IMPROVING BANANA AND OIL PALM SEEDLINGS GROWTH USING INDIGENOUS NITROGEN FIXING AND PHOSPHATE SOLUBILIZING BACTERIA

THEN KEK HOE

UNIVERSITI TEKNOLOGI MALAYSIA
IMPROVING BANANA AND OIL PALM SEEDLINGS GROWTH USING INDIGENOUS NITROGEN FIXING AND PHOSPHATE SOLUBILIZING BACTERIA

THEN KEK HOE

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Bioprocess Engineering)

Faculty of Chemical and Energy Engineering
Universiti Teknologi Malaysia

SEPTEMBER 2016
I would like to take this opportunity to express my deeply grateful and sincere gratitude to my supervisor, Dr. Zainul Akmar Zakaria and my co-supervisor Prof. Dr. Mohamad Roji Sarmidi from Institute of Bioproduct Development (IBD), Faculty of Chemical and Energy, Universiti Teknologi Malaysia for their detailed and constructive comments, valuable advice, friendly help, extensive discussions and encouraging guidance around my study have been very significant for this thesis.

Last but not least, deepest appreciation to my parent, wife, sons and family members for their continuous supports and encouragements throughout the progress of this study.
ABSTRACT

Oil palm is the biggest commodity crop while banana is the second largest fruit crop planted in Malaysia. Both are highly nutrient-demanding crops that requires a large amount of fertilizer. This present an opportunity to find alternative source of nutrient that is much cheaper than the imported inorganic fertilizer for oil palm and banana plantation. Hence, the objective of this study was to develop a newly formulated biofertilizer incorporating locally isolated indigenous nitrogen fixing bacteria (NFB) and phosphate solubilising bacteria (PSB) into oil palm empty fruit bunch (EFB) compost as alternative nutrient source for banana and oil palm to improve their growth and nutrient uptake. Three NFB and PSB strains (Enterobacter cloacae, Burkholderia cepacia and Serratia marcescens) were successfully isolated from the root of oil palm and banana to be formulated as biofertilizer for evaluation on oil palm and banana seedlings. The formulated biofertilizer showed high viable cell count of NFB and PSB inoculants in the carrier (fine EFB compost) i.e 2.45 x 10^8 cfu/g to 4.31 x 10^9 cfu (colony forming unit)/g carrier was recorded at the second day after inoculation. Biofertilizer formulation containing Enterobacter cloacae showed promising and consistent effect on the growth of oil palm and banana seedlings including increased plant height (13.7% for oil palm and 15.6% for banana), improved total dry biomass production (27.4% and 33.8% respectively) and high total nutrient uptake (nitrogen (N) 30.6-48.1%, phosphorous (P) 27.2-33.1%, potassium (K) 30.5-37.7%, magnesium (Mg) 48.8%, sulfur (S) 18.1-28.5% and boron (B) 24.5%). Enterobacter cloaceae also showed good root colonization ability as shown from the Field emission scanning electron microscopy analysis. The use of nutrient-rich EFB compost (3.06% N, 0.37% P, 4.74% K, 3.32% calcium (Ca), 0.79% Mg, 0.07% S, 70.3 mg/kg B, 102.1 mg/kg copper (Cu), 6600.9 mg/kg iron (Fe), 160.2 mg/kg zinc (Zn), 455.2 mg/kg manganese (Mn) and 41.4% total carbon, C) as carrier for biofertilizer was able to improve the soil properties notably soil pH, organic C, total N, total P, available P and exchangeable Mg. As a conclusion, the application of locally isolated NFB and PSB together with EFB as carrier (as well as source of nutrient) was successful to improve the growth of oil palm and banana seedlings together with the soil properties. Biofertilizer formulation containing Enterobacter cloaceae showed higher performance relative to the other formulations, hence recommended to be applied as soil mixture or directly applied into the planting hole of oil palm and banana seedlings during transplanting to the field to encourage the growth and nutrient uptake during early planting phase.
ABSTRAK

Kelapa sawit merupakan tanaman komoditi terbesar manakala pisang merupakan tanaman buah-buahan yang kedua terbesar di Malaysia. Kedua-dua tanaman ini memerlukan input nutrien yang tinggi. Ini membuka peluang untuk mendapatkan sumber nutrien alternatif yang lebih murah daripada baja inorganik import untuk ladang kelapa sawit dan pisang. Dengan ini, objektif kajian ini adalah untuk membangunkan formulasi biobaja baru daripada gabungan bakteria pengikat nitrogen (NFB) dan bakteria pelarut fosfat (PSB) ke dalam kompos tandan kosong sawit (EFB) sebagai sumber nutrien alternatif kepada kelapa sawit dan pisang demi menggalakkan pertumbuhan dan pengambilan nutrien. Tiga jenis NFB dan PSB, iaitu Enterobacter cloacae, Burkholderia cepacia dan Serratia marcescens berjaya disiasikan daripada akar kelapa sawit dan pisang untuk diformulasikan sebagai biobaja untuk penilaian kepada anak benih kelapa sawit dan pisang. Biobaja ini mencatatkan jumlah sel hidup inokulan NFB dan PSB yang tinggi dalam pembawa (kompos EFB halus) sebanyak 2.45 x 10^8 hingga 4.31 x 10^9 cfu (unit pembentuk koloni)/g pembawa. Formulasi biobaja yang mengandungi Enterobacter cloacae menunjukkan prestasi yang menyakinkan dan konsisten kepada anak benih kelapa sawit dan pisang dapat meningkatkan ketinggian sebanyak 13.7% dan 15.6% masing-masing serta meningkatkan jumlah berat kering sebanyak 27.4% dan 33.8% masing-masing. Formulasi Enterobacter cloacae ini juga menggalakkan jumlah pengambilan nutrien oleh anak benih kelapa sawit dan pisang pada kepekatan 30.6-48.1% (nitrogen, N), 27.2-33.1% (fosforus, P), 30.5-37.7% (potassium, K), 48.8% (magnesium, Mg), 18.1-28.5% (sulfur, S) dan 24.5% (boron, B). Analisa Mikroskopi pancaran medan imbasan elektron juga menunjukkan Enterobacter cloacae mempunyai keupayaan kolonisasi akar yang baik. Kompos EFB yang kaya dengan nutrien (3.06% N, 0.37% P, 4.74% K, 3.32% kalsium (Ca), 0.79% Mg, 0.07% S, 70.3 mg/kg B, 102.1 mg/kg kuprum (Cu), 6600.9 mg/kg besi (Fe), 160.2 mg/kg zink (Zn), 455.2 mg/kg Mangan (Mn) dan 41.4% jumlah karbon, C) digunakan sebagai pembawa dalam biobaja turut meningkatkan sifat-sifat tanah terutamanya pH, jumlah organik C, jumlah N, jumlah P, jumlah P tersedia dan Mg tertukar-ganti. Sebagai kesimpulan, aplikasi pencilan bakteria NFB dan PSB dari punca tempatan beserta EFB sebagai bahan pembawa (juga sebagai sumber nutrien) telah berjaya meningkatkan pertumbuhan anak benih kelapa sawit dan pisang beserta kandungan tanah. Formulasi biobaja mengandungi Enterobacter cloacae yang menunjukkan kesan yang lebih tinggi berbanding formulasi baja lain adalah disyorkan untuk digunakan sebagai campuran tanah atau ditaburkan terus ke dalam lubang tanam anak benih kelapa sawit dan pisang semasa penanaman di ladang bagi menggalakkan pertumbuhan dan pengambilan nutrien semasa fasa awal penanaman.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xxiii</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background 1
1.2 Problem Statement 4
1.3 Aim and Objectives 5
1.4 Scopes of Study 5
1.5 Research Significance 6

2 LITERATURE REVIEW

2.1 Oil Palm Industry in Malaysia 7
2.2 Banana Plantation in Malaysia 9
2.3 Fertilizer 11
2.4 Fertilizer Usage in Malaysia 14
2.5 Fertilizer Application Practices in Oil Palm and Banana Plantation
2.6 Oil Palm Mill Biomass as Potential Plant Nutrient
2.7 Biofertilizer
2.8 Plant Growth Promoting Bacteria
2.9 Root Colonization by Plant Growth Promoting Bacteria
2.10 Nitrogen Fixing Bacteria
2.11 Nitrogen Fixing Bacteria Associated with Oil Palm
2.12 Nitrogen Fixing Bacteria Associated with Banana
2.13 Phosphate Solubilizing Bacteria
2.14 Phosphate Solubilizing Bacteria Associated with Oil Palm
2.15 Phosphate Solubilizing Bacteria Associated with Banana
2.16 Co-inoculation of Nitrogen Fixing and Phosphate Solubilizing Bacteria
2.17 Multifarious Beneficial Traits of Plant Growth Promoting Bacteria
2.18 Carrier Material for Biofertilizer

3 RESEARCH METHODOLOGY
3.1 Study Outline
3.2 Banana and Oil Palm Root Sampling
3.3 Isolation of Nitrogen Fixing and Phosphate Solubilizing Bacteria
3.4 Screening of Nitrogen Fixing and Phosphate Solubilizing Bacterial Isolates
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1</td>
<td>Determination of Nitrogen Fixation Capability</td>
<td>51</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Determination of Phosphate Solubilizing Activity</td>
<td>53</td>
</tr>
<tr>
<td>3.5</td>
<td>Growth Profile of Selected Bacteria Strains</td>
<td>54</td>
</tr>
<tr>
<td>3.6</td>
<td>Biocompatibility of Mixed Cultures of NFB and PSB</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>Processing of Oil Palm Empty Fruit Bunch Compost</td>
<td>55</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Temperature Monitoring of EFB Compost</td>
<td>57</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Compost Sampling for Chemical Analysis</td>
<td>57</td>
</tr>
<tr>
<td>3.8</td>
<td>Identification of NFB and PSB</td>
<td>59</td>
</tr>
<tr>
<td>3.9</td>
<td>Biofertilizer Formulation Using NFB and PSB Inoculated into EFB Compost</td>
<td>60</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Carrier Preparation Using EFB Compost</td>
<td>61</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Preparation of NFB and PSB Inoculant</td>
<td>62</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Viable Cell Count of Bacterial Inoculants in Biofertilizer</td>
<td>63</td>
</tr>
<tr>
<td>3.10</td>
<td>Efficiency of Formulated Biofertilizer on Banana and Oil Palm Seedlings</td>
<td>64</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Effect of Biofertilizer on Plant Growth and Biomass Production</td>
<td>68</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Effect of Biofertilizer on Total Nutrient Uptake</td>
<td>68</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Nutrient Analysis of Biofertilizer Treated Soil</td>
<td>70</td>
</tr>
<tr>
<td>3.11</td>
<td>FESEM Study on Root Colonization by Inoculated NFB and PSB</td>
<td>72</td>
</tr>
</tbody>
</table>
4 RESULTS AND DISCUSSION

4.1 Isolation of Potential Nitrogen Fixing Bacteria and Phosphate Solubilizing Bacteria from Banana and Oil Palm Roots 74

4.2 Nitrogen Fixing Capacity of Selected Isolates 80

4.3 Phosphate Solubilizing Activity of Selected Isolates 82

4.4 Selection of Potential Nitrogen Fixing and Phosphate Solubilizing Bacteria 84

4.5 Mixed Cultures of Nitrogen Fixing and Phosphate Solubilizing Bacteria 88

4.6 Identification of Selected Nitrogen Fixing and Phosphate Solubilizing Bacteria 90

4.6.1 Identification of Isolate N15 91

4.6.2 Identification of Isolate N12 94

4.6.3 Identification of Isolate P3 97

4.6.4 Identification of Isolate N7 99

4.7 Physical Characteristic during Composting 101

4.7.1 Temperature Changes during Composting 102

4.7.2 Changes in Nutrient Content 104

4.8 Formulation of Biofertilizer 109

4.9 Evaluation of Formulated Biofertilizer on Oil Palm and Banana Seedling 117
4.9.1 Effect of Biofertilizer Application on Oil Palm Seedling Growth

4.9.2 Effect of Biofertilizer Application on Banana Seedling Growth

4.9.3 Effect of Biofertilizer Application on Soil Chemical Properties

4.9.4 Effect of Biofertilizer Application on Dry Biomass Production of Oil Palm Seedlings

4.9.5 Effect of Biofertilizer Application on Dry Biomass Production of Banana Seedlings

4.9.6 Effect of Biofertilizer Application on Improvement of Total Nutrient Uptake by Oil Palm Seedlings

4.9.7 Effect of Biofertilizer Application on Improvement of Total Nutrient Uptake by Banana Seedlings

4.10 FESEM Study on NFB and PSB in Biofertilizer Formulation

4.10.1 FESEM Study of NFB and PSB Colonisation on Oil Palm Roots

4.10.2 FESEM Study of NFB and PSB Colonisation on Banana Roots
4.11 Re-isolation of NFB and PSB Strains from the Inoculated Banana and Oil Palm Roots 169

5 CONCLUSION 174
5.1 Conclusion 174
5.2 Recommendation 175

REFERENCES 177
Appendices A – E 198 - 204
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The distribution of oil palm planted area in Malaysia (2012)</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>The distribution of banana planted area in Malaysia (2007)</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>The common PGPR strain for plant growth promoting application</td>
<td>22</td>
</tr>
<tr>
<td>2.4</td>
<td>Example of NFB that was isolated from banana plant tissue</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>Species of co-inoculation and improvement to banana, oil palm and other crops</td>
<td>38</td>
</tr>
<tr>
<td>2.6</td>
<td>Various types of carrier for biofertilizer inoculants and their efficiency</td>
<td>42</td>
</tr>
<tr>
<td>3.1</td>
<td>Banana and oil palm root sampling source, sampling sites, agricultural practices of the sites and the total roots been sampled</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Full composition of the Burk’s nitrogen free (BNF) agar and Pikovskaya (PKV) agar mediums</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>Formulations of biofertilizer from different species of NFB and PSB in single culture and mixed culture</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Treatments layout of biofertilizer evaluation for banana seedling</td>
<td>66</td>
</tr>
<tr>
<td>3.5</td>
<td>Treatments layout of biofertilizer evaluation for oil palm seedling</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td>Potential NFB and PSB isolated from banana root samples</td>
<td>77</td>
</tr>
</tbody>
</table>
4.2 Potential NFB and PSB isolated from oil palm root samples

4.3 Profile on the response of isolates on BNF and PKV agar media

4.4 Nitrogen fixing capacity of potential NFB isolates

4.5 Phosphate solubilizing activity of potential PSB isolates

4.6 Ability of selected NFB and PSB isolates in nitrogen fixing capacity and phosphate solubilizing

4.7 Spectrophotometer absorbance reading of various isolates grown in NB for 48 hours to determine the growth profile

4.8 Viable cell count of various isolates grown in NB for 48 hours

4.9 Nitrogen fixing capacity, phosphate solubilizing index and growth characteristic for the chosen isolates which will be further evaluated for biofertilizer formulation

4.10 Viable cell count of isolates in mixed culture and single culture

4.11 Top 10 hits blast results of isolate N15 against NCBI 16S rRNA sequences database

4.12 Top 10 hits blast results of isolate N12 against NCBI 16S rRNA sequences database

4.13 Top 10 hits blast results of isolate P3 against NCBI 16S rRNA sequences database

4.14 Top 10 hits blast results of isolate N7 against NCBI 16S rRNA sequences database

4.15 Physical and chemical characteristics of EFB compost

4.16 Characterization of macronutrients in EFB compost

4.17 Characterization of micronutrients and heavy metal in EFB compost

4.18 Viable cell count of bacterial inoculants in carrier

4.19 Growth profile of oil palm seedling on biofertilizer treated soil
4.20 Total primary roots length, total primary roots numbers, stem girth size and total leaves numbers of oil palm seedlings planted on biofertilizer treated soil

4.21 Growth profile of banana seedling on biofertilizer treated soil

4.22 Total primary roots length, total primary roots numbers, stem girth size and total leaves numbers of banana seedlings planted on biofertilizer treated soil

4.23 Chemical properties of the soil that used as growing media in biofertilizer evaluation

4.24 Soil fertility level for oil palm cultivation (Goh et al., 1997)

4.25 Soil nutrient level at 112 days after planted with oil palm seedling

4.26 Soil nutrient level at 112 days after planted with banana seedling

4.27 Dry biomass analysis of oil palm seedling after 112 days planted on biofertilizer treated soil

4.28 Dry biomass analysis of banana seedling after 112 days planted on biofertilizer treated soil

4.29 Total nutrient uptake of oil palm seedlings after 112 days planted on biofertilizer treated soil

4.30 Total nutrient uptake of banana seedlings after 112 days planted on biofertilizer treated soil

4.31 Top 10 hits blast results of isolate N12-B-S1 against NCBI 16S rRNA sequences database
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Types of fertilizers; (a) mixture (b) compound (granular) (c) slow-release (d) liquid and (e) organic fertilizer</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Example on the effect of the inoculation of PGPR on the growth of roots and shoot of banana plantlets (Mia et al., 2002)</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Biochemistry of atmosphere nitrogen fixation (Simarmata, 2013)</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic diagram of soil phosphorous mobilization and immobilization by bacteria (Mohammadi and Sohrabi, 2012)</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Overall research methodology for this study</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>Healthy and good yielding oil palm (a) and banana (b) trees located in Sg. Tengi Selatan Research Station, Selangor and Jengka 26 Research Station, Pahang were selected for roots sampling</td>
<td>45</td>
</tr>
<tr>
<td>3.3</td>
<td>Primary (a) and secondary roots (b) of banana</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>Primary (a), secondary (b) and tertiary roots (c) of oil palm</td>
<td>46</td>
</tr>
<tr>
<td>3.5</td>
<td>Roots sampling zone for banana (a) and oil palm (b)</td>
<td>47</td>
</tr>
<tr>
<td>3.6</td>
<td>Oil palm roots were sampled and placed into sterile bags for storage in chiller before bacterial isolation</td>
<td>47</td>
</tr>
<tr>
<td>3.7</td>
<td>Three banana root sections were placed on BNF agar medium for NFB isolation</td>
<td>50</td>
</tr>
</tbody>
</table>
3.8 Assembly of apparatus for Kjeldahl digestion (Felda Laboratory Test Method, 2014)

3.9 Processing of oil palm empty fruit bunch compost; the shredded EFB fibres (a), POME drenching on EFB fibres (b), mechanical turning of EFB composting windrow and covered by air permeable canvas (c) and mature EFB compost windrow (d)

3.10 Composting thermometer used to measure the temperature of the composting windrow

3.11 Un-inoculated EFB compost carrier (a) and bacteria inoculated EFB compost carrier with darker colour and moist (b) immediately after inoculation

3.12 A 21 days old banana tissue culture seedlings (a) and germinated oil palm seeds (b) were used as the planting material to evaluate the efficiency of biofertilizer

3.13 Glass house (a), shade was provided for banana and oil palm seedlings during early stage of planting (b) and the pots arrangement (c) for banana and oil palm seedlings for biofertilizer evaluation

3.14 Biofertilizer applied as soil mixture at 10% (b), 20% (c) and 30% (d) were showed darker colour as compared to soil only media (a)

3.15 Leaves, stem and roots samples of oil palm (a) and banana (b) seedlings for determination of biomass and nutrient content

4.1 Growth of nitrogen fixing bacterial isolated (red arrow) on BNF agar (left) and halo zone (blue arrow) developed by phosphate solubilizing bacterial isolates on PKV agar media (right)

4.2 Various types of bacterial cultures isolated on BNF agar media with potential as nitrogen-fixing bacteria

4.3 Colour morphology of major groups of NFB isolates; cream (a), cream translucent (b), yellow (c), orange (d) and red (e)

4.4 Growth of bacterial isolates in BNF media after 24 hours of incubation
4.5 Formation of clear halo zone around the isolated bacterial colonies (isolate P5, P6, P7 and P8 in replication R1, R2 and R3) on NBRIP agar media indicating phosphate-solubilizing activity

4.6 Growth profile of various isolates grown in NB for 48 hours

4.7 Chromatography gel photo of isolates N15, N12, N7 and P3

4.8 Colour changes of shredded EFB fibres during composting for 51 days

4.9 Profile for changes in temperature during EFB composting for 51 days

4.10 Changes of nitrogen content of EFB compost during composting for 51 days

4.11 Changes of carbon content of EFB compost during 51 days of composting

4.12 Changes of C/N ratio of EFB compost during 51 days of composting

4.13 Changes of K₂O content of EFB compost during 51 days of composting

4.14 Changes of P₂O₅ and MgO content of EFB compost during composting period of 51 days

4.15 Physical characteristic of (a) fine EFB compost of < 2 mm, after the (b) undecomposed coarse fibres and coarse kernel shells > 2 mm were removed from the grinded EFB compost and the physical characteristic of (c) fine powder form EFB compost < 1 mm, after the (d) fine kernel shells and undecomposed fine fibres > 1 mm were removed from fine EFB compost < 2 mm

4.16 Diagram of the preparation of fine powder form of EFB compost (< 1 mm) from ground EFB compost as the carrier for biofertilizer inoculants

4.17 Isolated bacterial colonies from fine powdered EFB compost after two days of inoculation (a) Enterobacter cloacae – single culture, (b) Serratia marcescens – single culture and (c) mixed cultures of Burkholderia cepacia (blue arrow) and Serratia marcescens (red arrow)
4.18 Growth of oil palm seedlings treated with biofertilizer Formulation N15, N12 and P3N15 at 10% soil mixture (N15-10%, N12-10% and P3N15-10%) as compared to un-inoculated carrier at 10% soil mixture (T2-10%) and soil only media (T1-0%) at (a) 28 days, (b) 56 days, (c) 84 days and (d) 112 days after planting

4.19 Growth of oil palm seedlings treated with biofertilizer Formulation N15, N12 and P3N15 at 20% soil mixture (N15-20%, N12-20% and P3N15-20%) as compared to un-inoculated carrier at 20% soil mixture (T3-20%) and soil only media (T1-0%) at (a) 28 days, (b) 56 days, (c) 84 days and (d) 112 days after planting

4.20 Growth of oil palm seedlings treated with biofertilizer Formulation N15, N12 and P3N15 at 30% soil mixture (N15-30%, N12-30% and P3N15-30%) as compared to un-inoculated carrier at 30% soil mixture (T3-30%) and soil only media (T1-0%) at (a) 28 days, (b) 56 days, (c) 84 days and (d) 112 days after planting

4.21 Biofertilizer treated oil palm seedling (N12-10%) showed bigger leaf (blue arrow) and heavy secondary roots (red arrow) as compared to uninoculated seedling (T2-10%)

4.22 Growth of banana seedlings treated with biofertilizer Formulation N15, N12 and P3N15 at 10% soil mixture (N15-10%, N12-10% and P3N15-10%) as compared to un-inoculated carrier at 10% soil mixture (T2-10%) and soil only media (T1-0%) at (a) 28 days, (b) 56 days, (c) 84 days and (d) 112 days after planting

4.23 Growth of banana seedlings treated with biofertilizer Formulation N15, N12 and P3N15 at 15% soil mixture (N15-15%, N12-15% and P3N15-15%) as compared to un-inoculated carrier at 15% soil mixture (T2-15%) and soil only media (T1-0%) at (a) 28 days, (b) 56 days, (c) 84 days and (d) 112 days after planting

4.24 Biofertilizer treated banana seedling (N12-10%) showed bigger leaf (blue arrow) and heavy secondary roots (red arrow) as compared to uninoculated seedling (T2-10%)

4.25 Oil palm seedlings at 112 days after planted on various biofertilizers treated growing media at (a) 10% (w/w), (b) 20% (w/w) and (c) 30% (w/w) as soil mixture were harvested for destructive analysis
4.26 Banana seedlings at 112 days after planted on various biofertilizers treated growing media at (a) 10% (w/w) and (b) 15% (w/w) as soil mixture were harvested for destructive analysis.

4.27 Appearance of *Serratia marcescens* on SEM studies as rod-shaped with smooth surface (red arrow) as reported by (a) Abel *et al*., 2012 and (b) Castro *et al*., 2007 was also observed in this study notably for the (c) N15 formulation (*Serratia marcescens* in 10% soil mixture).

4.28 SEM micrograph of *Enterobacter cloacae* (white arrow) in the (d) N12 formulation showed similar morphology with *E. cloacae* as reported by (a) Subudhi *et al*., 2013, (b) Hood *et al*., 1998 and (c) Naik *et al*., 2012.

4.29 SEM micrograph of (c) *Burkholderia cepacia* and *Serratia marcescens* in Formulation P3N15 (red arrow) showing similar morphology for *Burkholderia cepacia* (white arrow) reported by (a) Cho *et al*., 2002 and (b) Vidal-Quist *et al*., 2014 (b).

4.30 SEM micrograph of *Enterobacter cloacae* colonisation (white arrow) on oil palm roots at 28 days (a & b) and 112 days (c & d) after inoculation in growing media.

4.31 SEM micrograph of *Burkholderia cepacia* and *Serratia marcescens* colonisation (white arrow) on oil palm roots at (a) 28 days, (b) 56 days and (c) 84 days after inoculation in growing media.

4.32 SEM micrograph of *Serratia marcescens* colonisation (white arrow) on oil palm roots at (a) 56 days and (b) 84 days after inoculation in growing media.

4.33 SEM micrograph of oil palm roots at (a) 56 days, (b) 84 days and (c) 112 days after planting with un-inoculated carrier in growing media has detected filamentous shaped bacteria (white arrow).

4.34 SEM micrograph of oil palm roots at (a) 84 days and (b) 112 days after planted in soil only media has detected filamentous shaped bacteria (white arrow).

4.35 SEM micrograph of *Enterobacter cloacae* colonisation (white arrow) on banana roots at 56 days (a & b) and 84 days (c) after inoculation in growth media.
4.36 SEM micrograph of *Burkholderia cepacia* and *Serratia marcescens* colonisation (white arrow) on banana roots at (a) 56 days and (b) 84 days after inoculation in growing media

4.37 SEM micrograph of *Serratia marcescens* colonisation (white arrow) on banana roots at 84 days after inoculation in growth media

4.38 SEM micrograph of banana roots at (a) 84 days and (b) 112 days after planting with un-inoculated carrier in growth media has detected the presence of filamentous shaped bacteria (white arrow)

4.39 SEM micrograph of banana roots at (a) 28 days and (b) 112 days after planting in soil only media has detected the presence of filamentous shape bacteria (white arrow)

4.40 Oil palm (a) and banana (b) root samples placed on nutrient agar for bacterial growth and the final pure strain isolated from oil palm (c) and banana (d) roots

4.41 Chromatography gel photo of the bacteria strains re-isolated from oil palm and banana roots
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC</td>
<td>1-aminocyclopropane-1-carboxylate</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ARA</td>
<td>Acetylene reduction assays</td>
</tr>
<tr>
<td>AS</td>
<td>Ammonium sulphate (AS)</td>
</tr>
<tr>
<td>Av. P</td>
<td>Available phosphorous</td>
</tr>
<tr>
<td>BNF</td>
<td>Biological nitrogen fixation</td>
</tr>
<tr>
<td>BNF</td>
<td>Burk’s nitrogen free</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>C/N ratio</td>
<td>Carbon : nitrogen ratio</td>
</tr>
<tr>
<td>CEC</td>
<td>Cation exchange capacity</td>
</tr>
<tr>
<td>CPO</td>
<td>Crude palm oil</td>
</tr>
<tr>
<td>CRD</td>
<td>Complete Randomised Design</td>
</tr>
<tr>
<td>DMRT</td>
<td>Duncan’s Multiple Range Test</td>
</tr>
<tr>
<td>EFB</td>
<td>Empty fruit bunches</td>
</tr>
<tr>
<td>EM</td>
<td>Effective microbe</td>
</tr>
<tr>
<td>EX</td>
<td>Exchangeable</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscope</td>
</tr>
<tr>
<td>GML</td>
<td>Ground Magnesium Limestone</td>
</tr>
<tr>
<td>Ha</td>
<td>Hectares</td>
</tr>
<tr>
<td>IAA</td>
<td>Indole acetic acid</td>
</tr>
<tr>
<td>IRRI</td>
<td>International Rice Research Institute</td>
</tr>
<tr>
<td>K</td>
<td>Potassium</td>
</tr>
<tr>
<td>Kies</td>
<td>Kieserite</td>
</tr>
<tr>
<td>LCC</td>
<td>Leguminous cover crops</td>
</tr>
<tr>
<td>MC</td>
<td>Moisture content</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>MOP</td>
<td>Muriate of Potash</td>
</tr>
<tr>
<td>MPOB</td>
<td>Malaysia Palm Oil Board</td>
</tr>
<tr>
<td>MRP</td>
<td>Mussoorie Rock Phosphate</td>
</tr>
<tr>
<td>N</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NA</td>
<td>Nutrient agar</td>
</tr>
<tr>
<td>NB</td>
<td>Nutrient broth</td>
</tr>
<tr>
<td>NBRIP</td>
<td>National Botanical Research Institute’s Phosphate</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Centre for Biotechnology Information</td>
</tr>
<tr>
<td>NFB</td>
<td>Nitrogen fixing bacteria</td>
</tr>
<tr>
<td>OC</td>
<td>Organic carbon</td>
</tr>
<tr>
<td>OM</td>
<td>Organic matter</td>
</tr>
<tr>
<td>P</td>
<td>Phosphorous</td>
</tr>
<tr>
<td>PGPR</td>
<td>Plant growth promoting rhizobacteria</td>
</tr>
<tr>
<td>PKV</td>
<td>Pikovskaya</td>
</tr>
<tr>
<td>POME</td>
<td>Palm oil mill effluent</td>
</tr>
<tr>
<td>PR</td>
<td>Phosphate Rock</td>
</tr>
<tr>
<td>PSB</td>
<td>Phosphate solubilizing bacteria</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscope</td>
</tr>
<tr>
<td>SI</td>
<td>Solubilization Index</td>
</tr>
<tr>
<td>SRF</td>
<td>Slow release fertilizer</td>
</tr>
<tr>
<td>TC</td>
<td>Total carbon</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The list of chemical used for laboratory analysis</td>
<td>198</td>
</tr>
<tr>
<td>B</td>
<td>The Phylogenetic tree-neighbour joining (unrooted tree) for isolate N15 by NCBI blast tree method</td>
<td>201</td>
</tr>
<tr>
<td>C</td>
<td>The Phylogenetic tree-neighbour joining (unrooted tree) for isolate N12 by NCBI blast tree method</td>
<td>202</td>
</tr>
<tr>
<td>D</td>
<td>The Phylogenetic tree-neighbour joining (unrooted tree) for isolate P3 by NCBI blast tree method</td>
<td>203</td>
</tr>
<tr>
<td>E</td>
<td>The Phylogenetic tree-neighbour joining (unrooted tree) for isolate P3 by NCBI blast tree method</td>
<td>204</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background

Palm oil is one of the most important edible oil in terms of world production that contributed about 35% of the total vegetable oils production in 2012/2013. Malaysia and Indonesia are the largest world palm oil producers with market percentage of 39% and 48%, respectively in 2010/2011. Oil palm planted area in Malaysia was drastically increased about 1.2 million hectares from 3.9 million hectares in 2004 to 5.1 million hectares (ha) in 2012 where Peninsular Malaysia remained as the largest planted area with 2.6 million ha, followed by Sabah with 1.4 million ha and Sarawak about 1.1 million ha in year 2010 (Malaysia Agribusiness Directory 2013/2014, 2013).

Oil palm plantation in Malaysia is managed by government agencies, private companies and smallholders. The Federal Land Development Authority of Malaysia (FELDA) is among the largest oil palm plantation agency in Malaysia with total oil palm planted area of 13% of the total oil palm planted area in Malaysia in year 2013. Other government oil palm plantation agencies, independent smallholder estates and private companies contributed about 11%, 14% and 62%, respectively of the total oil palm planted area in Malaysia (Malaysia Palm Oil Board, 2015).
Banana is one of the most important fruit crops in Malaysia with the estimated planted area around 33,495 ha in 2013. It is the second largest planted fruit crop in Malaysia after durian (88,641 ha) (Malaysia Agribusiness Directory 2013/2014, 2013). Under the New Key Economy Area of Agricultural (NKEA Agriculture) programme, banana was identified as one of the high-value non-seasonal tropical fruit crops. Approximately 9,000 ha of oil palm plantation land owned by a large government linked company (GLC) have been identified for intercropping of banana during oil palm replanting period under the entry point project number 7 (EPP 7) which is “Upgrading capabilities to produce fruit and vegetables for premium markets” (Economy Transfer Programme, 2013).

Fertilizer is the major input in agriculture to sustain plant growth and achieving high yield production. Oil palm and banana are among the highest nutrient demanding crops as compared to other commodity and fruit crops. Typical nutrient requirement for oil palm (136 palms/ha) are as follows (per hectare per year); 129 kg of nitrogen (4.5 kg/palm of Ammonium Sulphate), 109 kg of phosphorous (P$_2$O$_5$) (2.5 kg/palm of Rock Phosphate) and 367 kg of potassium (K$_2$O) (4.5 kg/palm of Muriate of Potash) (Izwanizam et al., 2013). Banana (1600 trees/ha) however, requires a much higher nutrient input than oil palm with 566 kg of nitrogen, 566 kg of phosphorous (P$_2$O$_5$) and 592 kg of potassium (K$_2$O) per hectare for two years (Department of Agriculture Malaysia, 2009).

The fertilizer consumption of oil palm in Malaysia in year 2010/2011 was about 374,000 tonnes of nitrogen (N), 179,000 tonnes of phosphorous (P$_2$O$_5$) and 989,000 tonnes of potassium (K$_2$O) which is 78.2% of the total fertilizer usage in Malaysia (Heffer, 2013). Banana recorded the highest fertilizer consumption fruit crops of Malaysia in 2008 with the estimated consumption of 6,425 tonnes of nitrogen, 6,250 tonnes of phosphorous and 10,190 tonnes of potassium (Sabri, 2009).

Nitrogen and phosphorous are the two major macronutrients which is very important for all the crops especially during early planting for vegetative growth.
Nitrogen is the most important element for banana plant growth where its deficiency could occur even on the very fertile soil and often observed under the poor rooting condition. Phosphorous uptake in banana is very rapid in the short and longer periods of planting (between 2-5 months after planting) notably for vegetative growth under tropics weather condition (Lahav and Turner, 1989).

From an industrial point of view, minimization of fertilizer cost is desirable, as this would ultimately reduce the overall operational cost for oil palm and banana plantations. For example, the estimated fertilizer cost for oil palm production in Felda Agricultural Services Sdn. Bhd. (FASSB) was about 34.4% of the total operation cost or RM 50.38/ton of fresh fruit bunch in year 2011 (FASSB, 2012). Fertilization cost in oil palm and banana plantation was increased due to fluctuation in fertilizer price in world market. The average imported fertilizer price in Malaysia has increased about 87.0% from RM 739/ton in year 2005 to RM 1,383/ton in 2013. Phosphorous fertilizer recorded the highest price increase at 135.4% followed by nitrogen fertilizer and potassium fertilizer at 107.8% and 61.6% respectively (Malaysia Agribusiness Directory 2013/2014, 2013). Therefore, an alternative source of fertilizer is important to reduce the impact of high fertilizer cost to ensure the competitiveness of banana and oil palm industry in Malaysia. In view of this, the use of oil palm biomass which is cheap and present in abundance is a feasible and commercially viable approach. One example is the effort by Felda Global Ventures (FGV) to recycle the oil palm empty fruit bunch, EFB (obtained from oil palm mills) in producing EFB compost, which can act as organic fertilizer to substitute the role of synthetic chemicals in satisfying some part of the nutrient requirement for oil palm and banana. Nevertheless, the application of EFB compost in the estate do pose some limitations such as its bulky nature, high moisture content (50-60%) and large volumes required to fulfill the plant requirement due to their low nutrient contents (1.34 % N, 0.67 % P, 1.96 % K in dried weight; Kavitha et al., 2013) as compared to inorganic fertilizer. Currently, FASSB has produced fortifier EFB compost by incorporating the EFB with inorganic fertilizers such as Di-ammonium phosphate, Christmas Island Rock Phosphate, Muriate of Potash and Kieserite to increase the nutrient content of the compost. This fortifier EFB compost showed comparable plant growth performance, nutrient uptake and dry biomass production for the newly
planted oil palm as compared to the effect from the use of conventional fertilizer. The fortifier EFB not just able to save the fertilizer cost by reducing the nutrients application concentration by 30%, but also maintaining the adequate nutrient requirement for the plants (FASSB, 2013).

Nevertheless, there is always the possibility of further reducing the dependency on these N and P-based inorganic fertilizer. One of the approaches that can be taken is by the utilization of nitrogen fixing bacteria (NFB) and phosphate solubilising bacteria (PSB) to fix the atmospheric nitrogen and solubilized the insoluble phosphate in the soil to supply nitrogen and phosphorous for oil palm and banana. Both NFB and PSB inoculation to the banana and oil palm plants has been shown to have a synergistic effect in promoting faster plant growth (Rodriguez-Romero et al., 2005, Mia et al., 2009 and Shamsudin, 1994). Based on this, it is highly potential to incorporate NFB and PSB into EFB compost to produce an effective biofertilizer that shall act as an alternative basal fertilizer for oil palm and banana plantation. The biofertilizer is possible to be applied into the planting hole during planting to supply the nitrogen and phosphorous for the plant and promote vigorous plant growth in early stage of planting.

1.2 Problem Statement

Banana and oil palm are two nutrient-demanding crops that require a large amount of fertilizer input during both vegetative and reproductive stage. However, current high price of imported fertilizer in the world market (up to 87.1% increment from RM 739/ tonne in 2005 to RM 1383/ tonne in 2013) has resulted in the drastic increased of the production cost in oil palm and banana plantation. Therefore, an alternative source of organic-based fertilizer is needed for oil palm and banana plants to reduce the impact of high fertilizer price to ensure the competitiveness of oil palm and banana industry in world market. The oil palm empty fruit bunch (EFB)
compost which consisted of high nutrient content of potassium (1.8% K), nitrogen (2.2% N) and phosphorus (0.8% P) and magnesium (1.1% Mg)) has great potential to be utilized as fertilizer for oil palm and banana (Pupathy and Radziah, 2013). This is expected to substantially reduce the use of the relatively more expensive imported inorganic chemicals as source for fertilizer. Apart from this, the application of N-fixing and P-solubilizing bacteria into the EFB compost can also further reduce the dependency on inorganic N and P fertilizers.

1.3 Aim and Objectives

To evaluate the effectiveness of a newly formulated biofertilizer, by incorporating indigenous nitrogen fixing and phosphate solubilizing bacteria into oil palm empty fruit bunch (EFB) compost, as carrier for an alternative nutrient source to improve the growth and nutrient uptake of banana and oil palm seedling.

1.4 Scopes of Study

1. To isolate and screen the newly isolated indigenous nitrogen fixing and phosphate solubilizing bacteria from banana and oil palm root for its nitrogen fixing capacity, phosphate solubilizing activity, fastest growing strain and most viable strain in mixed culture.

2. To produce EFB compost from oil palm empty fruit bunches with palm oil mill effluent (POME) as the nutrient rich carrier for the attachment of nitrogen fixing and phosphate solubilizing bacteria.
3. To formulate biofertilizer with newly isolated indigenous nitrogen fixing and phosphate solubilizing bacteria into EFB compost as carrier.

4. To evaluate the effectiveness of biofertilizer formulation on banana and oil palm seedlings growth, biomass production and total nutrient uptake by the banana and oil palm seedling.

1.5 Research Significance

1. Evaluation on the potential of oil palm empty fruit bunch (EFB) compost inoculated with indigenous newly isolated nitrogen fixing and phosphate solubilizing bacteria as an effective nutrient source for banana and oil palm seedling.

2. Development of a new biofertilizer with an immediate commercial-viability to be used by Felda Agricultural Services Sdn Bhd (FASSB), as the R&D commercialization company of Felda Global Ventures Holdings Berhad i.e. the biggest oil palm plantation owner in Malaysia.

3. Reduction on the time period required for the growth of banana and oil palm seedlings through the application of the newly formulated biofertilizer that resulted in improved plant growth and nutrient uptake by the plants.
REFERENCES

