VOLTAGE FLUCTUATION AND HARMONIC EMISSION RELATED TO LIGHT EMITTING DIODE LAMPS

TAN TECK YING

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical Power)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JANUARY 2018
To my beloved family members
ACKNOWLEDGEMENT

To begin with, I am very thankful to my project supervisor, Dr. Dalila Bt. Mat Said for her valuable time, guidance and advice given throughout the period of my project conducted. Her exemplary advice, monitoring, supervision and encouragement throughout my project helped me in completing my project.

I am using this opportunity to express my gratitude to Mr. Mohd Hairuddin Bin Hamdam, assistant engineer of power system measurement and monitoring laboratory from Centre of Electrical Energy System (CEES), Universiti Teknologi Malaysia for the assistant, discussion and valuable opinion given. I also would like to thanks to my superiors, colleagues, friends, and everyone that directly and indirectly supported me during the period of my project carry on. The work presented today would not be possible without any of them.

I would also like to express my gratitude to my parents, Mr. Tan Kian Yew, my father and Ms. Lim Pek Yok, my mother for all their encourage and support during my study at Universiti Teknologi Malaysia. Apart from my parents, I also would like to thanks to my siblings who gave me support and motivate me to complete my study.

Last but not lease, I would like to thanks to Universiti Teknologi Malaysia (UTM) for funding support under the research grant Q.J130000.2523.17H64 as well as Centre of Electrical Energy System (CEES), Faculty of Electrical Engineering (FKE) for providing me the great environment and facilities to conduct my project smoothly and solve the problem encounter.
ABSTRACT

The energy management issue has become crucial at this moment as the power demand has increased rapidly as time goes on. Therefore, a proper usage of energy is more concerned and the energy efficient lighting system had introduced and being widely used to reduce the power demand. However, at the same time, the Power Quality issues have been raised. Lighting system considering as one of the biggest energy consumption from the overall energy consumption of the system especially for commercial building. Most of the energy efficient lighting system are consider as the non-linear load will be creating disturbances to the power system. The relation of active power, price of LED lamps and harmonic current emission will be investigate in this project and at the end of the project, the characteristics of LED lamps with lowest contribution of power quality issue will be proposed. In this project, the focus will be on waveform distortion and voltage fluctuation only. From various type of Light Emitting Diode (LED) lamps available in the market, the LED lamps with active power less than 25W will be studied as there is no dedicated standard requirement for energy efficient lighting system with active power less than 25W. An individual lighting and a group of lighting will be observed on their behavior and the effect of Power Quality issues on voltage fluctuation and harmonic current emission. The measurement of waveform distortion from a LED lamp will be evaluated as specified in MS IEC 61000-3-2. Methodology and test condition specified in MS IEC 61000-3-2 and MS IEC 61000-4-14 will be adopted for measurement of waveform distortion and inject voltage fluctuation waveform in this project. The results show that there is no relation between active power, price of LED lamps and harmonic current emission. The LED lamps with active power of 18W and colour temperature of 6400K have the lowest contribution in power quality issues.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION
1.1 Background of Study 1
1.2 Problem Statement 1
1.3 Objectives 2
1.4 Scope of Work 2
1.5 Significance of Study 3
1.6 Thesis Outline 4

2 LITERATURE REVIEW
2.1 Overview 5
2.2 Power Quality 7
2.3 Distribance in Power System 7
 2.3.1 Transient 7
 2.3.2 Short Duration Variation 8
3 METHODOLOGY

3.1 Overview

3.2 Project Works
 3.2.1 Gantt-Chart
 3.2.2 Milestone

3.3 Experiment equipment and software
 3.3.1 Fluke 435 series II
 3.3.2 Chroma Programmable AC source
 3.3.3 Microsoft Office
 3.3.4 Load Bank

3.4 Experiment Preparation
 3.4.1 Harmonic Current Measurement
 3.4.2 Voltage Fluctuation Response

3.5 Measurement Procedure

3.6 Summary

4 RESULTS AND DISCUSSIONS

4.1 Overview

4.2 Results

4.3 Discussion Analysis

4.4 Summary

5 CONCLUSION AND RECOMMENDATION

6.1 Summary of Findings
6.2 Future Works

REFERENCES
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of past research work</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>Specification of LED lamps selected</td>
<td>33</td>
</tr>
<tr>
<td>4.2</td>
<td>Price of LED lamps</td>
<td>34</td>
</tr>
<tr>
<td>4.3</td>
<td>Configuration for group of LED lamps</td>
<td>35</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Energy consumption data of commercial building in Sabah, Malaysia</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Development of LED lamp [7]</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Advantage of LED lamp over other conventional lamp</td>
<td>11</td>
</tr>
<tr>
<td>3.1</td>
<td>Project phase one Gantt-Chart</td>
<td>18</td>
</tr>
<tr>
<td>3.2</td>
<td>Project phase two Gantt-Chart</td>
<td>19</td>
</tr>
<tr>
<td>3.3</td>
<td>Project’s milestone achieved</td>
<td>21</td>
</tr>
<tr>
<td>3.4</td>
<td>Fluke 435 series II power quality and energy analyzer device</td>
<td>23</td>
</tr>
<tr>
<td>3.5</td>
<td>Chroma Programmable AC source (Model 61503)</td>
<td>24</td>
</tr>
<tr>
<td>3.6</td>
<td>Load Bank</td>
<td>25</td>
</tr>
<tr>
<td>3.7</td>
<td>Measurement circuit for harmonic current emission [12]</td>
<td>26</td>
</tr>
<tr>
<td>3.8</td>
<td>Actual measurement circuit for harmonic current emission</td>
<td>27</td>
</tr>
<tr>
<td>3.9</td>
<td>Connection between Fluke 435 series II and computer</td>
<td>27</td>
</tr>
<tr>
<td>3.10</td>
<td>Voltage Fluctuation waveform injected to LED lamps</td>
<td>29</td>
</tr>
<tr>
<td>3.11</td>
<td>Methodology flowchart</td>
<td>31</td>
</tr>
<tr>
<td>4.1</td>
<td>THDi of individual different type of LED lamps</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Third and fifth harmonic current of individual different type of LED lamps</td>
<td>36</td>
</tr>
<tr>
<td>4.3</td>
<td>THDi for different configuration group of LED lamps during normal operation</td>
<td>37</td>
</tr>
<tr>
<td>4.4</td>
<td>THDi for different configuration group of LED lamps during voltage fluctuation</td>
<td>38</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.5</td>
<td>Relation of active power related to harmonic emission</td>
<td>39</td>
</tr>
<tr>
<td>4.6</td>
<td>THDi of different configuration group of LED lamps during normal operation and voltage fluctuation</td>
<td>40</td>
</tr>
<tr>
<td>4.7</td>
<td>Relation of THDi with price of different type LED lamps</td>
<td>42</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ac - Alternating Current
CEES - Centre of Electrical Energy System
dc - Direct Current
etc - et cetera
h - hour
IEC - International Electrotechnical Commission
IEEE - Institute Electrical and Electronic Engineers
PQ - Power Quality
rms - Root Mean Square
THDi - Total Harmonic Current Distortion
US - United State
UTM - Universiti Teknologi Malaysia
LIST OF SYMBOLS

A - Current
Hz - Hertz
I - Current
k - Kilo
K - Kelvin
\(f \) - Frequency
p.u. - Per unit
RM - Ringgit Malaysia
V - Voltage
VA - Volt-Amps (Apparent power)
W - Wattage
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Energy efficient lighting have been widely used in industrial and commercial buildings. The characteristics of an energy efficient lighting including Light Emitting Diode (LED) lamps have the behavior of non-linear load. Therefore, they are considered as one of the equipment that injecting harmonic current into the network [1]. This is because most of the energy efficient lighting system are using power electronics device for switching topology and achieving the same lux level with the less amount of input active power required. For a commercial building, the lighting system can be contributed around twenty percent to fifty percent of total electricity consumption. In paper [2-4] clearly show that, works have been done to achieve an energy efficient lighting system for proper energy usage and planning. At the same time, the other quality issue have raise the concern of public especially the attention from utility as these power quality issue are generated from consumer side and it affecting to the voltage supply’s stability profile.

1.2 Problem Statement

Power Quality is an important issues in power system. Therefore, power quality always one of the concern of an electrical engineer. Nowadays, energy efficient lighting system have been widely used to achieve the purpose of energy
saving. Most of the energy efficient lighting system are using the topology of power electronics in switching alternating current (AC) source into direct current (DC) source as most of the energy efficient lighting system are using dc course. Hence, when these converter are altering the power supply pure sinusoidal waveform, they contributed to power quality issue. There are numbers of working committees working on various standards to make sure that these energy efficient lighting system or other equipment that connected to public supply are operating within the maximum allowable power quality limit. However, as for now, there is no dedicated standard or guideline are available for energy efficient lighting system with active power less than 25W. The relation of active power and price of LED lamps related to voltage fluctuation response and harmonic emission are not yet been identified.

1.3 Objectives

The objectives of this project including the following:

i. To measure harmonic contribution from different type of LED lamps.

ii. To investigate the relation of active power and price of LED lamps related to voltage fluctuation response and harmonic emission from various LED lamps.

iii. To propose the LED lamp with the lowest contribution in power quality issue.

1.4 Scope of Work

The main scope of this project is to investigate the relationship of the active power and price of LED lamp related to voltage fluctuation response and harmonic emission. Hence a study of the contribution of harmonic emission and harmonic emission during voltage fluctuation from LED lamps have been carried out. The experiment set-up for harmonic emission measurement and the test condition for measurement are adopted the measurement circuit as specified in Malaysian Standard
MS IEC61000-3-2:2009. For voltage fluctuation injected into LED lamps are accordance to Malaysian Standard MS IEC 61000-4-14:2002.

The measurement of harmonic emission is measured from various manufacturer of LED lamps to identify the relationship of power qualities issues related to active power and price of LED lamps. For LED lamps selected in this project are limited to following specification:

i. Active power less than 25W.
ii. Colour Temperature range from 4000K to 8500K.

As mentioned in previous section of this chapter, there is no dedicated standard for energy efficient lighting with active power less than 25W. Hence, in this project we covers the LED lamps with active power less than 25W only. While, for colour temperature of LED lamps selected are between the ranges of 4000K to 8500K as it is commonly used for commercial building.

1.5 Significance of Study

The first LED lamp inverted back in 1970s. Development of LED lamps are focusing on its efficiency which to produce higher lumen with lower power consumption. At the same times, the power quality issues contributed from LED lamps had raise the concern from utility side as well as consumer side. From point of view of utility side, the power quality issues distorted the power system. For customer side, they concern the power quality issues as they will get the penalty from utility if their power factor are fall below the limit.

As we know, currently most of the industry are moving toward green energy or energy efficient system. Among it, one of the most common strategy is replace all existing fluorescent lamps to LED lamps. Hence the outcome of this study will help industry to understand the relation of LED lamps related to harmonic emission and voltage fluctuation especially in LED lamps selection.
1.6 Thesis Outline

This thesis written in five chapters. Where chapter one covers the background of study for this project and the problem statement. The objectives and the focus of this project were stated in this chapter. The significance of this project also highlighted in chapter one. And lastly the structure of this thesis have been explained.

In chapter two, the review of past research are being discussed. The various type of disturbance in power system are briefly explained. The discussion will bring into the recent research work related to harmonic emission and voltage fluctuation that related to LED lamps. A comparison of the past research work is presented. This chapter, generally provide an overview of disturbances in power system and the development of LED lamps is discussed.

In chapter three, the equipment, methodology as well as experiment set up that conducted are being explained. The focus of this chapter will be the explanation of methodology have been executed in this project. The flowchart of methodology also presented and explained.

Furthermore in chapter four, the harmonic emission from LED lamps during normal operating condition and during voltage fluctuation are recorded in this chapter. The data including total harmonic current emission and price of LED lamps are analyzed and discussed.

Lastly, in the last chapter the relationship of LED lamps related to active power, price of LED lamps, and the harmonic emission are presented. The recommendation to improve this project work also highlighted in this chapter as well.
REFERENCES

