INCORPORATION OF BIOACTIVE COLLAGEN TYPE I AND BIOMINERALISED HYDROXYAPATITE ON POLYDOPAMINE GRAFTED STAINLESS STEEL

ZAFIRAH BINTI TAPSIR

UNIVERSITI TEKNOLOGI MALAYSIA
INCORPORATION OF BIOACTIVE COLLAGEN TYPE I AND
BIOMINERALISED HYDROXYAPATITE ON POLYDOPAMINE GRAFTED
STAINLESS STEEL

ZAFIRAH BINTI TAPSIR

A thesis submitted in fulfillment of the requirements for the award of the degree of
Master of Philosophy Biomedical Engineering

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

JANUARY 2018
To my husband, father, mother, and siblings for their support and encouragement. Thank you for all your supports and motivations.
ACKNOWLEDGEMENT

In the name of Allah, The Most Gracious and The Most Merciful.
Salawat and Salam to prophet Nabi Muhammad S.A.W.

Firstly, I would like to express my greatest gratitude to Allah S.W.T. to give strengths and faith to complete this master project. A million of appreciation to my outstanding supervisor, Dr. Syafiqah binti Saidin for useful comments, remarks and engagement through the learning process of this master project.

I would like to acknowledge Assoc. Prof. Ir. Dr. Belinda Murphy from Universiti Malaya, for her trustworthy, guidance, motivation and opportunity to me to be a part of Tissue Engineering Laboratory, Department of Biomedical Engineering, Faculty of Engineering, Kuala Lumpur in order to complete my cell studies.

Finally, I would like to thank all staffs and friends from Biomedical Science Laboratory and Tissue Engineering Laboratory whom helping me to accomplish my objectives of this study. I am also gratefully indebted to Malaysian Ministry of Higher Education and Universiti Teknologi Malaysia for FRGS grant R.J130000.7845.4F523.
ABSTRACT

Hydroxyapatite (HA) and collagen have been coated on metallic implants to accelerate osseointegration. Most methods to coat HA require high sintering temperature, high cost and high-energy power while the methods to coat collagen commonly produce unstable coating. Therefore, in this study, a polydopamine film was used as an intermediate layer to immobilise HA and collagen type I on a medical grade stainless steel (SS316L) due to its versatile, strong and stable properties. The SS316L disks were pre-treated and grafted with a polydopamine film. Then, they were covalently immobilised with collagen fibers at different immersion time (6, 12 and 24 hours). The disks were further biomineralised with HA in 1.5x simulated body fluid (SBF) solution for 7 days. The coated surfaces were characterised using FTIR, FESEM-EDX, XRD and contact angle analyses to investigate its chemical composition, morphology, crystallinity and wettability properties. The characterisation analyses showed that increased in collagen immersion time have induced the formation of amide cross-linkage between collagen and polydopamine. Longer immersion time has also produced less agglomerated carbonate HA with a nano lath-like surface. The disks with longest collagen immersion time were selected and subjected to in vitro test with human fetal osteoblasts (hFOB). The cell attachment, viability and differentiation were examined through FESEM, Alamar Blue reduction assay and Alkaline Phosphatase (ALP) assay respectively. The disks immobilised with HA and collagen presented highest proportion of cell adhesion, highest viability percentage with 31.8% of reduction potential and highest production level of ALP activity at 6.4 µIU/L compared to the bare SS316L disks and the disks immobilised with collagen. It can be concluded that, the polydopamine film has acted as an intermediate layer for the immobilisation of bioactive HA and collagen which projects a promising technique in the development of bioactive implant coating.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xviii</td>
<td></td>
</tr>
<tr>
<td>LIST OF EQUATIONS</td>
<td>xix</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xx</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION | 1 |
1.1 Research Background | 1 |
1.2 Problem Statement | 3 |
1.3 Objectives | 4 |
1.4 Scope of the Study
1.5 Significance of the Study

2 LITERATURE REVIEW

2.1 Introduction
2.2 Bone
 2.2.1 Bone Composition
 2.2.2 Bone Properties
 2.2.3 Mechanism of Bone Healing
2.3 Osseointegration
 2.3.1 Background of Osseointegrated Implants
 2.3.2 Requirements for Osseointegration
 2.3.2.1 Surface Roughness
 2.3.2.2 Surface Morphology
 2.3.2.3 Surface Wettability
2.4 Biomedical Material Implants
 2.4.1 Background of Biomedical Material Implants
 2.4.2 Metal-Stainless Steel
2.5 Hydroxyapatite
 2.5.1 Background of Hydroxyapatite
 2.5.2 Properties of Hydroxyapatite
 2.5.3 Hydroxyapatite Coating Technique
 2.5.4 Biomimetic Coating
2.6 Collagen
 2.6.1 Background of Collagen
 2.6.2 Properties of Collagen
 2.6.3 Types of Collagen
2.6.4 Collagen as Coating Film 22
2.6.5 Collagen Immobilisation 24

2.7 Polydopamine as Intermediate Layer 26
2.7.1 Background of Dopamine 26
2.7.2 Properties of Dopamine 26

3 METHODOLOGY 28
3.1 Introduction 28
3.2 Sample Preparation 29
3.2.1 Metal Preparation and Pre-Treatment 30
3.2.2 Polydopamine Grafting 31
3.2.3 Collagen Immobilisation 32
3.2.4 Hydroxypapatite Biomineralisation 33

3.3 Material Characterisation 34
3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) analysis 34
3.3.2 Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray Spectroscopy Analyses (EDX) 35
3.3.3 X-Ray Diffraction (XRD) Analysis 35
3.3.4 Water Contact Angle (WCA) Analysis 36

3.4 In Vitro Test with Human Feotal Osteoblast Cells 36
3.4.1 Cell Culture Maintenance 36
3.4.1.1 Sample Preparation for In vitro test 36
3.4.2 Cell Attachment 37
3.4.3 Alamar Blue Assay 37
3.4.4 Alkaline Phosphatase (ALP) Activity 38
3.5 Statistical Analysis

4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Sample Characterisation

 4.2.1 Chemical Functionalities

 4.2.2 Surface Morphology

 4.2.3 Surface Crystallinity

 4.2.4 Wettability

4.3 Cell - Material Interactions

 4.3.1 Cell Morphology

 4.3.2 Alamar Blue Assay

 4.3.3 Alkaline Phosphatase (ALP) activity

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

5.2 Suggestion for Future Works

REFERENCES

Appendices A - D
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Types of materials being used as biomedical implants</td>
<td>16</td>
</tr>
<tr>
<td>2.2</td>
<td>Advantages and disadvantages of HA coating technique</td>
<td>18</td>
</tr>
<tr>
<td>2.3</td>
<td>Collagen types with collagen families and tissue distribution</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Preparation of ALP standard curve on different concentration</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Diameter for HA-xdopa and HA-xColl-dopa</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Ca/P ratio of HA-dopa and HA-xColl-dopa</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Contact angle measurements on SS316L bare disks, pre-treated disks, dopa, xColl-dopa, HA-dopa and HA-xColl-dopa.</td>
<td>50</td>
</tr>
<tr>
<td>C.1</td>
<td>Statistical data of One-way ANOVA on cells proliferation at day 1</td>
<td>79</td>
</tr>
<tr>
<td>C.2</td>
<td>Statistical data of One-way ANOVA on cells proliferation at day 3</td>
<td>79</td>
</tr>
<tr>
<td>C.3</td>
<td>Statistical data of One-way ANOVA on cells proliferation at day 7</td>
<td>79</td>
</tr>
<tr>
<td>C.4</td>
<td>Post-hoc analysis of Tukey’s test on cells proliferation at day 1</td>
<td>80</td>
</tr>
<tr>
<td>C.5</td>
<td>Post-hoc analysis of Tukey’s test on cells proliferation at day 3</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>C.6</td>
<td>Post-hoc analysis of Tukey’s test on cells proliferation at day 7</td>
<td>80</td>
</tr>
<tr>
<td>C.7</td>
<td>Statistical data of One-way ANOVA for ALP activity at day 1</td>
<td>81</td>
</tr>
<tr>
<td>C.8</td>
<td>Statistical data of One-way ANOVA for ALP activity at day 3</td>
<td>81</td>
</tr>
<tr>
<td>C.9</td>
<td>Statistical data of One-way ANOVA for ALP activity at day 7</td>
<td>81</td>
</tr>
<tr>
<td>C.10</td>
<td>Post-hoc analysis of Tukey’s test for ALP activity at day 1</td>
<td>82</td>
</tr>
<tr>
<td>C.11</td>
<td>Post-hoc analysis of Tukey’s test for ALP activity at day 3</td>
<td>82</td>
</tr>
<tr>
<td>C.12</td>
<td>Post-hoc analysis of Tukey’s test for ALP activity at day 7</td>
<td>82</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Hierarchical structure of bone from nanometer to micrometer structure</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Stages of bone healing process a) hematoma formation, b) formation of internal callus and external callus, c) formation bony callus and d) remodelling</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>The wettability properties on the material surface a) hydrophilic, b) normal hydrophilic and c) hydrophobic</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Collagen with striated appearance under SEM</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>Mefp in mussel foot a) mussel foot b) Types of protein in mussel foot</td>
<td>26</td>
</tr>
<tr>
<td>2.6</td>
<td>Polymerisation of dopamine to polydopamine</td>
<td>27</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of experimental procedure</td>
<td>29</td>
</tr>
<tr>
<td>3.2</td>
<td>Schematic diagram of sample preparation</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>Metal preparation and pre-treatment a) ultrasonic cleaning b) electropolishing c) dipping in acid mixture and d) drying using compressor</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Dopamine solution from colourless to brown</td>
<td>32</td>
</tr>
<tr>
<td>3.5</td>
<td>Polydopamine grafted stainless steel disk as immersed in collagen solution</td>
<td>32</td>
</tr>
<tr>
<td>3.6</td>
<td>HA biomineralisation of xColl-dopa disks at 37°C for 7days tform HA nucleation</td>
<td>32</td>
</tr>
</tbody>
</table>
3.7 ALP standard curve was plotted on data on Table 3.1
3.8 Colour intensities of 4-nitrophenol from higher concentration to lower concentration
4.1 FTIR spectra of pre-treated disk and dopa
4.2 FTIR spectra of a) Pure collagen and xColl-dopa and b) HA-dopa and HA-xColl-dopa.
4.3 Surface morphology of a) bare SS316L, b) pre-treated disk, c) polydopamine and d) Coll-dopa,
4.4 a) HA-dopa, b) HA-6Coll-dopa, c) HA-12Coll-dopa and d) HA-24Coll-dopa
4.5 XRD analyses on a) HA-dopa, b) HA-6Coll-dopa, c) HA-12Coll-dopa and d) HA-24Coll-dopa
4.6 Osteoblast attachment on each sample surface at day 1: a, b) bare SS316L, c, d) 24Coll-dopa and e, f) HA-24Coll-dopa
4.7 Osteoblasts attachment on each sample surface at day 3: a, b) bare SS316L, c, d) 24Coll-dopa and e, f) HA-24Coll-dopa
4.8 Osteoblast attachment on each coating sample surface at day 7 a,b) bare SS316L, c,d) 24Coll-dopa and e,f) HA-24Coll-dopa
4.9 Percentage of Alamar blue reduction for each sample. Statistical significant different between samples at day 1, 3 and 7 was recorded (* indicated by $p<0.05$, n= 6).
4.10 ALP activities of osteoblast cell for each sample at day 1, 3 and 7. Statistical significant different between samples at day 1, 3 and 7 was recorded (* indicated by $p<0.05$, n=6)
A FESEM images for collagen after 12 hours of immersion on SS316L at a) 5000× magnification b) 1000× magnification
B.1 Water contact angle on a) Stainless steel b) Pretreated SS316L c) Polydopamine grafted SS316L d) 6Coll-dopa e) 12Coll-dopa f) 24Coll-dopa

B.2 Water contact angle on a) HA-dopa (control) b) HA-6Coll-dopa c) HA-12Coll-dopa d) HA-24Coll-dopa

77 78
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP</td>
<td>Alkaline Phosphatase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>One way analysis of variance</td>
</tr>
<tr>
<td>APS</td>
<td>Aminopropylsilane</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated total reflectance</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>CA</td>
<td>Contact Angle</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>CaCl₂</td>
<td>Calcium chloride</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>CO₃²⁻</td>
<td>Carbonate</td>
</tr>
<tr>
<td>Cr</td>
<td>Chromium</td>
</tr>
<tr>
<td>DI</td>
<td>Deionised</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified eagle’s medium</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>EDC</td>
<td>1-ethyl-3-(3-dimethylaminopropyl) carbodiimide</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy dispersive x-ray spectroscopy</td>
</tr>
<tr>
<td>EPD</td>
<td>Electrophoretic deposition</td>
</tr>
<tr>
<td>FBS</td>
<td>Foetal bovine serum</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron microscope</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infra-red spectroscopy</td>
</tr>
</tbody>
</table>
H₃PO₄ - Phosphoric acid
HA - Hydroxyapatite
HCL - Hydrochloric acid
HF - Hydrofluoric acid
hFOB - Human foetal osteoblast cells
HIP - Hot isostatic pressing
HNO₃ - Nitric acid
HSD - Honestly significant different
HUVEC - Human umbilical vein endothelial cells
KCl - Potassium chloride
MgCl₂·6H₂O - Magnesium chloride hexahydrate
Na₂SO₄ - Sodium sulphate
NaCl - Sodium chloride
NaHCO₃ - Sodium hydrogen carbonate
NaOH - Sodium hydoxide
NHS - N-hydroxysuccinimide
Ni - Nickel
OH⁻ - Hydroxyl
P - Phosphorus
PBS - Phosphate buffered saline
pHAF - Polydopamine assisted hydroxyapatite
PO₄³⁻ - Phosphate
REDOX - Oxidation-reduction
S - Sulphur
SBF - Simulated body fluid
SD - Standard deviation
SEM - Standard error mean
Si - Silicon
SS316L - Medical grade stainless steel
Cr - Chromium
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
<tr>
<td>°</td>
<td>Degree</td>
</tr>
<tr>
<td>°C</td>
<td>Degree celcius</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
</tr>
<tr>
<td>=</td>
<td>Equal</td>
</tr>
<tr>
<td>μL</td>
<td>Microliter</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometer</td>
</tr>
<tr>
<td>cm⁻¹</td>
<td>Per centimeter</td>
</tr>
<tr>
<td>cm²</td>
<td>Square centimeter</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>B</td>
<td>Beta</td>
</tr>
</tbody>
</table>
LIST OF EQUATIONS

<table>
<thead>
<tr>
<th>NO</th>
<th>EQUATIONS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Volume of SBF = Volume of Sample / 10</td>
<td>35</td>
</tr>
</tbody>
</table>
| 2 | Percentage of Reduction =
 (OD$_{570}$ Sample – OD$_{595}$ Sample) / (OD$_{595}$ Blank – OD$_{595}$ Blank)
 ×10 | 38 |
| 3 | ALP activity (IU/L) = µmol / (L.min) | 39 |
| 4 | Tukey’s HSD = (M$_1$ – M$_2$) / √ MS$_W$(1/n) | 41 |
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FESEM images for Collagen 12 hours</td>
<td>76</td>
</tr>
<tr>
<td>B</td>
<td>Contact Angle Images</td>
<td>77</td>
</tr>
<tr>
<td>C</td>
<td>Statistical Analysis: SigmaPlot 11.0</td>
<td>79</td>
</tr>
<tr>
<td>D</td>
<td>Publication</td>
<td>83</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

Osseointegration is one of criteria to determine the success of bioactive implant based on close interaction between bones and implant surface without the formation of fibrous connective tissues [1, 2]. The interaction between bone and implant are dependent on the rate and quality of implant surface [2, 3]. Surface modifications on metallic implants are necessary to achieve fast and good osseointegration [4]. Many studies reported that, good bonding and fast osseointegration are important to accelerate bone healing and to increase bone anchorage between bone and implant surface [5, 6], thus, reducing the probability of implant loosening and failure.

Hydroxyapatite (HA) or calcium hydroxide phosphate is a bioactive ceramic that composed of two main components of mineral bone (calcium and phosphorus) [7]. It has been coated on metallic implants to promote osseointegration [7]. Most techniques and technologies to deposit and coat HA on an implant such as plasma spray, electrophoretic deposition, and hot isostatic pressing require high sintering
temperature which lead to crack formation due to mismatch of thermal expansion [8, 9]. Crack formation will further contributes to coating instability and practically interrupt the bone-implant fixation [8, 9].

Biomimetic technique is one of the methods to coat HA on metallic implants [10]. It does not require high energy power and high processing temperature which is beneficial to prevent crack formation and coating instability [9]. The HA coating film produced by this method has a tendency to integrate with bone rapidly as it is comprised of carbonate group [11]. The carbonated HA is beneficial for bioactive coating, bone graft and bone filler due to its biocompatibility and osseoconductivity which can actively provides strong bonding interface between bone and implant [12].

Recently, a polydopamine film is utilised to form biomimetic HA on medical grade stainless steel (SS316L) through a functionalisation process known as polydopamine assisted HA formation (pHAF) [13]. The mechanism of functionalisation process is based on the existence of amine and thiol/catechol functional groups. [14, 15]. The application of polydopamine as an intermediate layer to functionalise biomolecules is adopted from the work of Lee et al. [14]. This technique could produce strong and stable anchorage properties [15, 16]. Besides, the biomimetic HA grafted on polydopamine film mimics the natural properties of bone [14-16]. Those properties cause the polydopamine film to be a favourable way to modify the surface of metallic implants [17].

Collagen fibres are also one of main organic components of bone extracellular matrix (ECM) [11]. It is commonly used to improve the biocompatibility of implant surfaces [12]. These fibres act as a building template for bone formation and provide a mechanical strength to bone [13]. The immobilisation of collagen on material surfaces through a physical absorption technique shows simplicity and flexibility, but generally this method produces instability of coating film [14]. Meanwhile, a covalent immobilisation technique compromises better control of coating parameters such as coating thickness, ligand density and molecular
There are various strategies to covalently immobilise collagen onto metallic surfaces that usually involve complex chemistry procedures [16].

Therefore, in this study, a polydopamine film was used to covalently immobilise collagen type I and biomineralised HA on medical grade SS316L. The immobilisation of both elements using an intermediate polydopamine film will prevent production of toxic compound and accelerate osseointegration on the surface of metallic implant to avoid coating and implant failures.

1.2 Problem Statement

One of the problems arise during early stage of implantation, is coating failure and low rate of osseointegration [18, 19]. Most techniques and technologies to deposit and coat HA on an implant such as plasma spray, electrophoretic deposition, dip coating and hot isostatic pressing require high sintering temperatures which lead to HA decomposition that will increase the percentage of coating inhomogeneity and coating failure [9]. Furthermore, these techniques are expensive and require high energy power to operate those instruments [20].

Other than that, the procedures to immobilise collagen on metallic implants usually experience complex chemistry process which normally will introduce and produce extra toxic factors on the targeted surface [21, 22]. Therefore, in this study, a polydopamine film was utilised as an intermediate layer for collagen immobilisation and HA biomineralisation through three approaching steps: grafting polydopamine, covalent immobilisation of collagen type 1 and HA biomineralisation.
There are several factors have contributed to low osseointegration such as implant materials, mechanical load and surgical technique [23]. The low rate of osseointegration occurs when the osteoblasts are unable to attach and fill interface between metal implant and bone in order to form new tissues generation for cells proliferation, differentiation and maturation [24]. This incident will further reduce bone quantity and quality, slower bone healing and interrupt bone regeneration [2].

1.3 Objectives

This study has three main objectives which are:

i. To identify method to immobilise collagen fibre type I and biomimetic HA on polydopamine grafted SS316L.

ii. To characterise the chemical composition, morphology, crystallinity and wettability properties of the grafted films.

iii. To investigate the biocompatibility of the grafted films with human foetal osteoblasts.

1.4 Scope of the Study

The SS316L disks were pre-treated and grafted with a polydopamine film. It was covalently immobilised with collagen fibres at different immersion time (6, 12 and 24 hours). The disks were further biomineralised with HA in 1.5× simulated body fluid (SBF) solution for 7 days. The chemical composition of the grafted film
was characterised using Fourier transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDX). The crystallinity and morphology of the grafted film were investigated by X-ray diffractometer (XRD) and field emission scanning electron microscope (FESEM), respectively. The contact angle (CA) analyses were performed to determine the wettability property of the grafted film. Several samples were subjected to *in vitro* test with human foetal osteoblast cells through Alamar Blue assay and Alkaline Phosphatase (ALP) activity tests. Cell attachment, proliferation and differentiation on the grafted films were viewed under FESEM.

1.5 Significance of the Study

This study is significance in the field of orthopaedic implant applications. It involves greater research area on the development of bioactive implant coating. The incorporation of HA within the collagen type I matrix assisting by a polydopamine film has improved the bioactivity properties of metallic implant. The characterisation and cell culture analyses on this coating may promote further modifications and ideas on bioactive implant coating.

Besides, the incidence of implant coating failure could be reduced due to the stable covalent linkage between the implant surface and the coating. It has shown that covalent immobilisation has actively promoted osseointegration without implementing complex chemistry and without producing toxic residues. The HA-collagen grafted polydopamine film also is forecasting to accelerate bone healing and bone growth on metallic implant.
Furthermore, the Orthopaedic Industry Annual Report has stated that, the orthopaedic revenues have reached $48.1 billion worldwide in 2016 and grew at 3.2%, over 2015 [25]. This report presented the needs of orthopaedic products and the implantation is increasing year by year due to infection, old age, obesity, accident and demands to replace dysfunctional/old implant [26]. Therefore, the development of implant coating in orthopaedic field is necessary to fulfil the market needs to prevent second surgery for implant replacement due to implant failure.
REFERENCES

20. Liu, X., Coating titanium implant surface comprises gelling hydroxyapatite powder, atomizing and drying into powder, spraying on surface of titanium

115. Nanci, A., Wuest, J.D, Peru, L., Brunet, P., Sharma, V., Zalzal, S. and Mc Kee, M. D. Chemical modification of titanium surfaces for covalent attachment of

