SYNTHESIS AND APPLICATIONS OF NEW CYANOPROPYLTRIETHOXYSILANE AND CYANOPROPYLTRIETHOXYSSILANE NANOMATERIALS AS SORBENTS OF SELECTED ORGANOPHOSPHORUS PESTICIDES ANALYSIS

ZAHRA SOTOUDEHnia Korrani

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

SEPTEMBER 2016
To my beloved Family
ACKNOWLEDGEMENT

First of all, I would like to thank Allah, for giving me the strength, patience and health to go through all obstacles in order to complete this research.

With a deep sense of gratitude, I wish to express my sincere thanks to my supervisor, Professor Dr. Wan Aini Wan Ibrahim, who has been helpful and offered invaluable assistance, advice, guidance, and high level inspirations for me in completing this research. This thesis would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of my study.

Also, a lot of thank to my friends and my colleagues for their support and advices. Last but not least, I want to extend my appreciation to the people who directly and indirectly contributed in the completion of this thesis.
Conventional extraction methods such as liquid-liquid extraction for organophosphorus pesticides (OPPs) are tedious, time consuming, environmentally unfriendly, hazardous to the operator, and use large volumes of organic solvents. These problems are addressed by the synthesis and development of two extraction methods based on two new in-house sol-gel nanosorbents for use in solid phase-based extraction. The two new nanomaterials, namely cyanopropyltriethoxysilane (CNPrTEOS) and silica nanoparticles functionalized with CNPrTEOS (SiO\textsubscript{2}-NPs-CNPrTEOS) were prepared via a sol-gel process. Synthesized sorbents were characterized by using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, thermogravimetric and nitrogen adsorption analysis. The particle sizes of both nanomaterials were between 20 to 500 nm with high surface areas of 379 m2 g-1 and 570 m2 g-1 for CNPrTEOS and SiO\textsubscript{2}-NPs-CNPrTEOS, respectively. The effects of several sol-gel synthesis parameters were evaluated to optimize sorbent extraction efficiency and increase the extraction of polar and non-polar OPPs simultaneously. The selected OPPs were analysed using high performance liquid chromatography with ultraviolet detector. The synthesized CNPrTEOS was successfully applied as a solid phase extraction (SPE) sorbent to extract three selected OPPs, namely dicrotophos, diazinon and chlorpyrifos. The synthesised SiO\textsubscript{2}-NPs-CNPrTEOS material was used as new sorbent in SPE and dispersive micro solid phase extraction (D-\textmu-SPE). Several effective extraction parameters in SPE and D-\textmu-SPE were optimized. The proposed SPE method based on CNPrTEOS and SiO\textsubscript{2}-NPs-CNPrTEOS exhibited good linearity between 0.3-100 \(\mu\text{g L}^{-1}\), high enrichment factor (833-1666) and low (0.088-0.214 \(\mu\text{g L}^{-1}\)) limits of detection (LODs = \(3 \times SD/m\)). Finally, the proposed D-\textmu-SPE method based on the SiO\textsubscript{2}-NPs-CNPrTEOS successfully determined the selected polar and non polar OPPs in water samples with excellent recoveries (101.21-109.12%). LODs at ultra-trace level (0.047-0.059 \(\mu\text{g L}^{-1}\)) were obtained with 10 min of extraction time, small amount of sorbent (50 mg) and low organic solvent volume (150 \(\mu\text{L}\)). The LODs obtained using the proposed SPE and D-\textmu-SPE methods were well below the maximum residue limit (MRL) set by the European Union and LODs of commercial CN-SPE cartridges. The developed environmentally friendly methods using SPE-CNPrTEOS, SPE-SiO\textsubscript{2}-NPs-CNPrTEOS and D-\textmu-SPE-SiO\textsubscript{2}-NPs-CNPrTEOS provided precise, accurate and excellent recoveries of OPPs from water samples. These new sol-gel materials showed high potential for use as sorbent in solid phase-based extraction of pesticides of variety polarity.
ABSTRAK

Kaedah pengekstrakan konvensional seperti pengekstrakan cecair-cecair untuk pestisid organofosforus (OPPs) adalah membosankan, memakan masa, tidak mesra alam, berbahaya kepada pengguna, dan menggunakan pelarut organik yang banyak. Masalah ini boleh ditangani dengan mensintesis dan membangunkan dua kaedah pengekstrakan berasaskan dua pengerap sol-gel baharu dalam untuk digunakan dalam pengekstrakan berasaskan fasa pepejal. Kedua-dua bahan nano ini iaitu sianopropiltrietoksisilana (CNPrTEOS) dan nanozarah silika terfungsi CNPrTEOS (SiO₂-NPs-CNPrTEOS) telah disediakan melalui proses sol-gel. Pengerap yang disintesis telah dicirikan menggunakan analisis spektroskopi infra-merah transformasi Fourier, mikroskopi imbasan elektron pancaran medan, termogravimetri dan analisis penjerapan nitrogen. Saiz zarah kedua-dua bahan nano adalah antara 20 hingga 500 nm dengan luas permukaan yang tinggi, iaitu 379 m² g⁻¹ dan 570 m² g⁻¹ masing-masing untuk CNPrTEOS dan SiO₂-NPs-CNPrTEOS. Kesan beberapa parameter sintesis sol-gel telah dinilai untuk mengoptimumkan kecekapan pengekstrakan optimum pengerap dan meningkatkan pengekstrakan OPPs berkutub dan tak berkutub secara serentak. Analit OPPs terpilih ini telah dianalisis menggunakan kromatografi cecair berprestasi tinggi dengan pengesahan ultralembayung. CNPrTEOS yang disintesis telah digunakan dengan jayanya sebagai pengerap pengekstrakan fasa pepejal (SPE) untuk mengekstrak tiga OPPs terpilih, iaitu dikrotofos, diazinon dan klorpirifos. Bahan SiO₂-NPs-CNPrTEOS yang disintesis telah digunakan sebagai pengerap baharu dalam SPE dan pengekstrakan serakan mikro fasa pepejal (D-µ-SPE). Beberapa parameter pengekstrakan yang berkesan dalam SPE dan D-µ-SPE telah dioptimumkan. Kaedah SPE yang dicadangkan berasaskan CNPrTEOS dan SiO₂-NPs-CNPrTEOS menunjukkan kelinearan yang baik antara 0.3-100 µg L⁻¹, faktor pengayaan yang tinggi (833-1666) dan had pengesahan (LODs = 3×SD/m) yang rendah (0.088-0.214 µg L⁻¹). Akhir sekali, kaedah D-µ-SPE yang dicadangkan berasaskan SiO₂-NPs-CNPrTEOS telah berjaya menentukan OPPs berkutub dan tak berkutub dalam sampel air dengan pengembalian semula yang cemerlang (101.21-109.12%). LODs pada tahap ultra surihan (0.047-0.059 µg L⁻¹) telah diperoleh dengan masa pengekstrakan 10 min, jumlah pengerap yang kecil (50 mg) dan isipadu pelarut organik yang rendah (150 µL). LODs yang diperoleh menggunakan kaedah SPE dan D-µ-SPE yang dicadangkan adalah di bawah had residu maksimum (MRL) yang ditetapkan oleh Kesatuan Eropah dan LODs bagi kartrij komersial CN-SPE. Kaedah mesra alam yang dibangunkan ini menggunakan SPE-CNPrTEOS, SPE-SiO₂-NPs-CNPrTEOS dan D-µ-SPE-SiO₂-NPs-CNPrTEOS memberikan pengembalian semula OPPs yang presis, tepat dan cemerlang daripada sampel air. Bahan sol-gel baharu ini menunjukkan potensi tinggi untuk kegunaan sebagai bahan pengerap dalam pengekstrakan berasaskan fasa pepejal bagi pestisid pelbagai kekutuban.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATION</td>
<td>xviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background Information 1
1.2 Problem Statement 5
1.3 Aims and Objectives of Study 5
1.4 Scope of Study 6
1.5 Significance of Study 7
1.6 Summary 7

2 LITERATURE REVIEW 9

2.1 Pesticides 9
 2.1.1 Organophosphorus Pesticides 11
2.2 Sol-gel Technology 12
2.3 Extraction Methods 14
 2.3.1 Solid Phase Extraction 16
 2.3.2 Solid-Phase Extraction of Pesticides 20
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3</td>
<td>Sol-gel Sorbent Solid-Phase Extraction of OPPs</td>
<td>22</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Dispersive Solid-Phase Extraction</td>
<td>25</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Dispersive Micro Solid-Phase Extraction</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>EXPERIMENTAL</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>Standards and Reagents</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Preparation of Standard Stock Solutions</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Preparation of the Sol-Gel Sorbents</td>
<td>35</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Synthesis of Nanomaterials Based on Sol-Gel CNPrTEOS</td>
<td>36</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Synthesis of Sol-Gel Cyanopropyl-Functionalized Silica Nanoparticles</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>(SiO$_2$-NPs- CNPrTEOS)</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>Optimization of the Sol-Gel Process Parameters</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Instrumentation and Characterization of Sol–Gel Sorbents</td>
<td>39</td>
</tr>
<tr>
<td>3.6</td>
<td>Liquid Chromatography Instrumentation Conditions</td>
<td>41</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Instrument Calibration</td>
<td>42</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Method Calibration</td>
<td>42</td>
</tr>
<tr>
<td>3.7</td>
<td>Extraction Methods</td>
<td>42</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Solid-Phase Extraction Procedures (SPE)</td>
<td>43</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Dispersive Micro Solid-Phase Extraction Procedures</td>
<td>43</td>
</tr>
<tr>
<td>3.8</td>
<td>Optimization of Effective Parameters for Extraction Performance</td>
<td>44</td>
</tr>
<tr>
<td>3.9</td>
<td>Method Validation</td>
<td>44</td>
</tr>
<tr>
<td>3.10</td>
<td>Environmental Samples</td>
<td>45</td>
</tr>
<tr>
<td>3.11</td>
<td>Flow Chart of Study</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>NEW NANOMATERIAL SILICA-BASED SOL–GEL CYANOPROPYLTRIETHOXYSILANE AS A</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>SOLID-PHASE EXTRACTION SORBENT FOR ORGANOPHOSPHORUS PESTICIDES</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Synthesis and Optimization of Sol-gel CNPrTEOS</td>
<td>49</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Preparation of Sol-Gel CNPrTEOS</td>
<td>49</td>
</tr>
</tbody>
</table>
4.2.2 Mechanism of the Sol–Gel Process 50
4.2.3 Optimization of Sol–Gel CNPrTEOS Process Parameters 51
4.2.4 Characterization of the Sol–Gel CNPrTEOS 56
4.2.5 Optimization of Solid Phase Extraction Procedure 60
4.2.6 Performance Comparison of the Optimum Sol-Gel CNPrTEOS and Commercial Cyanopropyl Sorbents 66
4.2.7 Method Validation 67
4.2.8 Precision Study of Sol-Gel CNPrTEOS 70
4.2.9 Reusability 70
4.2.10 Determination of OPPs in Water Samples 70
4.3 Conclusions 71

5 NOVEL SOL-GEL SILICA NANOPARTICLES FUNCTIONALIZED WITH CYANOPROPYLTRIETHOXYSILANE AS AN ALTERNATIVE SOLID-PHASE EXTRACTION AND DISPERSIVE MICRO-SOLID PHASE EXTRACTION SORBENT FOR ORGANOPHOSPHORUS PESTICIDES 76
5.1 Introduction 76
5.2 Synthesis and Optimization of Sol-gel SiO₂-NPs-CNPrTEOS 77
5.2.1 Synthesis of Sol-Gel SiO₂-NPs-CNPrTEOS 77
5.2.2 Synthesis Mechanism 78
5.2.3 Optimization of Sol–Gel SiO₂-NPs-CNPrTEOS Process Parameters 79
5.2.4 Characterization of the SiO₂-NPs-CNPrTEOS 85
5.2.5 Optimization of SPE and D-μ-SPE Procedures 89
5.2.6 Performance Comparison of Optimum Sol-Gel SiO₂-NPs-CNPrTEOS Sorbent with the Commercial cyanopropyl Sorbent 99
5.2.7 Method Validation 101
5.2.8 Precision of Sol-Gel SiO$_2$-NPs-CNPrTEOS 102
5.2.9 Reusability 104
5.2.10 Determination of OPPs in Water Samples 104
5.3 Comparison of Extraction Performance 109
5.4 Conclusions 110

6 CONCLUSION AND FUTURE DIRECTION 112
6.1 Conclusion and Findings 112
6.2 Future Directions 114

REFERENCES 116

Appendices A-C 136-138
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Types of pesticides, functions and examples of each pesticide type (Reigart and Roberts 1999)</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Classes of chemically related pesticides and their functions (U.S. Environmental Protection Energy (EPA)-Types of Pesticides, 2011)</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Physical and chemical properties of the selected OPPs</td>
<td>13</td>
</tr>
<tr>
<td>2.4</td>
<td>Weaknesses of extraction methods</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparison between D-SPE and D-µ-SPE</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>Some different methods for OPPs isolation from different sample matrix using different material</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Chemicals used to synthesize the sol-gel sorbents</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>Parameter conditions for optimization of sol-gel CNPrTEOS process</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>Parameter conditions for optimization of sol-gel SiO₂-NPs-CNPrTEOS process</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Parameters optimized for the sol-gel CNPrTEOS process</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Optimum extraction conditions for both sol-gel CNPrTEOS SPE and commercial cyanopropyl (CNPr) SPE</td>
<td>65</td>
</tr>
<tr>
<td>4.3</td>
<td>Qualitative data comparisons between the sol-gel CNPrTEOS SPE and CNPr SPE</td>
<td>69</td>
</tr>
<tr>
<td>4.4</td>
<td>Precision studies of sol-gel CNPrTEOS SPE</td>
<td>70</td>
</tr>
<tr>
<td>4.5</td>
<td>Percentage recovery and RSD ((n = 3)) of OPPs from tap, drinking, mineral and river water samples using the developed sol-gel CNPrTEOS SPE method spiked at 0.5 (\mu g \text{ L}^{-1}) and CNPr SPE method spiked at 5 (\mu g \text{ L}^{-1}) with HPLC-UV analysis</td>
<td>73</td>
</tr>
<tr>
<td>5.1</td>
<td>Optimized parameters for the sol-gel SiO₂-NPs-CNPrTEOS process</td>
<td>80</td>
</tr>
<tr>
<td>5.2</td>
<td>Optimum extraction conditions for sol-gel SiO₂-NPs-CNPrTEOS SPE</td>
<td>92</td>
</tr>
</tbody>
</table>
5.3 Optimum extraction conditions sol-gel SiO₂-NPs-CNPrTEOS D-μ-SPE 99

5.4 Qualitative data comparisons between SiO₂-NPs-CNPrTEOS SPE and SiO₂-NPs-CNPrTEOS D-μ-SPE 103

5.5 Precision studies of the three OPPs using sol-gel SiO₂-NPs-CNPrTEOS SPE and SiO₂-NPs-CNPrTEOS D-μ-SPE 105

5.6 Percentage recovery and RSD (n = 3) of OPPs from tap, drinking, mineral and river water samples using the developed sol-gel SiO₂-NPs-CNPrTEOS SPE method spiked at 0.3 µg L⁻¹ and SiO₂-NPs-CNPrTEOS D-μ-SPE method spiked at 0.2 µg L⁻¹ with HPLC-UV analysis 107
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>The chemical structure of CNPrTEOS</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>General structure of organophosphorus pesticides</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic of solid-phase extraction process</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Published papers on solid-phase extraction in searched from 1996 to 2016 using the Scopus database (solid phase extraction in Tittle)</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Interaction mechanisms of chlorpyrifos and the sol-gel sorbent (Yu et al. 2004)</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Sol-gel hybrid materials based on MTMOS-CNPrTEOS and their hypothesized adsorption modes (Wan Ibrahim et al. 2013)</td>
<td>24</td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic of dispersive micro solid-phase extraction process</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow chart of the sol-gel CNPrTEOS preparation process</td>
<td>37</td>
</tr>
<tr>
<td>3.2</td>
<td>Flow chart of sol-gel SiO$_2$-NPs-CNPrTEOS preparation</td>
<td>38</td>
</tr>
<tr>
<td>3.3</td>
<td>Summary of flow chart of research methodology</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Hydrolysis of the CNPrTEOS precursor catalyzed by the base (NH$_4$OH)</td>
<td>50</td>
</tr>
<tr>
<td>4.2</td>
<td>Polycondensation reactions of hydrolyzed CNPrTEOS (water condensation (A) and alcohol condensation (B))</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of different precursor concentrations on the performance of the produced sol-gel CNPrTEOS for the three OPPs extraction efficiencies (Measured by response). Sol-gel parameters: 3 mmol water, 5 mmol MeOH, 2 mmol NH$_4$OH at pH 12 and drying temperature at 100°C. Extraction parameters: 2 mL MeOH as eluting solvent at a flow rate of 0.5 mL min$^{-1}$ and 10 mL sample volume (OPPs spiked at 0.1 µg mL$^{-1}$). HPLC conditions: mobile phase MeOH: water (70:30 v/v) at a flow rate of 1 mL min$^{-1}$ with UV detection at 270 nm and column: Eclipse XDB-C18</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>Response (Measure of extraction efficiency) of the three selected OPPs using four different solvents (5 mmol) in sol-</td>
<td></td>
</tr>
</tbody>
</table>
gel CNPrTEOS SPE. Sol-gel parameters: 1 mmol CNPrTEOS, 3 mmol water, 2 mmol NH$_4$OH at pH 12 and drying temperature at 100ºC. Extraction parameters and HPLC conditions are as in 4.3

4.5 Variation of the response (extraction efficiency) with basic pH values for the three selected OPPs using the sol-gel CNPrTEOS as an SPE sorbent. Sol-gel parameters: 1 mmol CNPrTEOS, 3 mmol water, 5 mmol MeOH and drying temperature at 100ºC. Extraction parameters and HPLC conditions are as in 4.3

4.6 Effect of different amounts of water on the response (extraction efficiency) of the three selected OPPs using sol-gel CNPrTEOS. Sol-gel parameters: 1 mmol CNPrTEOS, 5 mmol MeOH, 2 mmol NH$_4$OH at pH 10 and drying temperature at 100ºC. Extraction parameters and HPLC conditions are as in 4.3.

4.7 FTIR spectrum of (A) raw CNPrTEOS and (B) sol-gel CNPrTEOS

4.8 FESEM micrographs of optimum sol-gel CNPrTEOS at ×10 k magnifications

4.9 Plot of the particle size of the optimum sol-gel CNPrTEOS

4.10 EDX spectra of the optimum sol-gel CNPrTEOS

4.11 N_2 adsorption-desorption isotherm plot of the optimum the sol-gel CNPrTEOS

4.12 Effect of different elution solvent type on the response (extraction efficiency) of the three selected OPPs using (A) sol-gel CNPrTEOS sorbent and (B) commercial CNPr sorbent. Extraction parameters: 10 mL sample volume (50 µg L$^{-1}$) and 2 mL elution solvent volume for sol-gel CNPrTEOS and 1 mL sample volume (0.5 µg mL$^{-1}$) and 2 mL elution solvent volume for commercial CNPr. HPLC conditions: mobile phase used MeOH: water (70:30 v/v) at a flow rate of 1 mL min$^{-1}$ with UV detection at 270 nm and column: Eclipse XDB-C18

4.13 Effect of elution solvent volumes on the response (extraction efficiency) of the three selected OPPs using (A) sol-gel CNPrTEOS sorbent (B) commercial CNPr sorbent. Extraction parameters: 10 mL sample volume (50 µg L$^{-1}$) and DCM as the elution solvent for sol-gel CNPrTEOS and 1 mL sample volume (0.5 µg mL$^{-1}$) with DCM as the elution solvent for commercial CNPr. HPLC conditions are as in 4.12

4.14 Effect of different sample volume on the response (extraction efficiency) of the three selected OPPs using (A) sol-gel CNPrTEOS sorbent (B) commercial CNPr sorbent. Extraction parameters: 2 mL of DCM as the elution solvent
with different sample volume for sol-gel CNPrTEOS (50 µg L⁻¹) and 4 mL of DCM as the elution solvent with different sample for commercial CNPr. HPLC conditions are as in 4.12

4.15 Comparison of response (extraction performance) of the optimized in-house sol-gel SPE and commercial cyanopropyl SPE sorbents for the three selected OPPs. Sol-gel CNPrTEOS synthesis parameters: as in section 4.2.3. Extraction parameters for sol-gel CNPrTEOS and commercial cyanopropyl sorbent are as in section 4.2.5

4.16 Nano sized sol-gel CNPrTEOS and the possible adsorption mechanism with the OPPs analyzed

4.17 Sol-gel CNPrTEOS reusability based on adsorption-elution cycles

4.18 Chromatogram obtained using sol-gel CNPrTEOS SPE-HPLC-UV analysis of OPPs in tap water sample (A) unspiked and (B) spiked at 0.5 µg L⁻¹. Peaks: (1) Dicrotophos, (2) Diazinon and (3) Chlorpyrifos. HPLC-UV and experimental condition are as in section 3.6.1

5.1 Schematic synthesis of silica nanoparticles (SiO₂-NPs)

5.2 Schematic of functionalization of silica nanoparticles (SiO₂-NPs) with CNPrTEOS

5.3 Effect of different solvent types on the sol-gel SiO₂-NPs-CNPrTEOS responses (extraction efficiencies) of the three selected OPPs. Sol-gel parameters: 1 mmol of TEOS, 3 mmol of water, 1 mmol of NH₄OH at pH 11, 1 mmol of CNPrTEOS and a drying temperature of 80°C. Extraction parameters: 2 mL MeOH as eluting solvent at a flow rate of 0.5 mL min⁻¹ and 10 mL sample volume (OPPs spiked at 0.1 µg mL⁻¹). HPLC conditions: mobile phase MeOH: water (70:30 v/v) at a flow rate of 1 mL min⁻¹ with UV detection at 270 nm

5.4 Effect of four different amounts of water on the response (extraction efficiency) of the three selected OPPs. Sol-gel parameters: 1 mmol of TEOS, 6 mmol of EtOH, 1 mmol of NH₄OH at pH 11, 1 mmol of CNPrTEOS and drying temperature at 80°C. Extraction parameters and HPLC conditions are as in 5.2

5.5 Variation in response (extraction efficiency) with basic pH values for three selected OPPs using sol-gel SiO₂-NPs-CNPrTEOS as the SPE sorbent. Sol-gel parameters: 1 mmol of TEOS, 6 mmol of EtOH, 1 mmol of CNPrTEOS, 4 mmol of water and drying temperature at 80°C. Extraction parameters and HPLC conditions are as in 5.2

5.6 Effect of different precursor amounts (functionalization precursor) on the sol-gel SiO₂-NPs-CNPrTEOS on the
response (extraction efficiency) of the three selected OPPs. Sol-gel parameters: 1 mmol of TEOS, 6 mmol of EtOH, 4 mmol of water, 1 mmol NH₄OH at pH 12, and drying temperature at 80°C. Extraction parameters and HPLC conditions are as in 5.2

5.7 FT-IR spectrum of (A) raw TEOS, (B) raw CNPrTEOS, (C) SiO₂-NPs and (D) SiO₂-NPs-CNPrTEOS

5.8 FESEM micrographs of optimized SiO₂-NPs-CNPrTEOS sorbent at x50 K magnification

5.9 EDX spectra of optimized sol-gel SiO₂-NPs-CNPrTEOS

5.10 Isotherm plot of optimum sol-gel SiO₂-NPs-CNPrTEOS

5.11 TGA profiles of (A) SiO₂-NPs and (B) optimum sol-gel SiO₂-NPs-CNPrTEOS. TGA was performed on a TGA 7 Perkin-Elmer thermogravimetric analyzer under nitrogen atmosphere and a gas flow of 50 mL min⁻¹. The heating rates were varied between 10°C min⁻¹ and 800°C min⁻¹

5.12 Effect of elution solvent type on the response (extraction efficiency) of the three selected OPPs using sol-gel SiO₂-NPs-CNPrTEOS. Extraction parameters: 10 mL sample volume (50 µg L⁻¹) and 2 mL elution solvent volume. HPLC conditions: mobile phase MeOH: water (70:30 v/v) at a flow rate of 1 mL min⁻¹ with UV detection at 270 nm and column: Eclipse XDB-C18

5.13 Effect of elution solvent volumes on the response (extraction efficiency) of the three selected OPPs using sol-gel SiO₂-NPs-CNPrTEOS sorbent. Extraction parameters: 10 mL sample volume (50 µg L⁻¹) and DCM as the elution solvent. HPLC conditions are as in 5.11

5.14 Effect of different sample volume on response (extraction efficiency) of the three selected OPPs using sol-gel SiO₂-NPs-CNPrTEOS sorbent. Extraction parameters: 5 mL of DCM as elution solvent and different sample volume (50 µg L⁻¹). HPLC conditions are as in 5.11

5.15 Effect of mass of sol-gel SiO₂-NPs-CNPrTEOS sorbent on D-µ-SPE for OPPs. Extraction parameters: 100 µL of EtOH as the desorption solvent, 1 min desorption time, 5 min extraction time and 10 mL sample volume (50 µg L⁻¹)

5.16 Effect of extraction time on the response (extraction efficiency) of the three selected OPPs using D-µ-SPE-SiO₂-NPs-CNPrTEOS. Extraction parameters: 50 mg mass of sol-gel SiO₂-NPs-CNPrTEOS sorbent, 100 µL of EtOH as the desorption solvent, 1 min desorption time and 10 mL sample volume (50 µg L⁻¹)

5.17 Effect of the desorption solvent on the response (extraction efficiency) of the three selected OPPs using D-µ-SPE-SiO₂-
NPs-CNPrTEOS. Extraction parameters: 50 mg mass of sol-gel SiO$_2$-NPs-CNPrTEOS sorbent 100 µL desorption solvent, 1 min desorption time, 5 min extraction time and 10 mL sample volume (50 µg L$^{-1}$)

5.18 Effect of the desorption solvent volume on the response (extraction efficiency) of the three selected OPPs using D-µ-SPE-SiO$_2$-NPs-CNPrTEOS. Extraction parameters: 50 mg mass of sol-gel SiO$_2$-NPs-CNPrTEOS sorbent, DCM as desorption solvent, 1 min desorption time, 5 min extraction time and 10 mL sample volume (50 µg L$^{-1}$)

5.19 Effect of the desorption time on the response (extraction efficiency) of the three selected OPPs using D-µ-SPE-SiO$_2$-NPs-CNPrTEOS. Extraction parameters: 50 mg mass of sol-gel SiO$_2$-NPs-CNPrTEOS sorbent, 150 µL DCM as desorption solvent, 5 min extraction time and 10 mL sample volume (50 µg L$^{-1}$)

5.20 Effect of different sample volumes on the response (extraction efficiency) of the three selected OPPs using D-µ-SPE-SiO$_2$-NPs-CNPrTEOS. Extraction parameters: 50 mg mass of sol-gel SiO$_2$-NPs-CNPrTEOS sorbent, 150 µL of DCM as desorption solvent, 3 min desorption time, 5 min extraction time and different sample volumes (50 µg L$^{-1}$)

5.21 Comparison of response (extraction performance) of the optimized sol-gel SPE sorbent and commercial CNPr SPE sorbent for the three selected OPPs. Sol-gel SiO$_2$-NPs-CNPrTEOS synthesis parameters : as in section 5.2.3. Extraction parameters for sol-gel SiO$_2$-NPs-CNPrTEOS SPE as in section 5.2.5 and commercial CNPr SPE are as in section 4.2.5

5.22 SiO$_2$-NPs-CNPrTEOS nanomaterial and its possible adsorption mechanism

5.23 Reusability based on adsorption-elution cycles using sol-gel SiO$_2$-NPs-CNPrTEOS (A) SPE method and (B) D-µ-SPE method

5.24 Chromatogram obtained using sol-gel SiO$_2$-NPs-CNPrTEOS SPE from tap water sample (A) unspiked, (B) spiked tap water at 0.3 µg L$^{-1}$ and (C) spiked tap water at 0.2 µg L$^{-1}$ using SiO$_2$-NPs-CNPrTEOS D-µ-SPE. Peaks: (1) Dicrotophos, (2) Diazinon and (3) Chlorpyrifos. HPLC-UV and experimental condition are as in section 3.6.1.

5.25 Comparison of extraction performance of different SPE and D-µ-SPE sorbents on the extraction of three OPPs (50 µg L$^{-1}$). The optimum SPE condition for CNPrTEOS: 50 mL sample volume and 2 mL DCM as elution solvent, for SiO$_2$-NPs-CNPrTEOS: 100 mL sample volume and 3 mL DCM as elution solvent and optimum D-µ-SPE condition for SiO$_2$-NPs-CNPrTEOS: 50 mg of SiO$_2$-NPs-CNPrTEOS,
150 mL sample volume, 150 µL DCM as desorption solvent, 10 min extraction time, 3 min desorption time
LIST OF ABBREVIATION

CNPr - Cyanopropyl
CNPrTEOS - Cyanopropyltriethoxysilane
D-µ-SPE - Dispersive micro solid phase extraction
DCM - Dichloromethane
DOA - Department of Agriculture
DW - Deionized water
EtOH - Ethanol
EPA - Environmental Protection Energy
EU - European Union
EII - Electron Impact Ionization
FAAS - Flame Atomic Absorption Spectrometry
FE-SEM - Field Emission-Scanning Electron Microscopy
FT-IR - Fourier Transform-Infrared Spectroscopy
GC - Gas Chromatography
GC-ECD - Gas Chromatography Electron Capture Detector
GC-FPD - Gas Chromatography Flame Photometric Detector
GC-MS - Gas Chromatography Mass Spectrometry
GC-NPD - Gas Chromatography Nitrogen Phosphorus Detector
h - Hour
HPLC - High Performance Liquid Chromatography
LC - Liquid Chromatography
LLE - Liquid-Liquid Extraction
LOD - Limit of Quantification
LOQ - Limit of Qualification
LPME - Liquid-Phase Microextraction
MeOH - Methanol
min - Minutes
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>MISPE</td>
<td>Molecularly Imprinted Solid Phase Extraction</td>
</tr>
<tr>
<td>MOA</td>
<td>Ministry of Agriculture and Agro-Based Industry</td>
</tr>
<tr>
<td>MRL</td>
<td>Maximum Residue Limits</td>
</tr>
<tr>
<td>MTMOS</td>
<td>Methyltrimethoxysilane</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>n-BOH</td>
<td>n-Butanol</td>
</tr>
<tr>
<td>NH₄OH</td>
<td>Ammonium solution</td>
</tr>
<tr>
<td>NPs</td>
<td>Nanoparticles</td>
</tr>
<tr>
<td>OCPs</td>
<td>Organochlorinated Pesticides</td>
</tr>
<tr>
<td>OH-TPDMS</td>
<td>Hydroxy-terminated Polydimethylsiloxane</td>
</tr>
<tr>
<td>OPPs</td>
<td>Organophosphorus Pesticides</td>
</tr>
<tr>
<td>PAHs</td>
<td>Polycyclic Aromatic Hydrocarbons</td>
</tr>
<tr>
<td>PCBs</td>
<td>Polychlorobiphenyl</td>
</tr>
<tr>
<td>PDMS</td>
<td>Polydimethylsiloxane</td>
</tr>
<tr>
<td>PMHS</td>
<td>Poly(methylhydroxysiloxane)</td>
</tr>
<tr>
<td>PDMS-20HMe18C</td>
<td>Polydimethylsiloxane-2-hydroxymethyl-18-crown-6</td>
</tr>
<tr>
<td>n-PrOH</td>
<td>n-Propanol</td>
</tr>
<tr>
<td>PVA</td>
<td>Poly(vinyl) alcohol</td>
</tr>
<tr>
<td>RSD</td>
<td>Relative Standard Deviation</td>
</tr>
<tr>
<td>RM</td>
<td>Ringgit</td>
</tr>
<tr>
<td>SBSE</td>
<td>Stir Bar Sorptive Extraction</td>
</tr>
<tr>
<td>SFE</td>
<td>Supercritical Fluid Extraction</td>
</tr>
<tr>
<td>SPE</td>
<td>Solid Phase Extraction</td>
</tr>
<tr>
<td>SPME</td>
<td>Solid Phase Microextraction</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TEOS</td>
<td>Tetraethoxysilane</td>
</tr>
<tr>
<td>TMOS</td>
<td>Tetramethoxysilane</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-violet</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>List of Presentations</td>
<td>136</td>
</tr>
<tr>
<td>B</td>
<td>List of Publications</td>
<td>137</td>
</tr>
<tr>
<td>C</td>
<td>List of Patent</td>
<td>138</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background Information

Pesticides are large group of toxic synthesis organic compounds used in agriculture. Pesticides are used on farms as herbicides, fungicides and insecticides (Gou et al. 2000). Insecticides known as organophosphorus pesticides (OPPs) and organochlorine pesticides (OCPs) are commonly used against insects. OCPs (e.g., DDT) have been banned since 1972 in the US and 1983 in China (Qiu et al. 2004), but they are still used for crop protection.

OPPs are one of the most common highly toxic classes because of their inhibition of acetyl-cholinesterase. Due to the widespread use of OPPs in agriculture to protect product quality, they are commonly found in surface waters, foods and even honey (Amendola et al. 2011). Food produced for humans can contain pesticides, either from direct application to the food or bio-magnification up the food chain.

The presence of OPPs contamination in food commodities has become a growing source of concern for mammals (Shimelis et al. 2007). OPPs toxicity is harmful to human health. According to drinking water guidelines, the maximum acceptable concentrations established by the European Union (EU) are 0.1 µg L⁻¹ and 0.5 µg L⁻¹ for single and total OPPs, respectively (Community 1998). Due to the high toxicity of OPPs at trace levels, monitoring and detection of residues in water sources is essential for human protection. Pre-treatment and sampling are most important in analytical work because these steps typically account for over 60% of
the total analysis time and their quality largely determines the success of analysis in complex matrices (Chen and Wu 2005). Different types of techniques have been successfully developed for sample preparation and extraction of OPPs from various media: liquid-liquid extraction (LLE) (Barcelo 1993), supercritical fluid extraction (SFE) (Rissato et al. 2005) and stir-bar sorptive extraction (SBSE) (Baltussen et al. 1999, Bicchi et al. 2002). However, LLE is time consuming and labor-intensive, and choosing an appropriate solvent can be complicated. Moreover, it is difficult to polar and ionic compounds from water, and these methods require relatively large volumes of organic solvents and harmful chemicals that are costly to dispose of.

Method simplification and miniaturization are modern trends in analytical chemistry (Blasco 2004). Solid-phase extraction (SPE) is a convenient sampling method compared to LLE because of its simplicity and economic benefits in terms of time and solvent needs (Cacho et al. 2003, Lal et al. 2008). SPE has been successfully used to preconcentrate and clean up pesticides from different samples (Sabik et al. 2000, Wells and Yu 2000) and has many advantages, such as wide availability of selective sorbents, less consumption of organic solvent, low cost, short analysis time, simple equipment, simple operation, rapid sample loading and high breakthrough volume (Sabik et al. 2000).

SPE based on commercial sorbents, such as C_{18} and CN, provides higher affinity for nonpolar and polar pesticides, respectively. In recent years, SPE has been developed with novel in-house sorbents with promising analytical performances: cross-linked copolymers suitable for nonpolar pesticides and reversed-phase mechanisms and interactions (Masque et al. 2001, Bielicka Daszkiewicz et al. 2006) and molecular imprinted polymers (MIPs) (Berton et al. 2006). Commercial sorbents and reported in-house adsorbents provide potential benefits, but they also have several drawbacks, such as low recovery, less precision, low enrichment factor, less sensitivity and low reusability.

Recently, to overcome the aforementioned limitations with polar and nonpolar OPPs, environmental friendly hybrid sol-gel based sorbents with many advantages were developed as SPE sorbents: polydimethylsiloxane-2-

Dispersive micro solid phase extraction (D-µ-SPE) has been widely used to isolate pesticides (Jiménez-Soto et al. 2012). Dispersive micro-solid phase extraction is a quick, easy, cheap, effective, rugged and safe (QuEChERS) method for sample preparation, isolation and preconcentration for a wide range of samples (Han et al. 2014). D-µ-SPE is another mode of d-SPE that consumes small amounts of adsorbent and elution solvent, provides higher adsorption capacity, avoids channeling or blocking and is simple and less time consuming than conventional SPE (Fu et al. 2012, Chung et al. 2013, Yahaya et al. 2014). D-µ-SPE traps analytes on the sorbent from liquid samples followed by desorption or elution by organic solvents. D-µ-SPE exhibits high breakthrough volumes because a large volume of sample can be processed with small amounts of sorbent and solvent.

In the present study, sol-gel technology was used to prepare sorbents for SPE and D-µ-SPE because new sorbents with different properties and conditions can be developed. First, novel nanosized sorbents based on cyanopropyltriethoxysilane (CNPrTEOS) with high surface areas were synthesized using the sol-gel method and applied as SPE sorbents to preconcentrate polar and nonpolar OPPs. Second, silica nanoparticles were synthesized and functionalized with CNPrTEOS (SiO2-NPs-CNPrTEOS) followed by application as SPE and D-µ-SPE sorbents for OPP preconcentration. These proposed methods exhibited low limit of detections (LODs) with excellent enrichment factors for OPPs extraction from water samples. Polar (dicrotophos) and nonpolar (diazinon and chlorpyrifos) OPPs were successfully recovered from environmental water samples (tap, river, mineral and drinking water) with high extraction recoveries and little matrix effects observed.

The proposed SPE and D-µ-SPE methods based on different types of in-house and commercial sorbents co-extracted many matrix species, resulting in a dirty extraction. As a result, selective chelating sorbent has become an active area of
research. SPE and D-µ-SPE methods can overcome these limitations by using new sol-gel materials that can extract polar and non-polar compounds via the sol-gel process. Because of its potential benefits, CNPrTEOS was used as the new material to extract polar and non-polar OPPs from environmental water samples. The cyano functional group in CNPrTEOS is very polar and impacts the extraction of polar analytes from aqueous matrices. CNPrTEOS exhibits both polar and polarizable characteristics and is among the most useful stationary phases with respect to polarity at both low and high temperatures. The cyano group attached to the siloxane backbone via a three-methylene (CH$_2$) spacer is polar and strongly electron attracting, displaying dipole-dipole, dipole-induced dipole and charge-transfer interactions. The unshared electron pair in the nitrile nitrogen may form intermolecular hydrogen-bonds with suitable hydrogen donor sample molecules like phenols. These characteristics of cyano stationary phases are responsible for their increased affinity for ketones, esters and analytes bearing electrons (Kulkarni et al. 2006).

Methods based on CNPrTEOS have been used as sol components to synthesize inorganic-organic hybrid polydimethylsiloxane-cyanopropyltriethoxysilane (PDMS-CNPrTEOS) as extraction sorbents to analyze non-steroidal anti-inflammatory drugs (NSAIDs) by SBSE (Wan Ibrahim et al. 2011a). The cyano moiety in the PDMS-CNPrTEOS hybrid may improve the extraction of more polar NSAIDs through hydrogen bonding, electrostatic and π-π interactions with analytes. The structure of CNPrTEOS is shown in Figure 1.1.

Figure 1.1 The chemical structure of CNPrTEOS
1.2 Problem Statement

In recent years, the development of fast, accurate, sensitive, simple and inexpensive methodologies has become an important research focus. Sample preparation is generally required to determine trace levels of organic compounds in sample matrices. Liquid-liquid extraction is a versatile and multipurpose sample-preparation technique and recommended in many standard analytical methods (Tahboub et al. 2005). However, it is tedious, expensive, laborious, time consuming, and unable to extract polar compounds, requires multistage operation, is likely to form emulsions, uses large volumes of organic solvents and requires disposal of toxic or flammable chemicals (Pico et al. 2007). Solid phase extraction and solid micro phase extraction can overcome these drawbacks because they can reduce the use of organic solvents, the mass of sorbent needed and the extraction time, as well as increase the sample capacity.

Commercial SPE and D-µ-SPE sorbents are typically suitable for non-polar or polar compounds, but not for both. Non-polar sorbents show low retention of polar compounds, and the reverse is true for polar sorbents (Chan and Tsang 2007). Therefore, to overcome these limitations, new nanomaterials were synthesized using a sol-gel method that can extract polar and nonpolar compound simultaneously. These new nanosorbents have higher capacity in comparison with commercial and previous sorbents for extraction and concentration of polar and nonpolar OPPs. These new nanosorbents were sol-gel nanomaterials based on CNPrTEOS and silica nanoparticles functionalized with CNPrTEOS (SiO$_2$-NPs-CNPrTEOS), which were used in SPE and D-µ-SPE to extract three selected OPPs with different polarities.

1.3 Aims and Objectives of Study

The aim of this study is to synthesize new sol-gel sorbents for SPE and D-µ-SPE to extract polar and non-polar OPPs simultaneously. The objectives are to
1. Synthesize new nanosorbents based on CNPrTEOS and SiO$_2$-NPs-CNPrTEOS as extraction sorbents, and optimization of effective sol-gel synthesis parameters, namely water volume, solvent type, base catalyst pH value and precursor content.

2. Characterize the synthesized nanosorbents using Fourier transform infrared spectroscopy (FTIR), field scanning electron microscopy (FESEM), nitrogen adsorption, elemental analysis (EDX) and thermogravimetric analysis (TGA).

3. Evaluate the synthesized CNPrTEOS as SPE sorbent and SiO$_2$-NPs-CNPrTEOS as D-µ-SPE and SPE sorbents for OPPs preconcentration, and optimization and validation of effective SPE and D-µ-SPE parameters.

4. Evaluate the optimum SPE and D-µ-SPE conditions for method validation to determine the linearity range, LOD, LOQ and precision of SPE and D-µ-SPE method followed by analysis of environmental samples (Tap, bottled mineral, bottled drinking and river water).

1.4 Scope of Study

This study focused on the preparation of sol-gel CNPrTEOS and SiO$_2$-NPs-CNPrTEOS as sorbents for the simultaneous extraction and preconcentration of three selected OPPs dicrotophos, diazinon and chlorpyrifos, via SPE and D-µ-SPE. The functional groups, surface morphologies and thermal stabilities of the prepared sol-gel sorbents were characterized using FTIR, FESEM and TGA. Physical characteristics such as pore size, surface area, pore volume and pore size distribution were measured using N$_2$ adsorption (BET). To obtain appropriate sorbents for OPPs preconcentration, the CNPrTEOS content, pH of the base catalyst, water volume and solvent type during sol preparation were evaluated. The extraction efficiencies of the SPE and D-µ-SPE methods were successfully applied to OPPs preconcentration prior to high performance liquid chromatography equipped with UV analysis. Optimization of the proposed methods (SPE and D-µ-SPE) was carried out for sample volumes, desorption or elution solvent types, desorption or elution solvent
volumes, extraction time, desorption time and adsorbent mass. The SPE and D-µ-SPE methods were validated in terms of linearity, limit of detection and limit of quantification. The extraction recoveries of the SPE and D-µ-SPE methods based on the new nanosorbents were examined in the extraction of OPPs from environmental samples. Finally, extraction efficiencies of the newly synthesized sol-gel sorbents were compared with commercial cyanopropyl (CNPr) for polar and nonpolar OPPs that had been isolated under the optimized extraction conditions.

1.5 Significance of Study

Commercial SPE sorbents (non-polar C18 and polar CNPr) have limitations in the extraction of polar and nonpolar analytes from different types of samples. The newly developed sol-gel sorbents based on CNPrTEOS and SiO2-NPs-CNPrTEOS with different polarities improved the extraction performance of polar dicrotophos, and nonpolar chlorpyrifos and diazinon. As extraction sorbents, the new in-house sol-gel CNPrTEOS and SiO2-NPs-CNPrTEOS materials enhanced the extraction capability of polar and nonpolar OPPs simultaneously, thereby reducing extraction time. The D-µ-SPE method using the new sol-gel sorbent is also simple, inexpensive and environmentally friendly.

1.6 Summary

Chapter 1 explains the background of the study concerning toxic pesticides, sampling methods, sorbent variety and sol-gel materials. The statement of problem, objectives, scopes and significance of this study are also covered.

Chapter 2 focuses on the published literature concerning pesticides, sol-gel technology, solid-phase extraction, dispersive micro solid-phase extraction and commercial and in-house sorbent materials.
Chapter 3 focuses on the methodology, followed by a description of materials, instruments, synthesis procedures for sol-gels based on CNPrTEOS and silica nanoparticles functionalized with CNPrTEOS precursors, chromatography peak identification and SPE and D-µ-SPE methods.

Chapter 4 focuses on the preparation of the new nanosized sol-gel sorbents based on CNPrTEOS as an SPE adsorbent, characterized using FTIR, BET, FESEM, and EDX. The sorbent synthesized in-house was successfully applied to the simultaneous extraction of polar (dicrotophos) and non-polar (diazinon and chlorpyrifos) OPPs from various water samples (tap, river, mineral and drinking water). The CNPrTEOS-based sorbent was sensitive to polar and nonpolar OPPs through electrostatic interactions, H-bonding and porosity. SPE based on CNPrTEOS showed good affinity for the isolation of polar and non-polar OPPs simultaneously. The preconcentrated OPPs were determined by HPLC-UV.

In chapter 5, the SiO$_2$-NPs-CNPrTEOS nanoparticles were synthesized using sol-gel technology. Briefly, SiO$_2$ nanoparticles were prepared and functionalized using the CNPrTEOS precursor. The combined sol-gel sorbent was characterized by FTIR, BET, FESEM, EDX and TGA. The synthesized nanomaterial was used as an SPE and D-µ-SPE sorbent to extract three polar and nonpolar OPPs from environmental water samples (tap, river, mineral and drinking water). A high enrichment factor and lower LOD are the some benefits of D-µ-SPE compared with conventional SPE. The isolated OPPs were determined by HPLC-UV.

Chapter 6 is the final chapter and focuses on the conclusion and future works of the current study. This chapter summarizes the obtained analytical results, such as the optimization parameters and validation of the SPE and D-µ-SPE methods based on the novel sol-gel sorbents (CNPrTEOS and SiO$_2$-NPs-CNPrTEOS).
REFERENCES

Chen, D., Zhao, Y., Miao, H. and Wu, Y. (2015). A novel dispersive micro solid phase extraction using PCX as the sorbent for the determination of
melamine and cyromazine in milk and milk powder by UHPLC-HRMS/MS.
Talanta. 134, 144-152.

determination of seven non-steroidal anti-inflammatory drugs in
pharmaceuticals. _Analytical and Bioanalytical Chemistry._ 381(4), 907–912.

extration is an attractive alternative in sample preparation. _Pure and
applied chemistry._ 76(4), 707-722.

polyurethane using the a grafted triethoxysilyl group. _Journal of Sol-Gel
Science and Technology._ 72(3), 543-552.

extration for the rapid analysis of synthetic polycyclic musks using thermal
desorption gas chromatography–mass spectrometry. _Journal of
Chromatography A._ 1307, 34-40.

quality of water intended for human consumption. _Official Journal of the
European Communities._ L330, 32-54.

Camino-Sánchez, F., Rodríguez-Gómez, R., Zafra-Gómez, A., Santos-Fandila, A.
and Vílchez, J. (2014). Stir bar sorptive extraction: recent applications,
limitations and future trends. _Talanta._ 130, 388-399.

Australian marine environment after banning in the period from the 1970s to
1980s. _Marine pollution bulletin._ 45(1), 78-83.

mesoextraction fiber coating based on poly (ethylene glycol)-modified
ormosils synthesized by sol–gel technology. _Journal of Chromatography A._
1072(1), 7-12.

Cunha, S. C., Lehotay, S. J., Mastovska, K., Fernandes, J. O., Beatriz, M. and
approach for the analysis of pesticide residues in olives. _Journal of
Separation Science._ 30(4), 620-632.

De Moraes, S. V., Passos, J. B., Schossler, P., Caramão, E. B., Moro, C. C., Costa, T.
M. and Benvenuti, E. V. (2003). Silica–titania sol–gel hybrid materials:
synthesis, characterization and potential application in solid phase extraction. *Talanta.* 59(5), 1039-1044.

Fernandes, V. C., Domingues, V. F., Mateus, N. and Delerue-Matos, C. (2013). Multiresidue pesticides analysis in soils using modified QuEChERS with
disposable pipette extraction and dispersive solid-phase extraction. *Journal of separation science*. 36(2), 376-382.

simultaneous determination of Cd, Ni, Cu and Zn in vegetable and natural water samples. *Analytical Methods.* 7(7), 3215-3223.

conventional method by GC-ECD and GC-MS. *Journal of Brazilian Chemical Society.* 16, 1038-1047.

