BIOGRANULES CONTAINING PHOTOSYNTHETIC BACTERIA FOR CARBON DIOXIDE REDUCTION IN PALM OIL MILL EFFLUENT TREATMENT

MOHAMED ZUHAILI BIN MOHAMED NAJIB

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

JUNE 2017
Dedicated to

My beloved wife, mother and father, two brothers and sister,

Who taught me to trust in Allah, believe in hard work,

Whose affection, love, encouragement and prays of day and night make me able to achieve such success,

My supervisor, lecturers, technicians and friends,

Thank you for encouraging, helping and supporting me all the way...
ACKNOWLEDGEMENTS

In preparing this thesis, I would express my sincere gratitude to all the people, researchers and academicians who have contributed towards my understanding and thoughts. Also I wish to further my appreciation to my supervisor, Dr. Salmiati and YBhg. Dato’ Seri Ir. Dr. Zaini Bin Ujang, for encouragement, guidance and critics. I am also very thankful to Prof. Dr. Zaharah Binti Ibrahim who always guide, support, advice and motivate me to work hard and not give up in finishing this thesis.

I am also indebted to UTM for funding my Ph.D. project study. Moreover, a special thanks to all member of the Environmental Lab, Faculty of Civil Engineering, for their valuable guidance and experience. My sincere thanks to my family, friends and colleagues who supports and express their positive attitude all the way. I also like to extend my sense of gratitude to one and all who, directly or indirectly, have lent their helping hand in this study. Lastly, I would like to highlight that this thesis would not have been the same as presented here without all their continued support.
ABSTRACT

Presently global warming is the most highlighted subjects in environmental issues which is related to greenhouse gases (GHG) emissions especially carbon dioxide (CO₂). In Malaysia, one of the major sources of GHG is from industrial wastewater treatment such as ponding system to treat palm oil mill effluent (POME) where the accumulation of these gases will contribute to the greenhouse effect causing global warming. Since photosynthetic process offers the most effective and natural way of sequestering CO₂, biogranules containing photosynthetic microorganisms were developed in a sequencing batch reactor (SBR) system using POME. A mixed sludge consists of sludge taken from a local sewage treatment oxidation pond, palm oil mill facultative pond treatment system and POME was used as seed sludge. Intermittent supply of light with intensity at 3600 lux was provided for 100 days with an organic loading rate (OLR) of 2.75 kg COD/m³/day, hydraulic retention time (HRT) of 4 hours and superficial air velocity of 2.07 cm/s. The developed biogranules had shown potential in retaining high accumulation of biomass concentration in the reactor (10.5 g/L), good settleability (43.5-102.9 m/h) and improvement in size from 0.5 to 2.0 mm as well as high physical strength at integrity coefficient (IC) of 2 %. The initial structure of sludge changed from dispersed loose shaped into denser, compact and more stable structure with sludge volume index (SVI) maintained between 10.30 to 14.80 mL/g SS leading to a good solid-liquid separation compared to conventional activated sludge. Also, the chemical oxygen demand (COD), nitrogen (N) and phosphorus (P) removal of 26 %, 21 % and 62 % were achieved during the development of the biogranules. The pigment analysis indicated the presence of the bacteriochlorophyll a implying the presence of purple photosynthetic bacteria. Molecular identification of the bacteria showed the presence of Enterobacter cloacae, Bacillus cereus, Lysinibacillus sp. which possess photosynthetic pigments. For CO₂ reduction using the biogranules, approximately 18 to 21 % of CO₂ removal was achieved due to possible formation of calcite were observed with FESEM-EDX. The biogranules had achieved a CO₂ biofixation rate at approximately 0.234 g/L/day in a week while using the regression analysis; the maximum CO₂ biofixation rate in a year was estimated at 1.733 g/L/day.
ABSTRAK

Pada masa ini, pemanasan global adalah perkara yang paling diketengahkan dalam isu alam sekitar yang berkaitan dengan pembebasan gas rumah hijau (GHG) terutamanya gas karbon dioksida (CO₂). Di Malaysia, salah satu sumber utama GHG adalah berpunca daripada rawatan air sisa industri seperti sistem takungan untuk merawat efluen sisa minyak sawit (POME) di mana pengumpulan gas-gas ini akan menyumbang kepada kesan rumah hijau yang menyebabkan pemanasan global. Memandangkan proses fotosintesis mempunyai potensi dalam mengurangkan CO₂, biogranul yang mengandung mikroorganisma fotosintetik telah dibangunkan melalui sistem reaktor kelompok urutan (SBR) menggunakan POME. Campuran enapcemar yang terdiri daripada enapcemar dari kolam pengoksidaan rawatan kumbahan tempatan, sistem rawatan kolam fakultatif kilang minyak sawit, dan POME telah digunakan sebagai benih enapcemar. Bekalan pengcahayaan dengan keamatan pada 3600 lux telah diberikan selama 100 hari dengan kadar muatan organik (OLR) 2.75 kg COD/m³/day, masa tahanan hidraulik (HRT) 4 jam dan halaju udara superfisial 2.07 cm/s. Biogranul yang terbentuk telah menunjukkan potensi dalam pengumpulan kepekatan biojisim yang tinggi dalam reaktor (10.5 g/L), kebolehan kekayaan yang baik (43.5-102.9 m/h) serta penambahbaikan dalam saiz antara 0.5-2.0 mm dan kekuatan fizikal yang tinggi pada 2 % pekali integriti (IC). Struktur awal enapcemar telah berubah dari bentuk longgar tersebar kepada lebih tebal, padat dan stabil dengan indeks isipadu enapcemar (SVI) berkekalan antara 10.30-14.80 mL/g SS menuju ke arah pemisahan pepejal-cecair yang baik berbanding enapcemar konvensional. Penyempurnaan permintaan oksigen kimia (COD), nitrogen (N) dan phosphorus (P) sebanyak 26 %, 21 % dan 62 % turut dicapai semasa pembentukan biogranul. Analisis pigmen menunjukkan kehadiran *bacteriochlorophyll a* yang mejurus kepada kehadiran bakteria fotosintetik ungu. Pengencaman molekul bakteria menunjukkan kehadiran *Enterobacter cloacae*, *Bacillus cereus*, *Lysinibacillus sp.*, yang mempunyai pigmen fotosintetik. Untuk penyempurnaan CO₂ menggunakan biogranul, penyempurnaan CO₂ mencapai hampir 18 hingga 21 % mungkin disebabkan oleh pembentukan kalsit sepekanan diperhatikan dengan FESEM-EDX. Akhir sekali, biogranul telah mencapai lebih kurang 0.234 g/L/hari kadar biofisasi CO₂ dalam seminggu menggunakan analisis regresi; kadar maksimum biofisasi CO₂ untuk tempoh setahun dianggarkan sebanyak 1.733 g/L/hari.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DICTION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td></td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xxv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION
1.1 Background of the Problem
1.2 Statement of Problem
1.3 Objectives of Study
1.4 Scope of Study
1.5 Significance of Research

2 LITERATURE REVIEW
2.1 Greenhouse Gases (GHG) Effects on Global Warming
2.1.1 GHG From Industrial Wastewater Treatment
2.1.2 GHG Emissions from Palm Oil Industry in Malaysia
2.1.3 Characteristics of Palm Oil Mill Effluent (POME) and Its Current Treatment Method
2.1.4 Palm Oil Mill Factory Processes
2.1.5 POME Treatment Practice in Mitigating GHG Emission
 2.1.5.1 Conventional Ponding System
 2.1.5.2 Anaerobic Digestion Tanks System
2.2 Photosynthetic Bacteria
 2.2.1 Photosynthesis Mechanism in Bacteria
 2.2.2 Photosynthetic Pigments
 2.2.3 Factors Influencing Growth of Photosynthetic Bacteria
 2.2.3.1 Light Intensity
 2.2.3.2 Carbon Dioxide (CO₂) Concentration
 2.2.3.3 Temperature
 2.2.4 Applications of Photosynthetic Bacteria in Wastewater Treatment Technologies
 2.2.5 Application of Photosynthetic Bacteria for CO₂ Reduction in Wastewater Treatment System
2.3 Biogranulation Technology for Wastewater Treatment
 2.3.1 Types of Biogranulation
 2.3.2 Parameters Influencing Biogranulation
 2.3.2.1 Substrate Composition
 2.3.2.2 Hydraulic Retention Time (HRT)
 2.3.2.3 Settling Time
 2.3.2.4 Aerobic Starvation
 2.3.2.5 Design of Reactor
2.4 Alternative Method in Reducing CO₂ Emissions Using Biogranules Containing Photosynthetic Bacteria
3 RESEARCH METHODOLOGY

3.1 Introduction 66

3.2 Materials and Equipment 69

3.2.1 POME and Seed Sludge 69

3.2.2 Acclimatization of Seed Sludge 70

3.2.3 Sequencing Batch Reactor (SBR) System 72

3.2.4 Image Analysing Tools 74

3.2.4.1 Image Analysis Software - PAX-it 75

3.2.4.2 Field Emission Scanning Electron Microscopy with Energy Dispersive X-ray (FESEM-EDX) Spectroscopy 75

3.3 Analytical Methods 76

3.3.1 Characterisation of Developed Biogranules 78

3.3.1.1 Morphology and Size of Biogranules 79

3.3.1.2 Size Distribution of Biogranules 79

3.3.1.3 Granular Strength 80

3.3.1.4 Settling velocity 80

3.3.1.5 Sludge Volume Index (SVI) 80

3.3.2 Photosynthetic Pigment Analysis 81

3.3.3 Dissolved CO₂ 81

3.3.4 Bacterial Isolation and Characterisation of Biogranules 81

3.3.4.1 Total Viable Count (TVC) of Bacteria 82

3.3.4.2 Preparation of Enrichment Medium 83

3.3.4.3 Inoculation of Bacteria 84

3.3.4.4 Serial Dilution, Spread Plating and Colony Count 85

3.3.5 Molecular Characterisation of Isolated Bacteria 85

3.3.5.1 Genomic DNA Extraction 85

3.3.5.2 Polymerase Chain Reaction (PCR) 86

3.3.5.3 Agrose Gel Electrophoresis and Nano Drop 87
3.3.4.5 Sequence Alignment and Phylogenetic Tree Constructions

3.4 Experimental Procedures

3.4.1 Acclimatisation of Seed Sludge

3.4.2 Development of Biogranules Containing Photosynthetic Bacteria Using SBR System

3.4.3 Application of Developed Biogranules for CO₂ Reduction

3.4.3.1 CO₂ Production and Removal by Biogranules in SBR Cycle, Short and Prolonged Period

3.4.3.2 Removal of CO₂ in gas and liquid

3.4.3.3 Determination of CO₂ Biofixation Rate

3.4.4 Statistical Analysis for CO₂ Removal by Developed Biogranules

4 RESULTS AND DISCUSSIONS

4.1 Characterisation of POME

4.2 Analysis of Acclimatised Seed Sludge

4.2.1 Change in Biomass Concentration and COD

4.2.2 Detection of Photosynthetic Pigments

4.3 Characteristics of Developed Biogranules

4.3.1 Formation and Morphologies of Biogranules

4.3.2 Size Distribution of Biogranules

4.3.3 Strength Characteristics of Biogranules

4.3.4 Profile of Biomass Concentration and Settling Properties

4.3.5 Profile of Biomass Concentration and Size

4.3.6 Profile of Settling Properties and Size

4.3.7 Profile of Biogranule Size and Strength

4.3.8 Profile of Biomass Concentration, Settling Properties and Sludge Volume Index (SVI)

4.3.9 Profile of Nutrient Removal
4.4 Microbial Characterisation of Developed Biogranules

4.4.1 Photosynthetic Pigment Analysis

4.4.2 Molecular Analysis of Biogranules

4.5 Application of Developed Biogranules for CO₂ Reduction

4.5.1 CO₂ Production and Removal by Biogranules during SBR Cycle

4.5.2 CO₂ Removal for Short and Prolonged Period

4.5.3 Comparison between CO₂ Removal in Gas and Liquid

4.5.4 CO₂ Biofixation Rate of Developed Biogranules

4.6 Statistical Analysis for CO₂ Removal by Developed Biogranules

4.6.1 CO₂ Removal in Gas (gCO₂) versus Treatment Time (t)

4.6.2 CO₂ Removal in Liquid (aqCO₂) versus Treatment Time (t)

4.6.3 Relationship between CO₂ Concentration in Liquid (dCO₂), Gas (gCO₂) and Treatment Time (t)

4.6.4 CO₂ Biofixation Rate (RCO₂) versus Treatment Time (t)

4.6.5 Relationship between CO₂ Biofixation Rate (RCO₂) Versus CO₂ in Liquid (aqCO₂), Biomass Productivity (Pmass) and Treatment Time (t)

4.7 Comparison between Developed Biogranules and Other Studies

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusions

5.2 Future Recommendations
REFERENCES
Appendices A-F
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Past studies describing the characteristics of raw POME</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Types of chlorophylls and bacteriochlorophylls</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Products of photosynthetic bacteria applied in the medical field</td>
<td>38</td>
</tr>
<tr>
<td>2.4</td>
<td>Several studies on photosynthetic bacteria with their cultivation condition</td>
<td>39</td>
</tr>
<tr>
<td>2.5</td>
<td>Different sources of CO\textsubscript{2} emissions from the industry</td>
<td>41</td>
</tr>
<tr>
<td>2.6</td>
<td>CO\textsubscript{2} removal achieved using different treatment method</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>Previous research associated with aerobic granulation</td>
<td>54</td>
</tr>
<tr>
<td>2.8</td>
<td>Previous wastewater processes involving anaerobic granules</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Analytical measurements monitored during the study</td>
<td>76</td>
</tr>
<tr>
<td>3.2</td>
<td>Lists of chemicals used for the enrichment mediums</td>
<td>83</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of PCR protocol</td>
<td>86</td>
</tr>
<tr>
<td>3.4</td>
<td>Operating parameters of SBR system</td>
<td>89</td>
</tr>
<tr>
<td>4.1</td>
<td>Characteristics of POME used in this study obtained from the local palm oil mill factory</td>
<td>96</td>
</tr>
<tr>
<td>4.2</td>
<td>Comparison between previous studies on CO\textsubscript{2} biofixation rate</td>
<td>138</td>
</tr>
<tr>
<td>4.3</td>
<td>ANOVA for fit of CO\textsubscript{2} removal in gas using the</td>
<td></td>
</tr>
</tbody>
</table>
developed granules

4.4 ANOVA for fit of CO$_2$ removal liquid using the developed biogranule 140

4.5 ANOVA for fit of simultaneous CO$_2$ removal in liquid and gas with time 142

4.6 Estimated regression coefficients for CO$_2$ removal in liquid and gas with time 144

4.7 ANOVA for fit of CO$_2$ biofixation rate using the developed granule 144

4.8 ANOVA analysis results for CO$_2$ biofixation rate versus time, biomass productivity and dissolved CO$_2$ 145

4.9 Estimated regression coefficients for CO$_2$ biofixation rate versus time, biomass productivity and dissolved CO$_2$ 147

4.10 Difference types of biogranule based on their characteristics and removal performances 147
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Contributions to world’s total global CO$_2$ emissions (Boden et al., 2015)</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison between Malaysia’s GHG emission and removal in 2000 and 2007 (Ministry of Natural Resources and Environment Malaysia, 2012)</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Typical fruit and production composition chart of a palm oil mill (Lorestani, 2006)</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Typical flow chart of palm oil mill operation process (Lam and Lee, 2010)</td>
<td>18</td>
</tr>
<tr>
<td>2.5</td>
<td>Basic path of anaerobic digestion. (1) Hydrolysis, (2) Fermentation, (3) Acetogenesis and (4) Metanogenesis</td>
<td>22</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic diagram of anaerobic tank used to treat POME utilizing biogas</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary of types of photosynthetic bacteria (Idi et al., 2015)</td>
<td>26</td>
</tr>
<tr>
<td>2.8</td>
<td>Primary processes in photosynthesis (Oijen et al., 1998)</td>
<td>27</td>
</tr>
<tr>
<td>2.9</td>
<td>Schematic illustration on the effect of temperature on process in plants (Zróbek-Sokolnik, 2012)</td>
<td>34</td>
</tr>
<tr>
<td>2.10</td>
<td>Schematic diagram of sewage wastewater treatment using photosynthetic bacteria on porous ceramic (Nagadomi et al., 2000)</td>
<td>36</td>
</tr>
<tr>
<td>2.11</td>
<td>(i) Raschig ring-filled column; (ii) submerged tube</td>
<td></td>
</tr>
</tbody>
</table>
system (Kobayashi et al., 1983)

2.12 Photosynthetic conversion of CO₂ to biomass (Steward and Hessami, 2005)

2.13 A complete carbon cycle, biofixation and main steps of algal biomass technologies (Demirbas, 2011)

2.15 Proposed mechanism for granulation after start-up of a SBR with a short settling time (Beun et al., 1999)

2.16 Granules step by step formation according to Wang et al. (2004)

2.17 Comparison between conventional activated sludge and aerobic granules (Thanh, 2005)

2.18 (a) Macrostructures of aerobic granules and (b) Scanning Electron Microscopy (SEM) images of microbial aerobic granules (Pronk et al., 2015b; Zhao et al., 2011).

2.19 Schematic representation of anaerobic granules by layers (Agapakis et al., 2012).

2.20 Anaerobic granules formed in an UASB reactor (a) Hernández-Mendoza and Buitrón (2014) and (b) Li and Yu (2011).

3.1 Summary of the research operational framework

3.2 Locations of the (a) POME and (b) seed sludge collected from palm oil mill ponding treatment system

3.3 Illustration of simple “SBR system” using a Schott bottle for acclimatization purposes

3.4 Actual setup for the acclimatization of mixed sludge

3.5 Schematic diagram of the experimental SBR system
setup 73
3.6 Actual lab-scale SBR system studied 74
3.7 Image analysis tool used for morphological analysis of the biogranules 75
3.8 Experimental design for bacteria identification 82
3.9 Actual designed of small-scaled column used 91
3.10 Schematic overview of CO₂ removal test 92
4.1 Time course of biomass concentration (○) related to the COD removal efficiency (▲) during acclimatisation of seed sludge 97
4.2 Physical properties of acclimatised sludge from (a) initial day until (b) 40 days 99
4.3 Results of bacteria isolated using three different growth medium after two weeks of incubation in the presence of light (a) G5: No colour change (b) Succinate: Reddish ‘bloom’ 100
4.4 Bacteriochlorophyll pigment of isolated bacteria 100
4.5 Morphology of the biogranules in the reactor under light microscope using PAX-it software (magnification = 400X) 102
4.6 Different images demonstrated the physical changes of (a) raw sludge, (b) flocs-forming small aggregates, (c) small aggregates like granule and (d) mature biogranules of various sizes 104
4.7 FESEM of the raw sludge at magnification of (a) 50X, (b) 5,000X and (c) 10,000X 105
4.8 FESEM of the developed biogranules at magnification of (a) 50X, (b) 5,000X and (c) 10,000X 107
4.9 Particle size distribution of biogranules in the SBR system at the end of the experiment 108
4.10 Profile of integrity coefficient representing the granular strength of biogranules 109
4.11 Accumulation of biomass (●) versus settling properties (○) in the SBR.

4.12 Profile of biogranule size collected during the granulation process against the biomass concentration in reactor.

4.13 Other bacteria growth may cause sludge bulking problem observed under light microscope. (a) Filamentous attached on the sludge aggregate and (b) Flagellum of filamentous bacteria (arrow) (magnification = 40X). (c) Stalked ciliates growth on sludge flocs and (d) free swimming ciliates at magnification of 200X.

4.14 The relationship between settling velocity (▲) and the size of developed biogranules (●).

4.15 Profile of biogranule size (●) and granular strength (○) with time.

4.16 Profiles of SVI (●), biomass concentration (○) and settling velocity (▲) during development period.

4.17 Profiles of COD and nutrient removal measured during the development of biogranules.

4.18 Results of bacteria isolated using succinate medium after three days of incubation in the presence of light (a) day 0 (b) Reddish ‘bloom’.

4.19 Whole cell in vivo absorption spectrum of reddish pigmented sample (a) and (b) obtained from the succinate medium. The samples displayed characteristics of photosynthetic pigments at 374, 376, 806, 866 and 870 nm.

4.20 Phylogenetic tree generated for Enterobacter cloacae strain SZ2.

4.21 Phylogenetic tree generated for Bacillus cereus strain SZ3.

4.22 Phylogenetic analysis for Engyodontium album.
strain SZ1

4.23 CO₂ removal and pH changes monitored during one SBR cycle in the presence of light and dark condition. The SBR cycle consists of (I) anoxic phase and (II) aerobic phase.

4.24 FESEM micrograph showing calcium carbonate crystalline structure formed (circled) on the surface of biogranule (magnification = 2,500X).

4.25 EDX spectra of the biogranule surface. There was a difference Ca content (by wt %) (A) Before treatment and (B) During treatment. Note: (i) = Ca; (ii) = C and (iii) = O.

4.26 Comparison of CO₂ gas removal efficiency between the application of biogranules and without the biogranules (control) in one day

4.27 Daily CO₂ removal recorded for five days. Samples used consist of POME (control) () as well as biogranule (). Note: I, III, V, VII, XI = ‘Presence of light’; II, IV, VI, VIII, X = ‘Dark condition’

4.28 Data plotted between the CO₂ removal in gas and liquid for seven days of treatment.

4.29 CO₂ biofixation rate using developed biogranules for seven days.

4.30 Plotted graph of CO₂ biofixation rate estimated for 30 days and one year.

4.31 The fitted line plotted showing the CO₂ concentration in gas removed with time.

4.32 Residual plots

4.33 Fitted plot line generated

4.34 Residual plots

4.35 Regression analysis of CO₂ biofixation rate

4.36 Residual plots

4.37 Residual plots for CO₂ biofixation rate accordingly to the selected parameters
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S rDNA</td>
<td>16S Ribosomal DNA</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>APHA</td>
<td>American Public Health Association</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological Oxygen Demand</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>C$_3$H$_5$NaO$_3$</td>
<td>Sodium Lactate</td>
</tr>
<tr>
<td>C$_4$H$_6$O$_5$</td>
<td>Malic Acid</td>
</tr>
<tr>
<td>C$_5$H$_9$NO$_4$</td>
<td>L-glutamic Acid</td>
</tr>
<tr>
<td>C$_6$H$_12$O$_6$</td>
<td>Glucose</td>
</tr>
<tr>
<td>CaCl$_2$.2H$_2$O</td>
<td>Calcium Chloride Dihydrate</td>
</tr>
<tr>
<td>CDM</td>
<td>Clean Development Mechanism</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony Forming Units</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>Methane</td>
</tr>
<tr>
<td>CMTR</td>
<td>Completely Mixed Tank Reactor</td>
</tr>
<tr>
<td>CNRS</td>
<td>French Centre for Scientific research</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>CO$_3^{2-}$</td>
<td>Carbonate</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>CPO</td>
<td>Crude Palm Oil</td>
</tr>
<tr>
<td>DIC</td>
<td>Dissolved Inorganic Carbon</td>
</tr>
<tr>
<td>DLVO</td>
<td>Derjaguin-Landau-Verwey-Overbeek</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Environment</td>
</tr>
<tr>
<td>EDX</td>
<td>Dispersive X-Ray Analyser</td>
</tr>
<tr>
<td>Acronym</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene Diamine Tetra Acetic Acid</td>
</tr>
<tr>
<td>EFB</td>
<td>Empty Fruit Bunch</td>
</tr>
<tr>
<td>EPS</td>
<td>Extracellular Polymeric Substances</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscope</td>
</tr>
<tr>
<td>GHG</td>
<td>Greenhouse Gases</td>
</tr>
<tr>
<td>GWP</td>
<td>Global Warming Potential</td>
</tr>
<tr>
<td>H/D</td>
<td>Height to Diameter</td>
</tr>
<tr>
<td>H⁺</td>
<td>Protons</td>
</tr>
<tr>
<td>H₂</td>
<td>Hydrogen Gas</td>
</tr>
<tr>
<td>H₂CO₃</td>
<td>Carbonic Acid</td>
</tr>
<tr>
<td>H₂S</td>
<td>Hydrogen Sulphide</td>
</tr>
<tr>
<td>HCO₃⁻</td>
<td>Bicarbonate</td>
</tr>
<tr>
<td>HRT</td>
<td>Hydraulic Retention Time</td>
</tr>
<tr>
<td>HS</td>
<td>Bisulfide</td>
</tr>
<tr>
<td>HSO₄⁻</td>
<td>Hydrogen Sulphate</td>
</tr>
<tr>
<td>IC</td>
<td>Integrity Coefficient</td>
</tr>
<tr>
<td>IPPC</td>
<td>Intergovernmental Panel on Climate change</td>
</tr>
<tr>
<td>K₂HPO₄</td>
<td>Dipotassium Phosphate</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>Monopotassium Phosphate</td>
</tr>
<tr>
<td>LD</td>
<td>Linear Dichroism</td>
</tr>
<tr>
<td>LHs</td>
<td>Light harvesting complexes</td>
</tr>
<tr>
<td>MF</td>
<td>Mesocarp Fibre</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>MgSO₄.7H₂O</td>
<td>Magnesium Sulfate Heptahydrate</td>
</tr>
<tr>
<td>MLSS</td>
<td>Mixed Liquor Suspended Solid</td>
</tr>
<tr>
<td>MLVSS</td>
<td>Mixed Liquor Volatile Suspended Solid</td>
</tr>
<tr>
<td>MPOB</td>
<td>Malaysian Palm Oil Board</td>
</tr>
<tr>
<td>MPOC</td>
<td>Malaysian Palm Oil Council</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>N₂</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>N₂O</td>
<td>Nitrous Oxide</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide Adenine Dinucleotide Phosphate</td>
</tr>
<tr>
<td>NaHPO₄</td>
<td>Sodium Phosphate</td>
</tr>
<tr>
<td>Acronym</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center for Biotechnology Information</td>
</tr>
<tr>
<td>NH₃-N</td>
<td>Ammonical Nitrogen</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>Ammonium Chloride</td>
</tr>
<tr>
<td>O₂</td>
<td>Oxygen</td>
</tr>
<tr>
<td>OLR</td>
<td>Organic Loading Rate</td>
</tr>
<tr>
<td>PO₄-P</td>
<td>Orthophosphate</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorus</td>
</tr>
<tr>
<td>PCP</td>
<td>Pentachlorophenol</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PHA</td>
<td>Polyhydroxyalkanoate</td>
</tr>
<tr>
<td>PKS</td>
<td>Palm Kernel Shell</td>
</tr>
<tr>
<td>PNSB</td>
<td>Purple Non-Sulphur Bacteria</td>
</tr>
<tr>
<td>PNSBEM</td>
<td>Purple Non Sulphur Bacteria Enrichment Medium</td>
</tr>
<tr>
<td>POME</td>
<td>Palm Oil Mill Effluent</td>
</tr>
<tr>
<td>RCs</td>
<td>Photosynthetic Reaction Centers</td>
</tr>
<tr>
<td>Rubisco</td>
<td>Ribulose-1,5-bisphosphate carboxylase/oxygenase</td>
</tr>
<tr>
<td>S</td>
<td>Sulphur</td>
</tr>
<tr>
<td>SBR</td>
<td>Sequencing Batch Reactor</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SIRIM</td>
<td>Standards and Industrial Research Institute of Malaysia</td>
</tr>
<tr>
<td>SO₂</td>
<td>Sulphur Dioxide</td>
</tr>
<tr>
<td>SS</td>
<td>Suspended Solids</td>
</tr>
<tr>
<td>SVI</td>
<td>Sludge Volume Index</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-acetate-EDTA</td>
</tr>
<tr>
<td>TCE</td>
<td>Tetrachloroethylene</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solid</td>
</tr>
<tr>
<td>TKN</td>
<td>Total Kjeldahl Nitrogen</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>TS</td>
<td>Total Solid</td>
</tr>
<tr>
<td>TSS</td>
<td>Total Suspended Solid</td>
</tr>
<tr>
<td>TVC</td>
<td>Total Viable Count</td>
</tr>
<tr>
<td>U.S.EPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>UASB</td>
<td>Upflow Anaerobic Sludge Bed Reactor</td>
</tr>
<tr>
<td>Acronym</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>VCSEL</td>
<td>Vertical Cavity Surface Emitting Laser</td>
</tr>
<tr>
<td>VFAs</td>
<td>Volatile Fatty Acids</td>
</tr>
<tr>
<td>VSS</td>
<td>Volatile Suspended Solid</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization’s</td>
</tr>
<tr>
<td>WRI</td>
<td>World Resources Institute</td>
</tr>
<tr>
<td>ZSV</td>
<td>Zone Settling Velocity</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>v/v</td>
<td>Volume/Volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight/Volume</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per Million</td>
</tr>
<tr>
<td>R_{CO_2}</td>
<td>CO₂ Biofixation Rate</td>
</tr>
<tr>
<td>C_c</td>
<td>Carbon content</td>
</tr>
<tr>
<td>P_{max}</td>
<td>Biomass Productivity</td>
</tr>
<tr>
<td>M_{CO_2}</td>
<td>Molar Mass of CO₂</td>
</tr>
<tr>
<td>M_c</td>
<td>Molar Mass of Carbon</td>
</tr>
<tr>
<td>R-Sq</td>
<td>Regression Coefficient</td>
</tr>
<tr>
<td>p-value</td>
<td>Significance Value</td>
</tr>
<tr>
<td>S</td>
<td>Standard Error</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Calculation of Organic Loading Rate</td>
<td>219</td>
</tr>
<tr>
<td>B</td>
<td>Detail Identification of Isolated Microorganisms from Biogranules</td>
<td>220</td>
</tr>
<tr>
<td>C</td>
<td>Morphology of Bacterial Cells and Arrangement</td>
<td>228</td>
</tr>
<tr>
<td>D</td>
<td>Example of Data for CO₂ Removal Using Biogranules</td>
<td>229</td>
</tr>
<tr>
<td>E</td>
<td>Data Collection of CO₂ Removal in Gas and Liquid</td>
<td>277</td>
</tr>
<tr>
<td>F</td>
<td>Example of CO₂ Biofixation Rate Using Biogranules</td>
<td>278</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Problem

The World Meteorological Organization’s (WMO) Green House Gas Bulletin 2011 had reported that the amount of greenhouse gases (GHG) has increased since the pre-industrial time (Shun et al., 2012). Amongst all GHG, nearly 64% of carbon dioxide (CO$_2$) gas contributes to climate change. From the year 1980 to 2011, the abundance of atmospheric CO$_2$ has increased globally averaging 1.7 CO$_2$ ppm per year (Hartmann et al., 2013). Biological carbon sequestration using technologies such as controlled photosynthetic reactions may help to alleviate GHG problems, by carrying out reactions where CO$_2$ is transferred to the aqueous phase of the system (Jacob-Lopes et al., 2009). The photosynthetic bacteria signify as a promising tool for the development of various fields of biotechnology due to their capabilities to assimilate CO$_2$ gas, fix molecular nitrogen via photosynthetic metabolism and grow on different wastes (Paronyan and Gasparyan, 2009).

The CO$_2$ is naturally removed by plants from the atmosphere and replaces it with oxygen (O$_2$). Thus, it would tend to restore the CO$_2$ released by the burning of fossil fuels. However, the condition is complicated by the fact that plants themselves react to the amount of CO$_2$ in the atmosphere. Some plants appear to grow more rapidly in an atmosphere rich in CO$_2$, but this may not be true for all species. Furthermore, active deforestation in developing countries must be also accounted and monitored since the atmosphere could accumulate CO$_2$ gases leading to a higher global warming effect (Michaelowa and Michaelowa, 2015; Malhi et al., 2008; Campbell-Lendrum and Corvalán, 2007).
In Malaysia, one of the major sources of GHG is from industrial wastewater treatment such as the ponding system to treat palm oil mill effluent (POME). Malaysia’s palm oil industry had generated approximately 80 million dry tonnes of solid biomass per annum as the volume is expected to increase to 85-110 million dry tonnes by 2020 (Agensi Inovasi Malaysia, 2013). Generally, one tonne of crude palm oil production needs 5.0-7.5 tonnes of water from which 50 % are released in the form of POME. This POME contained a high organic content (COD = 50 g/L, BOD = 25 g/L) and substantial amounts of plant nutrient (MPOB, 2014; Abdul Rahman et al., 2013; Ahmad et al., 2005; Singh et al., 1999).

A ponding system for POME conventionally treated in a series of aerobic and anaerobic ponds that required over 100 days of the treatment period. For instance, the anaerobic pond produces harmful and odorous gases such as sulphur dioxide (SO_2), methane (CH_4) and CO_2 (Daelman et al., 2012; Olah et al., 2009; Alimahmoodi and Mulligan, 2008). The continuous production of CH_4 in the air will increase the threat of global warming, since CH_4 reacts with water to form CO_2 and water. These could cause the accumulation of CH_4 and CO_2 in the atmosphere which contributes to the greenhouse effect causing global warming synergism (WRI, 2014; Bandara et al., 2011). There is a lot of interest in reducing these GHG emissions commonly in anaerobic wastewater treatments (Martinez et al., 2013; Chotwattanasak and Puetpaiboon, 2011) with the latest study concentrating on the CO_2 utilization using algae, microalgae and photobioreactor (Nugroho et al., 2015; Nayak et al., 2013; Pankaj and Awasthi, 2013).

Biogranulation technology is a promising new technology in aerobic wastewater treatment system and has increasingly attracted interest in recent years due to its ability to overcome the limitations in conventional activated sludge system. This technology is a self-immobilization of microorganisms which can withstand high biomass retention, high strength wastewater and shock loadings as they are rich with microbial diversity. It also improves the characteristics of sludge whereby its granular form having a compact structure with good settling capability and simultaneous removal of organic matter, nitrogen and phosphorus (Aqeel et al., 2015; Wagner and Costa, 2015; Bassin et al., 2012; Wei et al., 2012).
Consequently, a special attention on how can the ecological balance between photosynthetic and respiratory activities in municipal wastewater be restored is needed. An improvement on the CO\(_2\) uptake rate within the microbial community in the sludge has to be deliberate. To avoid mass emission, photosynthesis needs to be enhanced in the sludge community in order to minimize the release of CO\(_2\). Various efforts by researchers was done on carbon recycling within the microsystem in order to realize photosynthesis in wastewater treatment (Kamarudin et al., 2015; Zeng et al., 2015; Masunaga et al., 2007; Ogbonna et al., 2000). Additionally, Malaysia is suitable for photosynthesis with its location within the tropical region and an average daily sunlight of 4.5 to 8 hours. Photosynthesis is usually known as the conversion of light energy to chemical energy that can be used by cells. All phototrophs absorb energy from light to reduce CO\(_2\) to organic compounds. Phototrophic microorganisms are of commercial interest due to the fact that they perform photosynthesis (Fernandes et al., 2015).

Photosynthetic microorganism or bacteria plays an important role for the CO\(_2\) sequestration within the microsystem of wastewater as it utilizes the CO\(_2\) from the environment (Liu et al., 2015; Nowak et al., 2015; Bently and Melis, 2013; Farrelly et al., 2013). Microbial communities in aerobic granules have been shown to be highly distinct from activated sludge, even within a single reactor system. Recent studies emphasize the importance of understanding the functions of microbial communities (Egan et al., 2013; Rastogi and Sani, 2011; Zak et al., 2011) as population diversity alone may not be adequate in determining the microbial characteristics.

Microbial communities in aerobic granules have been shown to be highly distinct from activated sludge, even within a single reactor system. Recent studies imply the importance of gaining an understanding of the functions of microbial communities, as population diversity alone may not be adequate in determining the microbial characteristics. For that reason, this study focuses on the development of microbial granules containing photosynthetic bacteria that are able to minimize CO\(_2\) emissions from wastewater treatment plant especially POME.
1.2 Statement of Problem

Most of the aerobic granulation studies that have been carried out mainly involve the sequencing batch reactor (SBR) designs and operations, physicochemical conditions, and biodegradation performances (Khalida et al., 2013; Abdullah et al., 2013; Nor-Anuar et al., 2007). To date, a few studies on aerobic granulation have considered the global warming effects focusing on the important roles of microorganisms for the reduction of CO₂ concentration in simultaneous anaerobic-aerobic process. In order to accomplish such modification of the SBR operational parameters, suitable requirements for growth of microorganisms need to be first established. Salmiati et al. (2015) started to develop phototrophic aerobic granular sludge for CO₂ reduction and synthetic wastewater was used as substrates.

Therefore, this study was focused on the development of biogranules that were able to minimize CO₂ emissions from POME. The biogranules were developed in the SBR using high strength agricultural wastewater such as POME to investigate their physical properties and microbial diversity. This latest development highlighted the potential application of biogranules containing photosynthetic pigments for CO₂ reduction and CO₂ biofixation of high strength wastewater which will be useful for small footprint wastewater treatment process. Hence, this study was designed to investigate the performance of developed biogranules containing photosynthetic pigments for removal of CO₂ in POME.

1.3 Objectives of Study

This study was embarked on the following objectives:

i. To develop and characterise biogranules containing photosynthetic bacteria in POME using sequencing batch reactor (SBR) system.

ii. To evaluate the microbial characterisation of the developed biogranules containing photosynthetic bacteria.
iii. To investigate the production, removal of CO₂ and the CO₂ biofixation rate efficiency of the developed biogranaules.

1.4 Scope of Study

This study had involved the laboratory and batch scale experimental work in the development of biogranaules containing photosynthetic bacteria as well as investigate its efficiency to reduce CO₂. The main instrument used to achieve biogranaulation is the lab-scale SBR system alternating anoxic and aerobic conditions whereas photosynthetic condition was created by setting up the proper light intensity, pH and temperature. POME used as influent was autoclaved to get rid of indigenous bacteria that may interfere with the biogranaulation process. Also, the seed sludge was a mixed of sludge collected from a local palm oil plant and domestic wastewater treatment plant as well as the POME. Throughout the study, the physiochemical characteristics of the biogranaules containing photosynthetic bacteria were observed during the biogranaulation process. For the application of biogranaules in reducing CO₂, the production and removal of CO₂ in POME were monitored focusing on the CO₂ concentration released from liquid and gas form as well as the pH changes. Later on, the CO₂ biofixation rate was calculated using the equation from Tang et al. (2011) and its elemental information such as the carbon (C) content obtained through an Energy Dispersive X-Ray Analyser (EDX).

1.5 Significance of Research

This study will be a significant endeavour in promoting and introducing the utilization of photosynthetic bacteria within a biogranaule formed as an alternative approach to current CO₂ mitigation strategies in minimizing the CO₂ emission from the atmosphere and POME. By implementing the biogranaulation technology in the palm oil industry, the sludge production will be improved by developing into granules consist of compact, denser structure, and higher settleability lead to a better
solid-liquid separation in the wastewater. Furthermore, for CO₂ sequestration, this biological treatment method will be beneficial than physical method with a very expensive process such as capturing, transporting and storing CO₂. Also, this study will provide some understanding of the CO₂ cycle exchanging between the atmosphere and water as well as effectiveness of CO₂ fixation using the biogranelles for future work.

From this study, it appears to be necessary for developing future adaptation strategies and knowledge to manage GHG emissions from wastewater cycle and the vulnerability of climate assessment to interact with the adaptive responses that could address emission sources. In other words, the increase of the global warming effects has raised the challenge of finding sustainable technological approaches to stabilize CO₂ emissions in the atmosphere and counteract impinging interconnected issues such as desertification and loss of biodiversity. For that reason, the biological CO₂ mitigation through biological fixation is considered a promising and eco-sustainable method, mostly owing to its downstream benefits that can be exploited.
REFERENCES

Environment Symposium. 9 September. University of Sri Jayewardenepura, Sri Lanka.

