SIMULATION METHODOLOGY FOR FRACTURE PROCESSES OF COMPOSITE LAMINATES USING DAMAGE-BASED MODELS

SEYED SAEID RAHIMIAN KOLOOR

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

Faculty of Mechanical Engineering
Universiti Teknologi of Malaysia

JUNE 2016
To my beloved

Prof. Mohd Nasir, Dad and Mom, my wonderful wife Atefeh, my brother Mustafa, and my sisters Maryam and Masoomeh.

To my friends for their endless love and supports…
ACKNOWLEDGEMENT

I would like to take this opportunity to express my gratitude to everyone who has assisted me to make this project a success.

First of all, I would like to render my innumerable thanks to Allah for giving me a wonderful life. I also would like to thank my supervisor Prof. Dr. Mohd Nasir TAMIN for his support, guidance and instruction throughout my postgraduate study during M.Sc and Ph.D. programs. As a supervisor and a kind father, he has been a source of encouragement and direction; as a man in science, he has been an inspiration.

Most of all, I thank my devoted and patient parent, my loving wife and best friend, Dr. Atefeh, who helped and supported me with her love, respect and patient, my kind and respected honorable brother Dr. Mustafa, and my wonderful sisters Maryam and Masoomeh for their love, support, help and encouragement through the good and difficult times I faced in the past years. This dissertation is the product of so much more than six years and my family has supported me through it all.

This work was possible with assistance of many people throughout the mechanical engineering departments who helped, spent time and energy to teach new techniques to me. My gratitude also goes to the persons, who work in Computational Solid Mechanics Laboratory (CSMLab) for helping me to get useful information. This work was part of a collaborative research program between the Institute of Automotive and Transportation (ISAT), University of Burgundy, Nevers, Cedex, France and Universiti Teknologi Malaysia (UTM), under the financial support through
research grant No. RUG-00H51. I thank ISAT for providing the CFRP composite plates and the related mechanical information that has been used through this study. I also thank the Center for Composites, UTM, where the GFRP composite material is manufactured and prepared. The computational study of the research is performed at High Performance Computing Center, CICT, UTM. I also thank the Ministry of Education Malaysia for the Flagship Research University Grant No. UTM-00G42 and Fundamental Research Grant No. UTM-4F420, which provided the necessary financial supports for this project.

This work provides the necessary scientific information that are using in the research activities of the current project, entitled UTM-AMIC (Aerospace Malaysia Innovation Centre) research program as an industry-based research supported by AIRBUS company. I would like to thank these organizations for their supports.

There are so many people to whom I am indebted for support and encouragement. I thank them all…
ABSTRACT

Fiber-reinforced polymer composite (FRP) laminates have found increasing use in advanced industrial applications. However, the limited knowledge and validated material models of the failure processes of the laminated composites continue to pose challenges in ensuring reliability and integrity of the structures. This research aims at establishing a validated simulation methodology for fracture assessment of FRP composite laminates. The approach accounts for the failure processes and the associated damage mechanisms through finite element (FE) simulations. The FE model development considers the existence of the physical interfaces between the laminas due to the manufacturing processes. A hybrid experimental-computational approach is developed for systematic implementation of the simulation methodology. Different combinations of the failure modes were observed, including matrix cracking-crushing, fiber/matrix interface debonding, interface multi-delamination, and fiber fracture-buckling. Local material failure is modeled by a damage initiation event followed by the evolution of the damage to fracture. Two types of damage-based models are investigated; the continuum damage model encompassing the multi-damage criteria for the FRP composite lamina and the cohesive zone model for interface delamination. A full derivation of the continuum damage model for the anisotropic material is given and employed for prediction of the damage evolution in the lamina. A series of experiments on CFRP and GFRP composite laminate specimens are conducted to establish the flexural and fracture behaviors of the materials. Complementary 3D FE models of the specimens and test setups are developed. Two different FE-based models, namely the conventional and Prepreg model, are developed and examined for GFRP and CFRP composites. Results show that accurate prediction of elastic-damage behavior and the progressive damage process in FRP composites depend on the chosen FE-based model of the FRP composite laminates and the damage-based material model used. The flexural test of a 12-ply antisymmetric CFRP composite beam specimen under four-point bending displayed the occurrence of multiple failure events. These include matrix cracking at lamina No. 9 (90°), and delamination at interfaces No. 8 (-45°/90°) and No. 9 (90°/45°). In addition, intralaminar multi-failure events are predicted in lamina No. 1 (-45°) due to matrix shear and fiber buckling failures. FE simulation of the test predicted an accurate flexural response with less than 4% average error when compared with measured data, along with similar multiple failure zones in the specimen. Damage dissipation energy is used to illustrate the quantity of the overall progressive damage in FRP laminas, interfaces and the laminated composite. The simultaneous use of lamina and interface damage models in the FE simulation of the FRP composite laminate is recommended in view of the occurrence of multiple intralaminar-interlaminar failure modes and fractures under general loading conditions.
ABSTRAK

Penggunaan laminat komposit polimer bertetulang gentian (FRP) dalam industri termaju didapati telah meningkat. Walau bagaimanapun, pengetahuan yang terhad dan model bahan tervalidasi untuk proses kekagalan laminat komposit tersebut terus memberi cabaran dalam memastikan keboleharapan dan integriti sesuatu struktur. Kajian ini bertujuan untuk menghasilkan suatu metodologi simulasi tervalidasi bagi penilaian patah laminat komposit FRP. Pendekatan ini mengambil kira proses kekagalan dan mekanisme kerosakan yang berkaitan melalui simulasi unsur terhingga (FE). Pembangunan model FE mengambil kira kewujudan lapisan fizikal di antara lamina-lamina yang terhasil dari proses pembuatan. Suatu pendekatan eksperimen-komputera hibrid dibangunkan untuk pelaksanaan metodologi simulasi yang sistematik. Gabungan mod kekagalan yang berbeza telah diperhatikan termasuk retak-hancur matrik, lekangan gentian/matrik, berbilang lekangan antara-muka dan ledingan-patah gentian. Kekagalan setempat bahan dimodel oleh kejadian kerosakan permulaan dan diikut oleh evolusi kerosakan sehingga patah. Dua jenis model berasaskan kerosakan telah diasiasat; model kerosakan kontinum yang merangkumi kriteria pelbagai keremahkini pelbagai kererosakan untuk laminat komposit FRP dan model zon kohesif untuk lekangkan antara-muka. Suatu terbitan penuh model kerosakan kontinum untuk bahan anisotropik telah disediakan dan diguna pakai untuk ramalan evolusi kerosakan dalam lamina. Suatu siri eksperimen ke atas spesimen laminat komposit CFRP dan GFRP telah dijalankan untuk mewujudkan gaya laku lenturan dan patah bahan. Model pelengkap FE 3D untuk spesimen dan tentuatur ujian telah dibangunkan. Dua model FE yang berbeza; iaitu model conventional dan prepreg telah dibangunkan dan diteliti untuk komposit GFRP dan CFRP. Keputusannya menunjukkan bahawa ramalan tepat kelakuan anjalrosak dan proses kerosakan yang progresif dalam komposit FRP bergantung kepada model FE yang dipilih untuk laminat komposit FRP tersebut dan model berasaskan kerosakan yang diguna pakai. Ujian lenturan ke atas specimen rasuk komposit CFRP 12-lapis yang antisimetri di bawah beban titik-empat lenturan menunjukkan berlakunya kejadian pelbagai kekagalan. Ini termasuk kesan matrik pada lamina No. 9 (90°), dan lekangan pada antara-muka No. 8 (-45°/90°) dan No. 9 (90°/45°). Tambahan lagi, kejadian pelbagai kekagalan dalam-lamina diramal berlaku dalam lamina No.1 (-45°) disebabkan oleh rich matrik dan kekagalan ledingan gentian. Simulasi FE ujian tersebut memandangkan respon lenturan yang tepat dengan ralat purata kurang daripada 4% berbanding dengan data yang diukur, berserta zon kekagalan yang serupa di dalam spesimen. Tenaga pelesapan rosak boleh digunakan untuk menggambarkan kuantiti keseluruhan proses kerosakan yang progresif dalam laminat-lamina FRP, antara-muka dan laminat komposit. Penggunaan serentak model kerosakan lamina dan antara-muka dalam simulasi FE bagi laminat komposit FRP adalah disyorkan memandangkan boleh berlakunya pelbagai mod kekagalan dalam-lamina/antara-lamina dan keretakan di bawah keadaan pembebanan umum.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATAION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENT</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xxviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xxx</td>
</tr>
<tr>
<td></td>
<td>LIST OF TERMINOLOGIES</td>
<td>xxxiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxxv</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Problem Background and Rationale</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3 Statement of the Research Problem</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.4 Research Questions</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.5 Objectives of Study</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.6 Scope of Study</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.7 Layout of the Thesis</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>LITRTURE REVIEW</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.1 Composite Materials Definition</td>
<td>12</td>
</tr>
</tbody>
</table>
2.2 Physical Identification of FRP Laminate Composites for Analysis and Failure Aspects

2.2.1 A General View of Failure Modes in Composite Materials

2.3 Advanced Applications of FRP Composite Materials

2.4 Manufacturing Process of FRP Composite Materials

2.4.1 Prepreg/Autoclave Manufacturing Process

2.4.2 Vacuum Infusion Manufacturing Process

2.4.3 Manufacturing Issue and Modeling of FRP laminate Composites

2.5 FE Method and Simulation Practices in FRP Laminated Composites

2.6 Mechanics of Composite Materials

2.7 Damage Mechanism of Composite Laminates

2.8 Continuum Damage Mechanics

2.8.1 Damage Mechanics-based Models

2.8.2 Mechanical Representation of Damage

2.8.3 Continuum Damage Mechanics and FRP Laminate Composites

2.9 Failure of FRP Laminate Composites

2.9.1 Damage Modes and Failure Criteria of FRP Lamina

2.9.2 Progressive FRP Lamina Damage Process

2.9.3 Interlaminar Damage Evolution of FRP Laminate Composite

2.9.4 Multiple Damage and Fracture of FRP Laminate Composite

2.10 Summary of the Literature Review and Outlines

3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Research Framework

3.3 Specimen Design and Experiment for Failure Study of
FRP Composites

3.3.1 Specially-Designed Experiment for FRP Laminate Composites 57
3.3.2 Fractographic Analysis 63

3.4 Physical Simulation of FRP Composite Materials 63

3.5 Finite Element Simulation of FRP Laminated Composites 64
3.5.1 FRP Composite Manufacturing Issue and FE Model-based Construction 68

3.6 FE Mesh Configuration of FRP Composite System and Mesh Convergence Study 74

3.7 Hybrid Experimental-Computational Approach, and Validation of the FE Models 79

3.8 Layout of the FE Models and Experiments 82

3.9 Summary of the Research Methodology and Outlines 83

4 THEORTEICAL BACKGROUND OF CONTINUUM DAMAGE MODELS OF FRP COMPOSITE LAMINATES 85

4.1 Introduction 85

4.2 Constitutive Model of Anisotropic Damage in FRP Laminated Composites 87
4.2.1 Orthotropic Behavior of FRP Lamina 89
4.2.2 Damage Initiation Criteria 91
4.2.3 Post-Damage Initiation Model and Concept 96
4.2.3.1 Equivalent Elastic Constitutive Behavior of Anisotropic Material for Prediction of Stress Level of Damage Initiation Criteria 109
4.2.4 Softening Behavior and Damage Evolution of Anisotropic Materials 113
4.2.5 Multiple Constitutive Models of Anisotropic FRP Lamina 121

4.3 Physically-based Model of Interface Failure in FRP
Composites

4.3.1 A Constitutive Motion-Based Model to Relate Nodes Contact in Plies Interfaces 126

4.3.2 Continuum Theory of Cohesive Zone Model 128
 4.3.2.1 Mixed-Mode Interface Damage Initiation 132
 4.3.2.2 Mixed-Mode Interface Damage Propagation 134
 4.3.2.3 Constitutive Equation for Mixed-Mode Behavior 136

4.3.3 Preliminary FE Modeling of Interface for FRP Composite Laminates 137

4.4 Internal Energy Terms 140

4.5 Summary and Outlines 145

5 MECHANICAL RESPONSE AND MULTI-DAMAGE PROCESSES OF FRP COMPOSITE LAMINATES MANUFACTURED USING VIP AND PREPREG/AUTOCLAVE METHODS 147

5.1 Introduction 147

5.2 Materials and Experimental Procedures 148

5.3 Finite Element Modeling 150

5.4 Results and Discussion 152
 5.4.1 Mechanical Response and Failure Process of Prepreg CFRP Composite Laminates 153
 5.4.1.1 Structural Response and Fractographic Study Aspects 153
 5.4.1.2 Mesh Convergence Study Aspect 155
 5.4.1.3 Validation of FE Simulation Process 158
 5.4.1.4 Critical Structural Deformation 160
 5.4.1.5 Matrix Damage Initiation Process 162
 5.4.1.6 Variation of Critical Stresses 164
 5.4.1.7 Progressive Matrix Damage Process 173
 5.4.1.8 Progressive Fiber Damage Process 178
5.4.1.9 Assessment of Critical Energy Terms 181
5.4.2 Mechanical Response of GFRP Composite Manufactured by Vacuum Infusion Process 185
5.4.2.1 Structural Response and Validation of FE Simulation Process 185
5.4.2.2 Assessment of Critical Strain and Stress Parameters 186
5.4.2.3 Progressive Damage Process and Assessment of Critical Energy Terms 188
5.5 Summary and Outlines 192

6 INTERLAMINAR DAMAGE AND FRACTURE PROCESSES OF CFRP COMPOSITE LAMINATES 193

6.1 Introduction 193
6.2 Mode-I Fracture Characterization of CFRP Laminate Composite 194
 6.2.1 Material and Experimental Procedures 195
 6.2.2 Results and Discussion 196
 6.2.2.1 DCB Structural Response 196
 6.2.2.2 Delamination Resistance Curve 199
 6.2.2.3 Interface Delaminated Region 200
6.3 Mode-II Interlaminar Damage and Fracture Characterizations of CFRP Laminate Composites 201
 6.3.1 Problem Description and Hybrid Experimental-Computational Approach 202
 6.3.2 Experiments Method 204
 6.3.3 FE Simulation Process 205
 6.3.4 Results and Discussion 208
 6.3.4.1 Validation of the Mechanics of System Responses, and Mechanism of Damage 208
 6.3.4.2 Sequence of Interface Damage and Fracture Processes 213
 6.3.4.3 Stress Distribution in Laminas 214
6.3.4.4 Evolution of Interface Damage 219
6.3.4.5 Progressive Interface Damage Process 223
6.3.4.6 Interface Damage Accumulation 225
6.3.4.7 Interlaminar Failure Characteristics 227
 6.3.4.7.1 Fractographic Analysis of Delaminated Interface (Stable Case) 228
 6.3.4.7.2 Fractographic Analysis of the Unstable Interface Failure of CFRP Composite 231
6.3.4.8 Structural Response and Interlaminar Fracture Process using Hybrid Experimental-Computational Technique 233
 6.3.4.8.1 Mechanical Behavior in Relation with Structural Response Using Hybrid Experimental-Computational Technique 244
6.3.5 Summary and Outlines 247

7 FAILURE OF CFRP COMPOSITE LAMINATES BY MULTIPLE DAMAGE AND FAILURE PROCESSES 250
7.1 Introduction 250
7.2 Material and Experimental Procedure 252
7.3 Finite Element Modeling Process 253
7.4 Results and Discussion 256
 7.4.1 Structural Response and Multiple Failure Events 257
 7.4.2 Structural Response and FE Model Validation Process 263
 7.4.3 Multiple Damage Initiations Processes 266
 7.4.4 Variation of the Effective Stresses 271
 7.4.5 Evaluation of Critical Energy Terms 273
 7.4.6 Mechanisms of Multiple Failures of CFRP Composite Laminates 277
7.5 Summary and Outlines 286

8 CONCLUSION AND RECOMMENDATION 289
8.1 Conclusion 289
8.2 Recommendations 294

REFERENCES 295
Appendices A-B 326-330
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Characterization of specimens geometry and loading rates.</td>
<td>59</td>
</tr>
<tr>
<td>3.2</td>
<td>Specimen configurations for tensile and flexural loading tests.</td>
<td>60</td>
</tr>
<tr>
<td>3.3</td>
<td>Elastic properties and damage model parameters of unidirectional GFRP and CFRP1 laminas.</td>
<td>62</td>
</tr>
<tr>
<td>3.4</td>
<td>Elastic properties of unidirectional CFRP2 lamina and interlaminar elastic-damage properties of CFRP2 and CFRP1.</td>
<td>62</td>
</tr>
<tr>
<td>3.5</td>
<td>Steps for modeling, solution and post-processing phases and the corresponding procedures implemented in the FE software according to FE simulation process.</td>
<td>66</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary of the FE model and experimental test through the present study</td>
<td>83</td>
</tr>
<tr>
<td>6.1</td>
<td>FE Models of CFRP composite for ENF test setup.</td>
<td>207</td>
</tr>
<tr>
<td>6.2</td>
<td>Sequence of interface damage evolution and fracture of CFRP composite under ENF loading condition.</td>
<td>214</td>
</tr>
<tr>
<td>7.1</td>
<td>Location and time to fiber and matrix damages in each lamina of CFRP composite under four-point bending test.</td>
<td>270</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Composite material construction.</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Composite material systems and configurations.</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>The levels of analysis in FRP laminated composite structures according to their micro-to-macro construction.</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Various failure modes in FRP laminate composites at different scales.</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>(Left) Young’s modulus versus density, and (Right) specific stiffness versus specific strength of various materials.</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>The new Boeing 787 and the total different types of materials that is used in the airplane body.</td>
<td>19</td>
</tr>
<tr>
<td>2.7</td>
<td>(Top) the materials distribution (weight breakdown) and, (Bottom) major monolithic CFRP composite and thermoplastics applications in Airbus-A380.</td>
<td>20</td>
</tr>
<tr>
<td>2.8</td>
<td>Global axis (x,y) and local axis (1,2) of an angle lamina.</td>
<td>28</td>
</tr>
<tr>
<td>2.9</td>
<td>Variation of strain and stress parameters through the thickness of the FRP laminate composites.</td>
<td>30</td>
</tr>
<tr>
<td>2.10</td>
<td>Mechanism of damage in FRP laminate composite under tensile loading condition (lateral cross-section view).</td>
<td>31</td>
</tr>
<tr>
<td>2.11</td>
<td>Mechanics of solid materials and analysis domains classification.</td>
<td>34</td>
</tr>
</tbody>
</table>
2.12 Monotonic deformation and the continuum damage process in an isotropic material.

2.13 Matrix cracking under pure and mixed-mode loading condition.

2.14 Multiple failure events in CFRP composite beam under tension load.

3.1 The framework of the research methodology.

3.2 Interlaminar fracture toughness tests under Modes I (left) and II (right) loading conditions.

3.3 The specimens configuration for three- and four-point bending, and tensile tests on GFRP and CFRP composites.

3.4 General sequence of FE simulation steps.

3.5 Meso-scale construction of [45/0/90] composite laminate that show different manufacturing process of, (a) VIP method represented by Conventional FE model and (b) Prepreg/Autoclave Method represented by Prepreg FE model.

3.6 FE based-model construction of multidirectional FRP composite, representing the conventional (VIP manufacturing process) and Prepreg (Prepreg/Autoclave fabrication method) models.

3.7 Flowchart of the method to specify the correct FE model construction for FRP composite laminates that manufactured using different methods.

3.8 Identical spring view of FRP laminate composites that are modeled using different constructions of: (a) conventional (b) Prepreg, (c) Prepreg model with interface decohesion element models.

3.9 FE mesh configuration of CFRP composite under three-point bending condition.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10</td>
<td>Mesh convergence study of CFRP composite under three-point bending condition, by monitoring the effective stresses variation at a critical point.</td>
</tr>
<tr>
<td>3.11</td>
<td>Outcomes of the two-tier FE mesh convergence study (a) Load-deflection and (b) flexural stiffness curves.</td>
</tr>
<tr>
<td>3.12</td>
<td>Flowchart of mesh convergence study for damage analysis of FRP composite system.</td>
</tr>
<tr>
<td>3.13</td>
<td>Flowchart of experimental-computational approach implementation.</td>
</tr>
<tr>
<td>4.1</td>
<td>Progression of failure in multidirectional FRP composite in the form of micro-macro scale damage, illustrated in meso-scale at unidirectional FRP lamina level.</td>
</tr>
<tr>
<td>4.2</td>
<td>Bilinear softening constitutive model for each failure mode in material point of the continuum lamina.</td>
</tr>
<tr>
<td>4.3</td>
<td>(a) Schematic view of failure surfaces, (b) failure modes, and failure planes (b).</td>
</tr>
<tr>
<td>4.4</td>
<td>Schematic multi-surface of Hashin's failure criteria.</td>
</tr>
<tr>
<td>4.5</td>
<td>Continuum orthotropic material under external loading, and orthotropic elements under different types of internal loads (a), the effective stresses resultant on orthotropic element (b).</td>
</tr>
<tr>
<td>4.6</td>
<td>Deformation and the continuum damage concept in a lamina (longitudinal or transverse direction) under tensile (or compression) load.</td>
</tr>
<tr>
<td>4.7</td>
<td>The physical concept of post-damage initiation and schematic stiffness behavior of orthotropic FRP material.</td>
</tr>
<tr>
<td>4.8</td>
<td>Elastic constitutive behavior of anisotropic materials based on damage modes.</td>
</tr>
<tr>
<td>4.9</td>
<td>The schematic view of the constitutive damage model for mixed-mode elastic-damage behavior in a material point of</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>4.10</td>
<td>Variation of equivalent stress versus damage dissipation energy in softening process of each damage mode.</td>
</tr>
<tr>
<td>4.11</td>
<td>Damage variable as a function of equivalent displacement.</td>
</tr>
<tr>
<td>4.12</td>
<td>Linear softening law versus damage dissipation energy through softening process.</td>
</tr>
<tr>
<td>4.13</td>
<td>Multiple constitutive damage models for elastic-damage behavior of FRP lamina (assumption; matrix damage initiates as the first mode).</td>
</tr>
<tr>
<td>4.14</td>
<td>Failure surface of orthotropic FRP lamina based on (a) critical equivalent stress, and (b) critical equivalent deformations (assumption; matrix damage initiates as the first mode).</td>
</tr>
<tr>
<td>4.15</td>
<td>Constitutive motion-based linear damage evolution law.</td>
</tr>
<tr>
<td>4.16</td>
<td>Constitutive model for interface damage and related pure modes of loading.</td>
</tr>
<tr>
<td>4.17</td>
<td>Mixed-mode traction-displacement law in continuum damage process of interface material point.</td>
</tr>
<tr>
<td>4.18</td>
<td>Mixed mode loading and softening law in an equivalent form.</td>
</tr>
<tr>
<td>4.19</td>
<td>Single lap joint model for meso-scale simulation of interface using different FE-based model constructions.</td>
</tr>
<tr>
<td>4.20</td>
<td>FE simulation results as stiffness curve of single lab joint sample based on three different interface configurations.</td>
</tr>
<tr>
<td>4.21</td>
<td>Stress distribution based on different FE construction.</td>
</tr>
<tr>
<td>5.1</td>
<td>Lateral cross-section of the GFRP (Left) and CFRP (Right) composite laminates.</td>
</tr>
<tr>
<td>5.2</td>
<td>GFRP (Left) and CFRP (Right, top) composite specimens under three-point bending load condition. Permanent</td>
</tr>
</tbody>
</table>
bending deformation of the CFRP specimen after unloading (Right, bottom).

5.3 FE model of GFRP composite beam under three-point bend test setup (a), Lateral cross-sections view of mesh (b), Anti-symmetric top view of lamina mesh (c).

5.4 Measured load central-deflection curves of the CFRP composite.

5.5 Microscopic images of lateral cross-section of CFRP composite under three-point bending test.

5.6 Mesh study and FE model verifications, (Left) Load-deflection responses, (Right) Flexural Stiffness.

5.7 Effective mechanical parameters of load-deflection curve.

5.8 Element size sensitivity to fiber damage initiation of CFRP lamina (No. 1) under compression loading condition.

5.9 Comparisons of predicted results with experiment data of the CFRP composite beam under three-point bending test, (a) Load-deflection and, (b) Flexural stiffness responses.

5.10 Simulation and experimental results of the strain variation versus the monotonic deflection of the CFRP composite beam.

5.11 (Top) Contour of deformation at lamina twelve in both FE models, (bottom) Downward deformation of CFRP beam width at center on the first lamina under loading-roller.

5.12 Variation of effective stress and matrix damage evolution parameters at a point on lamina with 45° of CFRP composite.

5.13 Onset of matrix cracking predicted based on Prepreg and conventional FE models.

5.14 Critical locations for evaluation of stress and strain variation.
5.15 Variations of the maximum and minimum principal stresses in each lamina of the conventional and Prepreg models; (a) Elastic condition when the structure under 4.8mm deflection, (b) Damaged structure at 20.6mm deflection.

5.16 Variation of Local longitudinal and transverse normal and shear stresses across the width of the CFRP composite specimen. (Solid and dashed lines represent stresses in laminas No. 1 and 12, respectively; E– Elastic case, D – Damage case).

5.17 Contour of longitudinal normal stress σ_{11} on first and last three laminas, and transverse normal stress σ_{22} on first and last laminas of CFRP composite beam under three-point bending test.

5.18 Contour of longitudinal normal stress σ_{11} and Von Mises stress through-thickness at the center of width of CFRP composite beam under three-point bending test.

5.19 Variation of average stress through width of laminas in CFRP composite beam under three-point bending test.

5.20 Matrix damage initiation and propagation at lateral cross-section of CFRP composite laminate in edge and central locations of the width, based on different FE constructions.

5.21 Distribution of matrix damage initiation and propagation in each CFRP lamina at the end of the flexural test of both FE model constructions.

5.22 Distribution of matrix damage initiation and propagation in each CFRP lamina at the end of the flexural test (deflection of 28 mm) using Prepreg FE construction, and matrix damage-induced delamination in CFRP laminate composite.

5.23 Distribution of Fiber damage initiation and propagation in cross-section of CFRP laminate composite (a), and in laminas No. 4 and 9 (b) of conventional and Prepreg FE
model constructions.

5.24 (a) Comparison of internal (Int), strain (Str) and damage dissipation (DD) energies of CFRP composite under three-point bending condition for conventional and Prepreg FE model constructions, (b) Flexural stiffness and damage dissipation energy of CFRP composite modeled using Prepreg construction.

5.25 Comparison of strain and damage dissipation energies evolvement in each lamina of conventional and prepreg constructions for CFRP laminate composite.

5.26 Load-deflection and flexural response of GFRP composite under three-point bending test.

5.27 Through-thickness variation of stress and logarithmic strain of GFRP composite beam under three-point load for different states of bending loads.

5.28 Microscopic image of lateral cross-section of the GFRP composite in comparison with FE result of distribution of damage initiation and propagation.

5.29 (a) Distribution of fiber damage evolution in first and last laminas of GFRP composite under bending condition, (b) Level of damage propagation through the width of first lamina.

5.30 The evolvement of damage dissipation energy of GFRP composite laminate and laminas under flexural loading condition.

6.1 (a) Half of longitudinal cross section of CFRP composite, (b) Configuration of the composite specimen for DCB test.

6.2 Structural response of DCB tests as load-displacement curves of the composite specimen with different initial cracks.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>Variation of compliance parameter of CFRP composite in DCB test with respect to normalized delamination length.</td>
</tr>
<tr>
<td>6.4</td>
<td>Variation of load at onset of interface delamination with respect to normalized delamination length.</td>
</tr>
<tr>
<td>6.5</td>
<td>Delamination resistance curve of CFRP composite under DCB test loading condition.</td>
</tr>
<tr>
<td>6.6</td>
<td>Micrograph of delaminated region at mid-plane of the CFRP composite.</td>
</tr>
<tr>
<td>6.7</td>
<td>(a) ENF test set-up, (b) Crack-tip microscopic image, and ENF test set-up of CFRP composite for (c) stable and (d) unstable conditions.</td>
</tr>
<tr>
<td>6.8</td>
<td>FE model geometry of CFRP composite beam for ENF test setup (Case ID: ENF1 at Table 3.1).</td>
</tr>
<tr>
<td>6.9</td>
<td>FE results and experiment data as load-deflection responses of CFRP composites for stable and unstable ENF loading conditions.</td>
</tr>
<tr>
<td>6.10</td>
<td>Comparison of predicted flexural stiffness responses of both models with measured curve for the CFRP composite beams under ENF loading conditions.</td>
</tr>
<tr>
<td>6.11</td>
<td>(a) Load–deflection response of CFRP composite with and without initial crack, (b) Comparison of observed crack grows in the experiment and the predicted FE of the stable model.</td>
</tr>
<tr>
<td>6.12</td>
<td>Sequence of interface damage evolution depicted on load-deflection responses of CFRP composite beam under ENF loading condition.</td>
</tr>
<tr>
<td>6.13</td>
<td>Effective stress distribution at cross-section of CFRP composite at center of width around crack-tip of (a) stable and (b) unstable cases.</td>
</tr>
</tbody>
</table>
6.14 Through-thickness evolution of laminate longitudinal stress before and after interface fracture. 217

6.15 Distribution of longitudinal stress and the evolution of the zero-level stress zone in CFRP composite under ENF loading condition. 218

6.16 Stress S_{13} variation at crack-front in term of overall deflection of the beam. 219

6.17 Evolution of critical stresses and damage parameters on individual point on the interface bonded region from crack-front. 221

6.18 Damage and shear stress evolutions at a path from center of crack-front toward composite beam length. 222

6.19 Contour plot of damage initiation (QUADSCRT) and propagation (SDEG) at interface of the stable CFRP composite beam under ENF loading condition. 225

6.20 Rate of damage accumulation and dynamic nature of the interface crack. 226

6.21 Isometric view and top image of the Fractured CFRP composite under ENF loading condition. 229

6.22 SEM images of the fractured interface of CFRP composite under stable ENF loading condition. 230

6.23 Macro and meso images of the crack-jump event in the CFRP composite beam under unstable ENF loading condition. 231

6.24 Fractographic images of the shear-dominated interface failure of CFRP composite due to crack-jump event. 232

6.25 Relation between stiffness responses of CFRP composites under ENF loading condition. 234
6.26 Prediction of the stiffness curve of four models indicated in Table 6.1, with the interface definition of elastic and elastic-damage, of CFRP composite under ENF loading condition.

6.27 Level of SLSSZ parameter and maximum deflection of CFRP composite structure with different lengths under ENF loading condition.

6.28 Predicted monotonic variation of total strain energies of CFRP laminate and laminas of the stable case (No. 1, Table 6.1).

6.29 Through thickness variation of maximum strain energy in each lamina and interface of (a) model No. 1, at the time before and after fracture and (b) model No. 1, 2, 4 prior to interface fracture.

6.30 Monotonic variation of total strain energy of CFRP composite models No. 1, 2 and 4 (Table 6.1) with respect to system deflection.

6.31 Monotonic variation of critical energies in interface of CFRP composite (model No. 1) under ENF loading condition.

6.32 Monotonic variation of damage dissipation energy in the interface of CFRP composite model No. 1, 2 and 4 based on the system deflection.

6.33 Monotonic variation of damage dissipation energy in the interface of CFRP composite model No. 1, 2 and 4 based on the system deflection.

6.34 Critical point in mechanical behavior of CFRP composite model No. 1, 2 and 4 (Table 6.1) under ENF loading condition.

6.35 Individual variation of force and deflection parameters with respect to CFRP composite support span length under ENF loading condition.
6.36
Variation of flexural stiffness with respect to deflection and support span length of CFRP composite model No. 1, 2 and 4 (Table 6.1) under ENF loading condition.

7.1
Lateral cross-section of the multidirectional CFRP laminate composite.

7.2
CFRP composite specimens under four-point bending (a) at beginning and (b) end of loading process.

7.3
Overall view of the FE model of CFRP composite beam under four-point bend test setup.

7.4
Through-thickness creation of lamina and interface constituents.

7.5
CFRP composite beam response under four-point bending condition.

7.6
(a) Macro images of CFRP composite under four-point bending test, Microscopic image of the lateral cross section (b) before damage, (c) after damage at side of the edge and (d) at middle of the edge.

7.7
(a) Macroscopic image of the CFRP composite under four-point bending test after unloading, (b) mesoscopic image of multiple failures at lateral cross-section.

7.8
Individual microscopic images of the failure from lateral cross-section of CFRP composite under four-point bending test.

7.9
Meso/microscopic images of multi-failure at lamina No.1 of CFRP composite under four-point bending test.

7.10
Experiment and FE results as system response of the CFRP composite beam under four-point bending test, (a) Load-deflection and, (b) Flexural stiffness responses.

7.11
(a) A schematic view of beam saddle deformation under flexural loading, (b) Macroscopic image of CFRP composite
beam after four-point bending condition, and microscopic image of scratching marks from the beam touch-points with the loading supports, (c) Contour of deformation (along loading direction) of CFRP composite structure.

7.12 Evolution of matrix damage initiation for each lamina at center of the length of CFRP composite beam under four-point bending condition.

7.13 Time to onset of damage in (a) fiber, matrix and (b) interface of CFRP composite beam under four-point bending test.

7.14 Damage initiation and propagation in each lamina of CFRP composite beam under four-point bending test for (a) matrix and (b) interface failures.

7.15 Variation of effective stress S_{22} at edge/middle of length of CFRP composite beam under four-point bending test.

7.16 Evolvement of critical energies (per unit volume) of CFRP composite under four-point bending test.

7.17 Evolvement of (a) strain and (b) damage dissipation energies in laminas of CFRP composite under four-point bending test.

7.18 Evolvement of strain energy in each interface of CFRP composite under four-point bending test.

7.19 Comparison of FE result of the multiple failures at lateral cross-section of CFRP composite with experiment data.

7.20 Contour of damage evolution in lamina No. 9 and interfaces No. 8 and 9 of CFRP composite beam under four point bending test.

7.21 Comparison of FE result of the multi-failure at lamina No. 1 of CFRP composite with experiment data.

7.22 Fiber (Left) and matrix (Right) damage initiations at laminas, and interfaces failure (Center) of CFRP composite beam under four-point bending.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFR</td>
<td>Automated fiber replacement</td>
</tr>
<tr>
<td>ASTM</td>
<td>American society of testing method</td>
</tr>
<tr>
<td>ATL</td>
<td>Automated tape laying</td>
</tr>
<tr>
<td>CDM</td>
<td>Continuum damage model</td>
</tr>
<tr>
<td>CFRP</td>
<td>Carbon fiber reinforced polymer</td>
</tr>
<tr>
<td>CNC</td>
<td>Carbon nanocoil</td>
</tr>
<tr>
<td>CNF</td>
<td>Carbon nanofiber</td>
</tr>
<tr>
<td>CNT</td>
<td>Carbon nanotubes</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical vapor decomposition</td>
</tr>
<tr>
<td>CZM</td>
<td>Cohesive zone model</td>
</tr>
<tr>
<td>DCB</td>
<td>Double cantilever beam</td>
</tr>
<tr>
<td>DI</td>
<td>Damage initiation</td>
</tr>
<tr>
<td>DP</td>
<td>Damage propagation</td>
</tr>
<tr>
<td>DPL</td>
<td>Deviation point from linearity</td>
</tr>
<tr>
<td>ELS</td>
<td>End loaded split</td>
</tr>
<tr>
<td>ENF</td>
<td>End-notched flexure</td>
</tr>
<tr>
<td>FE</td>
<td>Finite element</td>
</tr>
<tr>
<td>FEM</td>
<td>Finite element method</td>
</tr>
<tr>
<td>FLF</td>
<td>First lamina failure</td>
</tr>
<tr>
<td>FRP</td>
<td>Fiber-reinforced polymer</td>
</tr>
<tr>
<td>GFRP</td>
<td>Glass fiber reinforced polymer</td>
</tr>
<tr>
<td>GLARE</td>
<td>Glass laminate aluminum reinforced epoxy</td>
</tr>
<tr>
<td>HME</td>
<td>Hypothesis of mechanical equivalence</td>
</tr>
<tr>
<td>HSE</td>
<td>Hypothesis of strain equivalence</td>
</tr>
<tr>
<td>LEFM</td>
<td>Linear elastic fracture mechanics</td>
</tr>
<tr>
<td>LSL</td>
<td>Linear softening law</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>MBT</td>
<td>Modified beam theory</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum load</td>
</tr>
<tr>
<td>PR</td>
<td>Poisson's ratio effect</td>
</tr>
<tr>
<td>RFI</td>
<td>Resin film infusion</td>
</tr>
<tr>
<td>RTM</td>
<td>Resin transfer molding</td>
</tr>
<tr>
<td>SLSSZ</td>
<td>Stable limit of shear stretch zone</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>microCT</td>
<td>micro computer tomography</td>
</tr>
<tr>
<td>VAP</td>
<td>Vacuum-assisted Resin process</td>
</tr>
<tr>
<td>VIP</td>
<td>Vacuum infusion process</td>
</tr>
<tr>
<td>WWFE</td>
<td>worldwide failure exercises</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

\[E \] - Young's modulus
\[\nu \] - Poisson's ratio
\[\hat{Q}_{ij} \] - Element of the transformed reduced stiffness matrix
\[Z \] - Distance from the central line
\[\varepsilon^0 \] - Strain at \(Z = 0 \) (center-line of the composite beam)
\[E_0 \] - Original material stiffness
\[E_{(D)} \] - Elastic modulus of the material at damaged state
\[D \] - Scalar damage variable
\[\sigma \] - Nominal, true or Cauchy stress tensor
\[\hat{\sigma}_{ij} \] - Effective stress component
\[E_{(D)} \] - Elastic modulus of the structure at damaged state
\[Y_C \] - Normal strength perpendicular to fiber direction under compression loading condition
\[S_{12} \] - Shear strength
\[\alpha \] - Shear direction
\[Y_T \] - Normal strength perpendicular to fiber direction under tension loading condition
\[\sigma^{m}_{22} \] - Normal stress in 2D kinking frame
\[\tau^{m}_{12} \] - Shear stress in 2D kinking frame
\[\bar{\sigma} \] - Effective normal stress
\[\bar{\tau} \] - Effective shear stress
\[\phi \] - Matrix crack density
\[\zeta \] - Curve fitting parameter
\[Z_T \] - Traction strength along through-thickness of interface
\[K \] - Curve fitting parameter
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>Number of nodes in a lamina</td>
</tr>
<tr>
<td>f</td>
<td>Number of nodes in one surface of a lamina</td>
</tr>
<tr>
<td>h</td>
<td>Number of elements through a lamina thickness</td>
</tr>
<tr>
<td>n</td>
<td>Number of the laminas</td>
</tr>
<tr>
<td>K_{Conv}</td>
<td>Number of nodes in composite laminate with conventional model</td>
</tr>
<tr>
<td>K_{Prep}</td>
<td>Number of nodes in composite laminate with prepreg model</td>
</tr>
<tr>
<td>ε_{ij}</td>
<td>Normal strain component of strain tensor</td>
</tr>
<tr>
<td>γ_{ij}</td>
<td>Shear strain component of strain tensor</td>
</tr>
<tr>
<td>σ_{ij}</td>
<td>Normal stress component of stress tensor</td>
</tr>
<tr>
<td>τ_{ij}</td>
<td>Shear stress component of stress tensor</td>
</tr>
<tr>
<td>ε_i^0</td>
<td>Midplane normal strain of composite laminate</td>
</tr>
<tr>
<td>γ_i^0</td>
<td>Midplane shear strain of composite laminate</td>
</tr>
<tr>
<td>K_i</td>
<td>Midplane curvature of composite laminate</td>
</tr>
<tr>
<td>$f(\sigma_{ij})$</td>
<td>Function of stress tensor component</td>
</tr>
<tr>
<td>Y</td>
<td>Yield stress of a bar under uniaxial tension load</td>
</tr>
<tr>
<td>d_{11}^I</td>
<td>Internal damage variable of lamina in fiber direction under tension load</td>
</tr>
<tr>
<td>d_{11}^I</td>
<td>Internal damage variable of lamina in fiber direction under compression load</td>
</tr>
<tr>
<td>d_{22}^I</td>
<td>Internal damage variable of lamina perpendicular to fiber direction under tension load</td>
</tr>
<tr>
<td>d_{22}^C</td>
<td>Internal damage variable of lamina perpendicular to fiber direction under compression load</td>
</tr>
<tr>
<td>X^I</td>
<td>Lamina normal strength in fiber direction under tension load</td>
</tr>
<tr>
<td>Y^I</td>
<td>Lamina normal strength perpendicular to fiber direction under tension load</td>
</tr>
<tr>
<td>X^C</td>
<td>Lamina normal strength in fiber direction under compression load</td>
</tr>
<tr>
<td>Y^C</td>
<td>Lamina normal strength perpendicular to fiber direction under compression load</td>
</tr>
<tr>
<td>S^L</td>
<td>Lamina longitudinal shear strength</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>S^i</td>
<td>Lamina transverse shear strength</td>
</tr>
<tr>
<td>G_{XT}</td>
<td>Longitudinal tensile fracture energy</td>
</tr>
<tr>
<td>G_{XC}</td>
<td>Longitudinal compressive fracture energy</td>
</tr>
<tr>
<td>G_{VT}</td>
<td>Transverse tensile fracture energy</td>
</tr>
<tr>
<td>G_{VC}</td>
<td>Transverse compressive fracture energy</td>
</tr>
<tr>
<td>M</td>
<td>Damage effect tensor</td>
</tr>
<tr>
<td>$k^0_{eq.}$</td>
<td>Original equivalent stiffness prior to damage initiation</td>
</tr>
<tr>
<td>$\delta^0_{eq.}$</td>
<td>Equivalent displacement at damage initiation</td>
</tr>
<tr>
<td>δ^f_{eq}</td>
<td>Equivalent displacement at failure</td>
</tr>
<tr>
<td>σ_{eq}</td>
<td>Equivalent stress of failure modes</td>
</tr>
<tr>
<td>σ^f_{eq}</td>
<td>Equivalent stress at failure</td>
</tr>
<tr>
<td>C_0</td>
<td>Elastic compliance tensor</td>
</tr>
<tr>
<td>D_P</td>
<td>Damage propagation parameter</td>
</tr>
<tr>
<td>G</td>
<td>Strain energy release rate</td>
</tr>
<tr>
<td>L^c</td>
<td>Characteristic length in the reference surface of shell elements</td>
</tr>
<tr>
<td>G_C</td>
<td>Critical energy release rate</td>
</tr>
<tr>
<td>G_T</td>
<td>Total energy release rate</td>
</tr>
<tr>
<td>G_{DDE}</td>
<td>Damage dissipation energy</td>
</tr>
<tr>
<td>F_i</td>
<td>Force in i^{th} node</td>
</tr>
<tr>
<td>u_j</td>
<td>Motion of the node j^{th}</td>
</tr>
<tr>
<td>T_i</td>
<td>Component of traction</td>
</tr>
<tr>
<td>δ_{Shear}</td>
<td>Equivalent relative shear displacement</td>
</tr>
<tr>
<td>β</td>
<td>Mode mixity in interface material point</td>
</tr>
<tr>
<td>G_{Shear}</td>
<td>Energy release rate of mixed shear loading in modes II and III</td>
</tr>
<tr>
<td>G_{I}</td>
<td>Energy release rate in mode I</td>
</tr>
<tr>
<td>G_{II}</td>
<td>Energy release rate in mode II</td>
</tr>
<tr>
<td>G_{III}</td>
<td>Energy release rate in mode III</td>
</tr>
<tr>
<td>G_{IC}</td>
<td>Critical energy release rate in mode I</td>
</tr>
<tr>
<td>G_{IIC}</td>
<td>Critical Energy release rate in mode II</td>
</tr>
<tr>
<td>G_{IIC}</td>
<td>Critical Energy release rate in mode III</td>
</tr>
<tr>
<td>G_{TC}</td>
<td>Total critical strain energy release rate in mixed-mode loading condition</td>
</tr>
</tbody>
</table>
Relative displacement at failure under mixed-mode loading for each mode of interface damage

Operator of the interface constitutive model

Kronecker delta

Current mass density

Velocity field vector

Internal energy per unit mass

Surface traction vector

Body force vector

Dissipated portions of the internal energy

Kinetic energy

Energy dissipated by contact friction forces between the contact surfaces

Work of a body by external forces

Energy dissipated by the damping effect of solid medium infinite elements

Viscous stress

Stress derived of a constitutive equation

Elastic strain rate

Plastic strain rate

Creep strain rate

Applied elastic strain energy

Internal energy

Strain energy

Dissipated energy
LIST OF TERMINOLOGIES

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-damage or -failure</td>
<td>Various types of damage or failure events that occur in a FRP lamina as a solid continuum part.</td>
</tr>
<tr>
<td>Multi-delamination</td>
<td>Occurrence of several delamination events in FRP composite laminates.</td>
</tr>
<tr>
<td>Multiple damage, failure, fracture or</td>
<td>Simultaneous occurrence of several damage, Failure, fracture or cracking events in intralaminar and interlaminar constituents of FRP composite laminates.</td>
</tr>
<tr>
<td>crack</td>
<td></td>
</tr>
<tr>
<td>Crack-jump phenomenon</td>
<td>An initial interlaminar crack in FRP composite laminate under mode I or II loading condition, which propagated suddenly with large size.</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The formulation of finite-displacements between two nodes at interface, in the constitutive motion-based model</td>
<td>326</td>
</tr>
<tr>
<td>B</td>
<td>Flowchart of the hybrid experimental-computational technique</td>
<td>329</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Introduction

Fiber-reinforced polymer (FRP) composite laminate materials are increasingly replaced by metal materials in advanced structural application in defense, transport and etc. industries. Therefore, a correct comprehension about failure phenomena in FRP composite is necessary for the design and analysis of such structures. The knowledge of failure in composites normally obtained using numerical and experimental approaches. The experimental procedures normally are expensive and time consuming for complex loading condition which rarely can be used for design stages of composite structures. The numerical methods involve the mathematical derivation of structural behavior, failure phenomena and energy absorption of composites, which normally provide a deeper insight on structural failure for the design phase, however it is incomplete to define a response map of the three-dimensional (3D) structures. In the past three decades, development of Simulation Methodologies has been considered as one of the most effective method in bridging the mathematical models and experiments for realistic design and analysis of advanced industrial structures. Simulation procedures are benefit scientists to characterize the mechanical properties, to define the response map, and to enhance the final design of the composite structures using the lowest number of expensive samples and tests.
At the current state of development, an extensive analytical models have been introduced for numerical investigation of failure in composites, however the simulation methodology in prediction of complex multiple failure is still considered as an open topic for investigation. The present study uses the finite element method (FEM) as the most used approach, to develop a simulation methodology for prediction of multiple failure in multidirectional FRP composite laminates. The theory of continuum damage mechanics is used to develop the constitutive models for prediction of elastic-damage and fracture behaviors. Simulation of several tests on unidirectional/multidirectional FRP composites with and without pre-cracks are performed to examine the considered models and the methodology procedure.

1.2 Problem Background and Rationale

In the past few decades, advanced industries demand for materials with both light and strong features has been the main force to develop composite materials (Dempster D., 2003; Taylor, 2008). Advanced composite materials are constructed of two or more separate phases, mainly consisted of matrix phase, reinforcement phases and matrix/reinforcement interface that is known as interphase region. Fiber Reinforced Polymer (FRP) composites as one of the important advanced composites are created using polymeric matrix phase (thermoplastic, thermoset and etc.) which typically reinforced with fibrous (glass, carbon, aramid and etc.) materials. The design flexibility of FRP laminate composites through variation of matrix/reinforcement phase types, adjustment of reinforcement volume fraction in micro-scale and modification of lamina orientation in meso-scale, highlighted the capability of these materials for creation of superstructures with preferable solidity in various directions. The great advantages of FRP composites including high stiffness-strength combined with low weight bring a steady increase of investment in transport, aerospace and green industries on continuous replacement of metallic structures to composites. For this reason, the development of reliable and well-validated mathematical-physical models to describe the linear and nonlinear behavior of composites, become essential. Therefore, development of continuum damage
model (CDM) for anisotropic material is important (Baker et al., 2004; Kaw, 1997; S. Murakami, 2012).

Mechanics of FRP composite materials is classified based on the level of the analysis in micro-, meso- or macro-scales. Therefore, damage and failure analyses of composite structures are practiced in different scales too. In this respect, the influences of mechanical features and properties in the microstructure of lamina have to be considered in the constitutive elastic-damage model parameters when it viewed in meso-macro scales too. Therefore, bridging between micro-to-macro mechanics is always one of the factors that is used prediction of mechanical behavior in composite materials (Baker, et al., 2004; R. Talreja and Singh, 2012).

In constructional view, FRP composites are created with a soft polymeric phase that is reinforced with stiff fibrous phase with almost 30-95% (e.g. Typical glass fiber reinforced polymer (GFRP), carbon fiber reinforced polymer (CFRP)) elastic-stiffness properties differences. Likewise, the anisotropic strength of the FRP composites normally shows up to 90% difference in the fiber direction compared with transverse to the fiber direction. Such big differences in elastic-strength properties accelerate early failure in weaker phases while structural performance is considered to be in the safe zone. In a FRP composite structure, fibers are assumed to be responsible for load bearing due to high stiffness, but in the other hand consideration of Poisson's ratio influences as a part of anisotropic continuum behavior is undeniable. Therefore, occurrence of matrix failure in high strength FRP composites such as CFRP is likely, which has to be considered as one the factors in design FRP composite structures. Therefore, understanding of yielding phenomena in composite lamina in meso-scale and laminate in macro-scale and also the related criteria with respect to yield surface is important. The present study, is attempting to introduce an overall yielding point in FRP lamina and laminate, using damage mechanics concept by considering a certain value of accumulated irrecoverable energy in the structure over total damage dissipation energy (Dempster D., 2003; R. Talreja and Singh, 2012; Taylor, 2008).
Most of the existing knowledge of damage and failure in FRP composites obtained through experimental and numerical methods. Normally, experimental data are limited due to the high value of cost for tests implementation and less diversity of data which rarely can be utilized in earlier design methods. In the other hand, internal analysis of structures in terms of deformation and damage zone is hardly possible, which most of the time considered as important knowledge that have to be obtained for design and analysis of composite superstructures. Numerical methods are normally cost saving in comparison with the experimental method, which is enabling a huge amount of data on mechanical parameters that lead to a deep insight into the design and failure analysis of composite structure. In the other hand, once a model is established, it could be used for various analyses, including different types of loads and boundary conditions. These results can be used in defining the responses map of the material as a support for enhancing the final design of the structure at low cost (Baker, et al., 2004; R. Talreja and Singh, 2012). However, at the current state, numerical models are not developed fully to cover the failure behavior of composite materials under complex loading condition. Several constitutive elastic-damage models based on continuum mechanics approach are derived to overcome this challenge, including a series of studies called the worldwide failure exercises (WWFE) that is made to describe the foremost theories for FRP composites (Chamis et al., 2013; Hinton, Kaddour and Soden, 2004; Kaddour et al., 2013; Labeas et al., 2011; Varna, 2013). In this exercise, a huge number of comparisons have been made on the capability of different mathematical models in order to predict the evolution of damage and failure events under various types of loading consist of biaxial, bending, thermal loadings and loading-unloading condition (Hinton, et al., 2004; Kaddour, et al., 2013). Several approaches including multi-scale hybrid damage and failure (Laurin et al., 2013), micromechanics based model (Chamis, et al., 2013), shear lag and equivalent constraint model (Kashtalyan and Soutis, 2013), enhanced damage meso-model (Daghia and Ladeveze, 2013), energy methodology (McCartney, 2013a, 2013b), constitutive damage model (Schuecker and Pettermann, 2013), plasticity-based theory (S. Pinho, Vyas and Robinson, 2013), classical damage model (Sapozhnikov and Cheremnykh, 2013), synergistic damage mechanics (Singh and Talreja, 2013), global-local cracking approach (Varna, 2013), structural damage modeling framework (Forghani et al., 2013) and its, are used to make comparison between the models and the experimental data. The conclusion of this research was
that, out of 12 leading theories and 13 challenging tests for prediction of failure evolution, “Only three groups solved all the 13 challenging problems and approximately 30% of the test cases were not solved” (Kaddour, et al., 2013). It is noted that in general, the lack of consensus appears regarding the effects of ply thickness and lay-up sequences, influences of unloading-reloading behavior, and interaction in multiple crack locations and matrix crack-delamination (Kaddour, et al., 2013). Miscomprehension of the complex physics of FRP composite failure also commented as one of the reasons for low accuracy in prediction of failure (Silvestre Taveira Pinho, 2005). Most of the mathematical models are stress-based models computed at local material point through damage criteria to address the local failure process. Variation of effective stresses in FRP composites depend on assumed construction based on FEM and also the theoretical basis. One of the aspects, which have not been paid enough attention, is the influences of manufacturing processes in micro-meso construction of FRP composites through computational method. The present work investigated on the finite element (FE)-based model construction that could represent the actual construction of the composite created through different fabrication processes. This point is recommended for further investigation in previous works as multi-layer modeling methodology for failure analysis of FRP laminate composites (Kaddour, et al., 2013; Siromani, 2013). In other study, investigation on the physical properties reduction of composite structure due to damage and multiple failure is recommended for future work (Lasn, 2015). Full set of CDMs is reviewed and applied to address the progressive damage processes of FRP composites. FEM as an affective approximate method is used for predicting the complex response of composite structures. Implementation procedure of FEM is described extensively through a hybrid experimental-computational approach in order to combine the FE and test data for a comprehensive understanding of the failure process. Emphasis is placed on engineering aspects, such as the analytical descriptions, effective analysis tools, modeling of physical features and evaluation of approaches used to formulate and predict the actual response of composite structures (Ochoa and Reddy, 1992).
1.3 Statement of the Research Problem

How to identify and characterize the fracture processes of FRP laminate composites using damage-based models and finite element method under quasi-static monotonic loads?

1.4 Research Questions

The relevant research questions to the problem statement of the present study can be sorted out as follow:

1. What are the dominant damage mechanisms of FRP composites?
2. What models are suitable for simulating the observed linear-nonlinear deformation and fracture of FRP composites?
3. How does damage, initiate and propagate in matrix, interface and fiber of FRP composites?
4. How to evaluate the mechanics and mechanism of multiple damage processes (matrix cracking/crushing, multi-delamination and fiber breakage/buckling) in FRP composite materials under quasi-static monotonic loading condition?
5. How would the damage models and failure process be validated?

1.5 Objectives of Study

The aims of the present study are to develop a validated simulation methodology for failure processes of the FRP laminate composite under quasi-static monotonic loads. In this respect, the objectives of the study are defined in the main
fields of mathematical-physical modeling, FE simulation and experimental works to solve the problem, which are develop and completed in the next chapters. The objectives are linked and highlighted throughout the research in the result and discussion chapters, which a short summary of them is listed in the conclusion remarks (Chapter 8).

The specific objectives of this study are:

1. To develop and derive bilinear physically-based damage model for FRP lamina.
2. To establish FE-based model constructions of FRP composite based on different manufacturing processes.
3. To identify the mechanics and mechanism of failure of FRP laminate composites under quasi-static loading.
4. To investigate on the effect of different constructions on the progressive damage processes of FRP laminate composites
5. To predict the elastic-plastic behavior and mechanism of multiple failure in FRP composite beams under flexural loading.
6. To represent the FE implementation of damage and failure in FRP composite using a hybrid experimental-computational approach.
7. To validate the damage-based FE model using experimental results.

1.6 Scope of Study

The present study is concentrating on the simulation methodology to identify and characterize the mechanics and mechanisms of failure in FRP laminate composites under monotonic loading condition. The scope of this research is restricted to unidirectional FRP laminate composites as:
1. Only, the two manufacturing processes of Prepreg/Autoclave method and vacuum infusion process (VIP) are considered, to fabricate multidirectional FRP composite laminates.

2. To prepare CFRP composite manufactured using Prepreg/Autoclave method, with uni/multi-directional ply sequences, and with/without pre-crack.

3. To manufacture anti-symmetric GFRP composites using VIP method, and machining into beam samples for mechanical test.

4. To perform mechanical tests on the FRP composite beams, to obtain the structural response and mechanical properties as follow:
 a. Three and four-point bending tests on anti-symmetric CFRP and GFRP composite laminates.
 b. Double cantilever beam (DCB) and end-notched flexure (ENF) tests on CFRP composite to obtain the critical fracture energy of interface in modes I & II loading condition.
 c. To perform critical ENF test on a specially designed specimen to capture unstable crack-jump.

5. To identify the various types of intralaminar and interlaminar fracture events in FRP composite laminates, using fractographic investigation on the tests performed in the above cases (No. 3).

6. To develop and describe the theories as bilinear CDMs for FRP lamina and interface.

7. To create FE models using ABAQUS 6.9EF software, in order to simulate the following cases:
 a. To develop FE model-based constructions that represent the construction of FRP composite laminates, which are manufactured using VIP and Prepreg/Autoclave methods.
 b. To develop individual FE models of FRP composite laminate, to simulate laminas failure using CDM, and also interface delamination using cohesive zone model (CZM).
 c. To develop a FE model that comprises both CDM and CZM models to simulate multiple fracture in CFRP composite laminates manufactures using Prepreg/Autoclave methods.
8. To validate the damage theories and FE models (above cases, No. 6) using experimental data, in both aspects of mechanics and mechanism of damage.

9. To establish the simulation methodology for fracture processes of FRP composites using hybrid experimental-computational approach throughout of the present study.

1.7 Layout of the Thesis

In this thesis, chapters are arranged to address the FE simulation methodology for prediction of the mechanics and mechanism failure in FRP laminate composites. Assessment of progressive multiple damage processes through laminas and the interface of the composite are the main interest. In this respect, the content of the chapters is classified to explain the objectives and scope of the research as follow.

Chapter 1 gives an overview on the background of laminate composites and the challenges in simulation and analysis for real applications. Then the problem statement, objectives and the scope of the research are described. The limits of what this study is restricted to, are notified.

Chapter 2 provides a summary of the literature and previous researches about FRP composite specification, properties and manufacturing methods. The applications of FRP composites in advanced industries are investigated. The use of FEM in simulation of mechanical cases is studied. A brief description of the mechanics deformation and mechanism of failure in FRP composite laminates is provided. Continuum damage mechanics of composite materials are explained to represent a physical view of the damage phenomena. The various modes of failure in FRP composite are studied, and the related damage models, available numerical tools and FE procedures to estimate and predict damage modes are described. Multiple
failure phenomena in FRP composite are demonstrated using fractographic image of a CFRP beam sample under tension loading condition. The missing points and the gaps to previous researches are highlighted.

Chapter 3 discusses about research methodology of the present work. The research framework of the study is provided based on the three activities of modeling, computation and experiment. Types of the specimen, test procedure and the related material properties are provided. The steps for FE simulation of a composite system are described. The manufacturing issues of FRP composite laminates and the related FE model-based constructions are discussed. A hybrid experimental-computational approach is introduced, which is used entirely through the research investigation. The basis of FE implementation of the damage and fracture analyses on different FE constructions of FRP composite is described.

In chapter 4, the physically-based continuum models for prediction of multiple failures of FRP laminate composites are described. The phenomena of CDM of lamina and its physical interpretation is discussed. The physical influences of interlaminar region are described for the modeling of FRP composites in the conditions, where perfect laminas bonding or interface debonding are targeted. FE implementation of the model is illustrated through FE simulation by describing the evolution of effective stresses and variation of damage parameters.

Chapter 5 illustrates the FE simulation methodology of FRP composite lamina by introducing specific FE based-model construction for different manufacturing processes. The influences of different constructions in the computation of progressive intralaminar damage process are described. The validated FE models are used to describe the mechanics of system response and mechanisms of multi-damage processes in FRP composite laminates.

Chapter 6 works on the mechanics of interface delamination in CFRP composite in the presence of initial crack. Experimental investigation on CFRP
composite under mode-I test is provided (DCB Test) to discuss about delamination phenomenon. FE simulation and experiment of CFRP composite under mode-II loading is provided (ENF test) to study on the mechanism of interface delamination using CZM theory. The capability of the governing law in prediction of the crack growth and crack-jump phenomena are examined. The concept of stable and unstable crack-jump is developed.

Chapter 7 demonstrates the FE simulation methodology for prediction of multiple failure events in FRP composites by applying CDM and CZM theories in intralaminar/interlaminar parts. The predictive capability of these models in the simultaneous prediction of various failure modes in the lamina and interface of anti-symmetric multidirectional CFRP specimen is examined under four-point bending load condition. Validation of the damage mechanics and mechanism of failure is the main concern.

Chapter 8 explains the conclusion related to the FE simulation methodology and failure mechanism of FRP composites in the present study. The future work on the development of the failure models for fatigue mechanics and etc. of FRP composites are recommended.
REFERENCES

Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Seattle, WA,

Nor, F., Lee, H., Lim, J., Kurniawan, D. and Tamin, M. (2013). Crack Front Profile of Three Point End Notch Flexure Tested Unidirectional CFRP.

