<td>2.12</td>
<td>t value index</td>
<td>64</td>
</tr>
<tr>
<td>2.13</td>
<td>Procedure of constructing research</td>
<td>65</td>
</tr>
<tr>
<td>2.14</td>
<td>Research conceptual framework of the study</td>
<td>66</td>
</tr>
<tr>
<td>3.1</td>
<td>Framework of research design</td>
<td>70</td>
</tr>
<tr>
<td>3.2</td>
<td>Flowchart of research</td>
<td>71</td>
</tr>
<tr>
<td>3.3</td>
<td>Procedure for qualitative research</td>
<td>74</td>
</tr>
<tr>
<td>3.4</td>
<td>Data collection and analysis</td>
<td>79</td>
</tr>
<tr>
<td>4.1</td>
<td>Main production process at IKCO</td>
<td>83</td>
</tr>
<tr>
<td>4.2</td>
<td>Structure of production plan for five years</td>
<td>85</td>
</tr>
<tr>
<td>4.3</td>
<td>Supply chain at IKCO</td>
<td>86</td>
</tr>
<tr>
<td>4.4</td>
<td>Production processes at Isuzu</td>
<td>86</td>
</tr>
<tr>
<td>4.5</td>
<td>Timeline of Isuzu production in Iran</td>
<td>87</td>
</tr>
<tr>
<td>4.6</td>
<td>Production output of Isuzu in Iran</td>
<td>87</td>
</tr>
</tbody>
</table>
4.7 Supply chain at Isuzu 88
4.8 Education level of IKCO staff 89
4.9 Education level of Isuzu’s staff in Iran 90
4.10 Path analysis of strategic performance of SC at IKCO 101
4.11 Path analysis of OPSC 103
4.12 SPSC and OPSC supporting framework 103
4.13 Measurement model of SPSC at IKCO 105
4.14 Measurement of OPSC at IKCO 106
4.15 Measurement of SPSC at Isuzu 107
4.16 Measurement of OPSC at Isuzu 108
4.17 CFA of structural model of SPSC at IKCO 109
4.18 CFA Model of SPSC at Isuzu 110
4.19 CFA Model of OPSC at IKCO 111
4.20 CFA model of OPSC at Isuzu 112
4.21 Frequency of organizational learning at IKCO 127
4.22 Frequency of product innovation at IKCO 128
4.23 Frequency of strategic performance of SC at IKCO 129
4.24 Frequency of organizational learning at Isuzu 130
4.25 Frequency of product innovation at Isuzu 131
4.26 Frequency of strategic performance of SC at Isuzu 132
4.27 Frequency of partnership quality at IKCO 133
4.28 Frequency of operational performance of SC at IKCO 134
4.29 Frequency of partnership quality at Isuzu 135
4.30 Frequency of operational performance of SC at Isuzu 136
5.1 Development level of constructs of SPSC at IKCO 142
5.2 Effect of IT on OL as perceived by interviewees 144
5.3 Effect of IT on NPD as perceived by interviewees 145
5.4 Effect of OL on PRI as perceived by interviewees 145
5.5 Effect of IT on SPSC as perceived by interviewees 147
5.6 Effect of OL on SPSC as perceived by interviewees 148
5.7 Effect of PRI on SPSC as perceived by interviewees 148
5.8 Developed level of the constructs of OPSC at IKCO 150
5.9 Effect of PI on PQ as perceived by interviewees 151
5.10 Effect of PI on OPSC as perceived by interviewees 152
| 5.11 | Effect of IT on OPSC as perceived by interviewees | 153 |
| 5.12 | Effect of PQ on OPSC as perceived by interviewees | 153 |
| 5.13 | Developed level of SPSC’s constructs at Isuzu | 156 |
| 5.14 | Developed level of construct of OPSC at Isuzu | 160 |
| 6.1 | Steps in developing final framework | 164 |
| 6.2 | Strategic and operational performance | 177 |
| 6.3 | Operational diagram of supply chain at IKCO | 179 |
| 6.4 | Strategic diagram of supply chain at IKCO/Isuzu | 180 |
| 6.5 | New product development cycle | 181 |
| 6.6 | Factors leading to SPSC and OPSC | 183 |
| 6.7 | Main challenge of Iranian automakers | 183 |
| 6.8 | Flowchart of framework implementation | 187 |
| 6.9 | Flowchart of SCM implementation | 188 |
| 6.10 | Flowchart of R&D establishment | 190 |
| 6.11 | Flowchart of integrated IT implementation | 191 |
| 6.12 | Flowchart of OPSC implementation | 193 |
| 6.13 | Flowchart of SPSC implementation | 195 |
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Activity-Based Costing</td>
</tr>
<tr>
<td>ATS</td>
<td>Assemble To Stock</td>
</tr>
<tr>
<td>B2B</td>
<td>Business to Business</td>
</tr>
<tr>
<td>BSC</td>
<td>Balanced Score Card</td>
</tr>
<tr>
<td>BTF</td>
<td>Build-To-Forecast</td>
</tr>
<tr>
<td>CFA</td>
<td>Confirmatory Factor Analysis</td>
</tr>
<tr>
<td>CKD</td>
<td>Complete Knocked Down</td>
</tr>
<tr>
<td>CRM</td>
<td>Customer Relationship Management</td>
</tr>
<tr>
<td>CSM</td>
<td>Customer Service Management</td>
</tr>
<tr>
<td>CTO</td>
<td>Configure-To-Order</td>
</tr>
<tr>
<td>DM</td>
<td>Demand Management</td>
</tr>
<tr>
<td>ECR</td>
<td>Efficient Customer Response</td>
</tr>
<tr>
<td>EDI</td>
<td>Electronic Data Interchange</td>
</tr>
<tr>
<td>EFQM</td>
<td>European Foundation Quality Management</td>
</tr>
<tr>
<td>EIS</td>
<td>Executive Information System</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>ES</td>
<td>Employees’ Skills</td>
</tr>
<tr>
<td>ETO</td>
<td>Engineer-To-Order</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>FLR</td>
<td>Framework for Logistic Research</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>HRM</td>
<td>Human Resource Management</td>
</tr>
<tr>
<td>IKCO</td>
<td>Irankhodro Co</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>JIT</td>
<td>Just in Time</td>
</tr>
<tr>
<td>LMC</td>
<td>Logistics Managements Council</td>
</tr>
<tr>
<td>MFM</td>
<td>Manufacturing Flow Management</td>
</tr>
<tr>
<td>MIS</td>
<td>Management Information System</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum Likelihood</td>
</tr>
<tr>
<td>MTO</td>
<td>Make-To-Order</td>
</tr>
<tr>
<td>MTS</td>
<td>Make-To-Stock</td>
</tr>
<tr>
<td>NPD</td>
<td>New Product Development</td>
</tr>
<tr>
<td>NTB</td>
<td>New Technology-Based</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturers</td>
</tr>
<tr>
<td>OF</td>
<td>Order Fulfilment</td>
</tr>
<tr>
<td>OI</td>
<td>Organizational Innovation</td>
</tr>
<tr>
<td>PA</td>
<td>Path Analysis</td>
</tr>
<tr>
<td>PD</td>
<td>Product Development</td>
</tr>
<tr>
<td>PI</td>
<td>Process Innovation</td>
</tr>
<tr>
<td>PQ</td>
<td>Partnership Quality</td>
</tr>
<tr>
<td>PRI</td>
<td>Product Innovation</td>
</tr>
</tbody>
</table>
R&D - Research and Development
ROI - Return On Investment
SASC - Strategic Audit Supply Chain
SC - Supply Chain
SCALE - Supply Chain Advisor Level Evaluation
SCI - Supply Chain Integration
SCM - Supply Chain Management
SCOR - Supply Chain Operation Reference
SCP - Supply Chain Performance
SEM - Structural Equation Modelling
SP - Starting Production
SPM - Strategy Profit Model
SPSS - Statistical Package for the Social Sciences
SRM - Supplier Relationship Management
SSPD - Strategic Studies and Planning Department
SWOT - Strengths, Weaknesses, Opportunities, and Threats
TKS - Technical Knowledge Sharing
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Total number of IKCO productions from 1968 until 2009</td>
<td>227</td>
</tr>
<tr>
<td>A2</td>
<td>Firms under SAPCO</td>
<td>227</td>
</tr>
<tr>
<td>A3</td>
<td>Companies under Irankhodro group</td>
<td>227</td>
</tr>
<tr>
<td>A4</td>
<td>Market share of automakers in Iran</td>
<td>228</td>
</tr>
<tr>
<td>A5</td>
<td>IKCO site abroad</td>
<td>228</td>
</tr>
<tr>
<td>A6</td>
<td>IKCO’s production from 1962 to 2013</td>
<td>229</td>
</tr>
<tr>
<td>A7</td>
<td>Products of Isuzu in Iran</td>
<td>230</td>
</tr>
<tr>
<td>B1</td>
<td>Survey Questionnaire- English Text</td>
<td>231</td>
</tr>
<tr>
<td>B2</td>
<td>Survey questionnaire- Persian Text</td>
<td>235</td>
</tr>
<tr>
<td>B3</td>
<td>Semi-structured interview questions</td>
<td>239</td>
</tr>
<tr>
<td>C1</td>
<td>Expert validity (questionnaire and semi- structured)</td>
<td>242</td>
</tr>
<tr>
<td>C2</td>
<td>Expert validity (validity of contribution framework)</td>
<td>248</td>
</tr>
<tr>
<td>C3</td>
<td>Panel of experts’ Profile</td>
<td>250</td>
</tr>
<tr>
<td>D1</td>
<td>Reliability Information of Pilot Study</td>
<td>251</td>
</tr>
<tr>
<td>D2</td>
<td>Mahalanobis Distance- The Evaluation of Outliers</td>
<td>252</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

One of the reasons why firms need to manage the supply chain is to reduce production costs, improve quality, and maintain competitive advantage. The supply chain theory is explained as a value network, including individual cross-functions, which is committed to provide knowledge and resources to gain the goals of effective management of suppliers and all chains (Lau and Lee, 2000). Therefore, the main purpose of supply chain management is to integrate all suppliers and to manage all effective resources.

Many researchers have focused on newer subjects by providing new ideas to develop organizations and new products (Downs and Mohr, 1976; Aragon-Correa et al., 2007). There are three perspectives about innovation such as organizational innovation, process innovation and product innovation. Process innovation focuses on production process and procedures, and product innovation emphasizes on new product (Cooper and Edgett, 2008; Damanpour and Aravind, 2012) and organizational innovation emphasize on structures, procedures and relationships (Armbruster et al., 2008). Innovations of product, process, and technology have been investigated across supply-chain management. This research has investigated the role of factors, which affect operational and strategic performance of the supply chain.

1.1 Background of Study

Since 1980s, manufacturing firms have drawn and developed supply chain to decrease managerial loads and production costs (Miles and Snow, 2007). They have
increased the number of production, quality, and new product development (NPD) via outsourcing. Most studies have been conducted on domain of operational performance of supply chain. However, there are no considerable studies in domain of strategic performance.

1.1.1 Supply Chain Performance

Previous studies have focused on operational performance more than strategic performance with the intensively competitive global market, effective supply-chain management (SCM) plays a critical role and has been recognized as a key factor for organizational performance and competitive advantage (Schneller et al., 2006; White and Mohdzain, 2009). In the competitive environment, organizations are required to provide high-quality products and services, delivery on time, rapid response, and develop dynamic capabilities that are congruent with the rapidly changing business environment (Fawcett and Magnan, 2001; Lin et al., 2005; Teece, 2009). Some scholars have investigated the impact of partnership quality of suppliers on main firms’ competitive advantage. Suppliers’ partnership in the field of product and process development has led to attain faster new product development, low costs, and high quality products. The main firms as leaders should develop partnership quality among suppliers (Kotabe et al., 2003). Many investigations have focused on information technology as the infrastructure of supply chain management.

1.1.2 Innovation

Some studies suggested that organizational learning and knowledge is the engine of innovation (Baker and Sinkula, 1999; Sørensen and Stuart, 2000; Cohen and Levinthal, 2001). A basic assumption about learning role as a key factor for enabling companies, is to achieve speed and flexibility at domain of innovation process (Brown and Eisenhardt, 1995; De Weerd-Nederhof et al., 2002; Miles and Snow, 2007).
Some studies have focused on achieving high performance of innovation via interaction and collaboration with external players such as partners, suppliers and customers (Fritsch and Lukas, 2001; Chesbrough, 2003; Laursen and Salter, 2006). Interaction between internal and external resources can help to produce new ideas and innovation. Two of the external actors are the main organizations’ customers (Gruner and Homburg, 2000; Thomke et al., 2002) and suppliers (Wagner, 2003; Song and Di Benedetto, 2008). The focal firms act as leaders of supply chain for interaction on innovation issues among chains such as suppliers, customers, and dealers. These issues are explained by showing the role of suppliers, focal firm, and customers that lead to innovate across SCM. Wagner (2010) pointed out that suppliers help to attain sustainable benefits and high performance of innovation in different aspects. Therefore, after focal firms, suppliers are the most important member to develop innovation. Creative employees and researchers improve innovation in organizations. Some studies have focused on the role of creative talents and some factors such as organizational structure, leadership and environment effects on innovation (Paulus, 2000; Ofori-Dankwa and Julian, 2002; Janssen et al., 2004).

1.1.3 Automotive Industry

The automotive industry has been one of the biggest economies, which comes after oil and banking. Building 60 million vehicles requires about eight million people who are directly involved. Automative industry possesses around 5% of worlds’ total manufacturing employment. In 2009, automotive industry had 2000 billion-dollar turnover and more than 50 million indirect and direct employees throughout the world. In 2014, more than 80 million automobiles were produced worldwide (OICA, 2014).

Generally, an average car consists of over 15000 components, in which automotive assembler produce a few of them (Pérez and Sánchez, 2001). Hence, the price and grade of automotive components determine the car’s price. Pricing automotive components depend on technology, quality level and the relationship between buyer and supplier (Pérez and Sánchez, 2001). The professional behavior of
buyers and suppliers show the degree of their skill in the production process, raw material costs and production and assembly costs.

Most of the supply chain activities are confined within Iran due to trade sanctions imposed by the United Nations (UN). All product development and process improvement has to be carried out independent of partners from overseas. This has posed a great challenge because new technology in software and hardware cannot be brought into Iran. Automotive companies in Iran have to develop its own suppliers without assistance from foreign partners. Limited access to new technology has forced companies to develop the capacity of supply chain with their own resources and ingenuity.

1.2 Statement of Problem

Supply-chain management is one of the most important issues in industries, especially in automotive industries (Pires and Neto, 2008). Complexity and extent of supply variables, costs, quality, delivery and resources have caused firms to concentrate on supply chain development. Many previous studies have investigated the issues of SCM.

1.2.1 Supply Chain Performance

Automotive industries have tried to create value chain in the supply chain. In Iran, automakers have faced critical challenges in operational and strategic performance. The challenges in operational performance consist of on-time delivery, quality, lead-time and inventory level (Mehri and Hosseini, 2010); strategic performance include mission and vision, quality, long-term goals, competitor assessment and new product development. It is crucial for automotive companies in Iran to focus and concentrate its efforts to improve operational performance. For now, companies are not sure which factors to focus upon and where to start. When this study was completed in 2014, Iran was still under sanctioned from the UN. In
2016, the sanction was lifted and there will be foreign competitors coming in and flooding the Iranian car market. Hence, it is important for the automakers to manage the supply chain in order to remain competitive. Iranian automakers are faced with challenges such as production cost, quality, new product development, reduce inventory level and meeting customer requirements.

SCM in automotive industry starts from idea conception, NPD, process design, manufacturing, delivery, assembly, quality test and finally sales to customers. Within these value chains, there are complex relationships with customers and suppliers.

1.2.2 Innovation

Manufacturing firms have encountered challenges such as sales reduction, accurate forecast of future needs of customer and new-product development. Many firms believed that innovation has the positive effect on organizational performance, but many of them could not develop it. They are encountered with challenges to develop innovative product based on customer needs. Innovations need huge investment. Therefore, firms those are not able to invest encounter limit growth of new products, new markets and new customers. The stressful environment, which includes traditional organizational management, decreases the encouragement of employees to innovate.

Iranian automakers are faced with challenges to innovate in the forms of process and product partly due to limited access to technology because of the sanction. Access to knowledge and expertise from foreign partners is also restricted and this further hampered innovation.
1.3 Research Objectives

The main objective of this study is to determine factors that affect operational and strategic performance of supply chain in order to develop supply chain performance framework in automotive industry. This research will trace the role of factors needed to develop operational and strategic performance in Iran’s automotive supply chain. This research will also explore how these factors affect supply chain performance.

The objectives of this research are as follows:

1. To determine factors influencing strategic performance of supply chain (SPSC).
2. To determine factors influencing operational performance of supply chain (OPSC).
3. To compare the results and findings between IKCO and Isuzu in order to determine weaknesses and strengths using benchmarking and organizational learning.
4. To develop supply chain performance framework.

1.4 Research Questions

Research questions to address issues in SC performance are as follows:

RQ1a: What factors affect strategic performance of supply chain (SPSC)?
RQ1b: How the identified factors affect strategic performance of supply chain (SPSC)?
RQ2a: What factors affect operational performance of supply chain (OPSC)?
RQ2b: How the identified factors affect operational performance of supply chain (SPSC)?
RQ3: What are the differences of findings at IKCO and Isuzu and why?
1.5 Research Hypothesis

The hypothesis provide the direction of data analysis and prediction of the results (Sekaran, 2006). This study will investigate what factors and how it affects strategic and operational performance of supply chain. The hypotheses of this research are stated below:

H1: Information technology (IT) has positive effect on organizational learning (OL).

H2: Information technology (IT) has positive effect on product innovation (PRI).

H3: Organizational learning (OL) has positive effect on product innovation (PRI).

H4: Information technology (IT) has positive effect on strategic performance of supply chain (SPSC).

H5: Product innovation (PRI) has positive effect on strategic performance of supply chain (SPSC).

H6: Organizational learning (OL) has positive effect on strategic performance of supply chain (SPSC).

H7: Transformational leadership (TL) has positive effect on strategic performance of supply chain (SPSC).

H8: Process innovation (PI) has positive effect on partnership quality (PQ).

H9: Process innovation (PI) has positive effect on operational performance of supply chain (OPSC).

H10: Partnership quality (PQ) has positive effect on operational performance of supply chain (OPSC).

H11: Information technology (IT) has positive effect on operational performance of supply chain (OPSC).
1.6 Significance of the Study

Supply chain management is one of the most important factors in automotive industry. This study focuses on operational and strategic performance of the supply chain. At operational performance, this research evaluates delivery on time, lead-time, inventory level and rejected parts at both IKCO and Isuzu. At strategic performance, it evaluates long-term goals, competitors’ analysis, and on time strategic decisions for NPD. This research provides direction on operational and strategic performance of automotive industry via case study. In addition, comparison was done through results between IKCO and Isuzu. Some factors were perceived as enablers such as product and process innovation, organizational learning and partnership quality.

The significance of this study is as the follows:

1. Factors identified are examined in two automotive companies in Iran. Two models that are SPSC and OPSC are derived from path analysis technique.
2. This study measures the effects of organizational learning, information technology, and product innovation on strategic performance of the automotive supply chain.
3. This study measures the effects of process innovation on operational performance of the supply chain.

The findings and results of the hypothesis examination can provide better insights to improve supply chain performance. Some benefits of this study are described as follows:

1. The findings will help managers to develop organizational, product and process innovation planning across automotive supply chain.
2. The results will help automotive companies to improve planning for knowledge sharing across the supply chain.
3. The findings will provide recommendations to develop road map for new product development.
1.7 Scope of the Study

The research is limited to supply chain of automotive industry in Iran. IKCO group and Isuzu were chosen as two case studies in Iran. IKCO produces passenger vehicles and Isuzu produces commercial vehicles. The research areas cover information technology, organizational learning, product innovation, process innovation, partnership quality, and transformational leadership, which affect strategic and operational performance through quantitative and qualitative analysis.

The validation of framework is done through expert validation only. Hypothesis testing is done through structural equation modeling and path analysis technique. Data collection is performed through survey questionnaire and interview questions.

1.8 Thesis Organization

This thesis consists of six chapters. As shown at Figure 1.1, the first chapter described introduction, background of the study, problem statement, research objectives, research questions and scope of the study. The second chapter is on literature review, which discusses about SCM and innovation and conceptual framework underlying the study. The third chapter describes the adopted methodology to conduct this research, including the instruments and methods which are used to collect data on the parameters studied. Chapter four presents quantitative data analysis, which consist of the description of the results, research findings, and testing of research questions and hypotheses. Chapter five consists of qualitative findings and results of both case studies. Chapter six is the final chapter which explain the conclusions of this research and recommendations for future research.
1.9 Summary

To sum up, this chapter describes background of the study, which provides background to the research. The research questions were explained, which focus on operational and strategic performance of the supply chain in the automotive industry. Some challenges in operational domain include delivery time, order lead-time, quality, and inventory. In strategic performance, challenges include mission and vision, new product development, competitors’ strategy and on time decision making. Research objectives to meet research questions include factors that affect operational and strategic performance and comparing the results of case studies at both IKCO and Isuzu. Comparison is made between path analysis technique and structural equation modeling. The significance of the study and scope of the study were also described.
REFERENCES

