ANTIBACTERIAL AND CYTOCOMPATIBILITY ANALYSES ON TRIPLE LAYERED POLY(LACTIC-CO-GLYCOLIC ACID)/NANOAPATITE/LAURIC ACID COMPOSITE MEMBRANE

NUR NAJIHA BINTI SAARANI

UNIVERSITI TEKNOLOGI MALAYSIA
ANTIBACTERIAL AND CYTOCOMPATIBILITY ANALYSES ON TRIPLE LAYERED POLY(LACTIC-CO-GLYCOLIC ACID)/NANOAPATITE/LAURIC ACID COMPOSITE MEMBRANE

NUR NAJIHA BINTI SAARANI

This thesis is submitted in fulfillment of the requirements for the award of the degree of Master of Engineering (Biomedical)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

FEBRUARY 2016
Special dedication and thanks to:

My ever present and inspiring family;
 My father, Saarani bin Ismail
 My mother, Ramlah binti Ishak
 Muhammad Zulhaiqal bin Jaharudin
 My sister, Fatin Nabila binti Saarani
 My sister, Nur Nadhira Iman binti Saarani
 My brother, Mohd Syafiq bin Saarani
 My brother, Mohd Syamil bin Saarani

My loving and supporting friend;
 Siti Amirah binti Ishak
 Siti Nursyazana binti Md. Salleh
ACKNOWLEDGEMENT

First and foremost, I would like to give praise and grateful to ALLAH, the Almighty, for giving me patience and hardiness in completing my research. With Allah blessings and guidance especially on the most difficult time, I was able to complete my Master project.

Next, I would like to express my sincere gratitude to my supervisor, Dr. Syafiqah Saidin and my co-supervisor Associate Professor Dr Wan Himratul Anita Wan Harun for being an outstanding advisor which made them a backbone of this research as well as to this thesis. Their constant support, advice, supervision and guidance from the very early stage of this research have made this work successful. Without their help and guidance, the success of this project would not have been possible. They have been extremely helpful and inspiring as well.

My thanks also go out to all my friends for being there for me, helping me as well as guiding me in conducting the research. Their presence gave me a lot of encouragement to overcome the problems I faced during the research with sheer determination. I would also like to take this opportunity to acknowledge Universiti Teknologi Malaysia (UTM) Skudai, Faculty of Biosciences & Medical Engineering, Universiti Malaya, SIRIM Berhad and Ministry of Higher Education (MOHE) for my master scholarship. Last but not least, to my parents and siblings I dedicate this dissertation to you. Your heartfelt support and unconditional love give me strength and comfort. Words cannot express how grateful I am for all the years of character building and encouragement I receive.
Guided tissue regeneration (GTR) membrane has been extensively used for repair and regeneration of damaged periodontal tissues. It acts as a barrier to prevent down-growth of epithelial and connective tissues into the defects, thus allowing periodontal regeneration. Current commercial GTR membranes are susceptible to bacterial colonization, leading to premature membrane degradation. The purpose of this research was to prepare GTR membranes with antibacterial and biocompatibility properties. The triple layered composite membranes consisted of poly(lactic-co-glycolic acid) (PLGA) and lauric acid (LA) substituted nanoapatite (NAp) were fabricated using solvent casting and thermally induced phase separation/solvent leaching technique. The physical properties of PLGA/NAp/LA membrane were measured by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Antibacterial effect of the composite membranes (1, 2 and 3 wt% LA) was then investigated on *Phorphyromonas gingivalis* and *Fusobacterium nucleatum* through disc-diffusion and percent reduction tests. MTT cell culture tests were conducted to evaluate the effects on the cells viability. Significantly, these composite membranes exhibited patterns of inhibition and killing effect against both periodontal microorganisms. Increase in LA content tended to increase the bactericidal activity. The PLGA/NAp/LA composite membranes possessed good biocompatibility by demonstrating positive effects on the cell morphology, viability and proliferation. Therefore, the PLGA/NAp/LA composite membranes can be classified as a prospective biodegradable GTR membrane for future periodontal application.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Background of the Study 1
1.2 Problem Statement 3
1.3 Objectives of the Study 3
1.4 Scope of the Research 4
1.5 Significance of the Study 4

2 LITERATURE REVIEW 5
2.1 Oral Cavity and Its Indigenous Microbial 5
2.2 Periodontitis 7
2.3 Guided Tissue Regeneration (GTR) Membrane 9
2.4 Functionally Graded and Multilayer GTR Membrane 12
2.5 Based Membrane Material: Poly(lactic-co-glycolic acid) 14
2.6 Bone Active Agent: Nanoapatite 16
2.7 Emergence of Antibacterial Resistance 18
2.8 Natural Antibacterial Agents as an Alternative 20
 2.8.1 Lauric acid 21
 2.8.2 Antibacterial Guided Tissue Regeneration 23
2.9 Periodontal Pathogens 25
 2.9.1 Porphyromonas gingivalis 26
 2.9.1.1 Biology and Taxonomy 26
 2.9.1.2 General Morphology 27
 2.9.2 Fusobacterium nucleatum 29
 2.9.2.1 Biology and Taxonomy 29
 2.9.2.2 General Morphology 30

3 MATERIALS AND METHODS 33
3.1 Introduction 33
3.2 Materials 33
3.3 Membrane Preparation 35
3.4 Characterization of Membrane 37
 3.4.1 Fourier Transform Infrared Spectroscopy (FTIR) Analysis 37
 3.4.2 Morphological Study 39
3.5 Microbiological Study 39
 3.5.1 Preparation of Vitamin K-Hemin Stock Solution 39
 3.5.2 Preparation of Culture Media 40
 3.5.3 Preparation of Stock Cultures and Standard Bacteria Cell Suspension 41
 3.5.4 Preparation of Saliva Membrane Disc 42
 3.5.5 Antibacterial Assay by Disc Diffusion Technique 43
 3.5.6 Antibacterial Activity of LA in PLGA/NAp/ 45
LA Membranes

3.6 Cytocompatibility Study

3.6.1 Preparation of Culture Media

3.6.2 Preparation of (3(-4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) MTT Solution

3.6.3 Cell Culture and Maintenance

3.6.4 Indirect Test

3.6.5 MTT Assay

3.7 Statistical Analysis

4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Triple Layered GTR Membrane

4.3 Characterization of the Membrane

4.3.1 Fourier Transform Infrared Spectroscopy (FTIR)

4.3.2 Scanning Electron Microscopy

4.4 Screening of Antibacterial Activity

4.4.1 Disc-Diffusion Technique

4.4.2 Reduction of Viable Bacteria by LA in PLGA/NAp/LA Membranes

4.5 Cells Toxicity in Relation to the Concentration of Antimicrobial Agent

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

5.2 Recommendations

REFERENCES

Appendices A – F
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Pysiochemical, mechanical and biological properties of HA.</td>
<td>18</td>
</tr>
<tr>
<td>3.1</td>
<td>Composition of PLGA, NAp and LA in the prepared GTR membranes</td>
<td>36</td>
</tr>
<tr>
<td>4.2</td>
<td>Diameter of growth inhibition zones produced by the triple layered membranes on the P. gingivalis and F. nucleatum</td>
<td>58</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The effects of periodontitis. Healthy periodontal tissue (left) made of connective tissue and alveolar bone, which support the root. The oral epithelium covers this supporting tissue, and a specialized junctional epithelium connects it to the tooth surface. Sulcus, which is the space between the epithelial surface and tooth is filled with gingival crevicular fluid. For periodontitis (right), the accumulation of dental-plaque biofilm on the surface of the tooth and root, stimulate the destruction of periodontal connective tissue and alveolar bone periodontal connective tissue and alveolar bone. This can lead to the most common cause of tooth loss in the world.</td>
<td>8</td>
</tr>
</tbody>
</table>
2.3 Failure of a GTR procedure due to premature exposure and infection of an e-PTFE membrane three weeks following membrane placement. a) Soft tissue dehiscence expose the membrane to the oral environment. The membrane is contaminated with dental plaque. b) The membrane is surgically removed and the defect debrided c) Clinical view of the e-PTFE membrane after removal

2.4 Schematic illustration of the spatially designed and functionally graded periodontal membrane [1]

2.5 The core layer (CL) and the functional surface layers (SLs) interfacing bone (n-HAp) and epithelial (MET) tissues

2.6 Molecular structure of Lauric acid

2.7 Electron microscopy of F. nucleatum

3.1 Research flowchart

3.2 Diagram for the preparation of triple layered GTR membranes.

3.3 Collected sterile sheep blood from slaughtering centre, veterinary centre, Shah Alam.

3.4 Anaerobic chamber supplied with anaerobic gas and N₂/CO₂/H₂ gas.

3.5 Anaerobic jar supplied with anaerobic gas was used to store bacteria culture at 4°C

3.6 Plates were incubated in an anaerobic box, 37°C, 3-10 days

3.7 Illustration of screening method using disc-diffusion test
3.8 Illustration of procedure in determining the antibacterial activity of LA in PLGA/NAp/LA membrane

3.9 Work flow of MTT cytotoxicity test

4.1 FTIR spectra of (a) pure PLGA, (b) 1 wt% LA and (d) 3 wt% LA in 10-30 wt% NAp added PLGA membranes

4.2 L1 and L3 of (a, e) pure PLGA membrane, (b, f) 1 wt%, (c, g) 2 wt% and (d, h) 3 wt% of LA incorporated triple layered membranes containing 10-30 wt% NAp. Shows deposition of LA.

4.3 Images of inhibitory zones (blue arrows) of PLGA/NAp/LA against a) F. nucleatum b) P. gingivalis.

4.4 Percent reduction of PLGA/NAp/LA membranes against F. nucleatum and P. gingivalis

4.5 Cells viability of the graded membranes cultured for 24 hours and exposed to extract at day 1, 3, 7 and 14.

A.1 Rough surface of outermost layer membrane which facing bacteria

A.2 Smooth surface of innermost layer membrane which facing bone defects

B.1 Small white colonies of F. nucleatum

B.2 Black pigment colonies of P. gingivalis

C.1 Gram negative rods of F. nucleatum (Wide at centre and taper towards end)

C.2 Gram negative bacillus of P. gingivalis (short and polymorphic)

D Method to produce an equivalent cell concentration of 10^8 colony forming units per millilitre (cfu/mL)

E Preliminary Method of Agar Diffusion Test

F Preliminary Result of Agar Diffusion Test
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTR</td>
<td>Guided tissue regeneration</td>
</tr>
<tr>
<td>TCH</td>
<td>Tetracyclin hydrochloride</td>
</tr>
<tr>
<td>LA</td>
<td>Lauric acid</td>
</tr>
<tr>
<td>PLGA</td>
<td>Poly(lactic-\text{co}-glycolic acid)</td>
</tr>
<tr>
<td>NAp</td>
<td>Nanoapatite</td>
</tr>
<tr>
<td>TIPS</td>
<td>Thermally induced phase separation</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field emission scanning electron microscopy</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>MTT</td>
<td>3(\text{-}4,5\text{-}dimethylthiazol-2-yl)\text{-}2,5 diphenyltetrazolium bromide</td>
</tr>
<tr>
<td>PDL</td>
<td>Periodontal ligament</td>
</tr>
<tr>
<td>E-PTFE</td>
<td>Expanded polytetrafluoroethylene</td>
</tr>
<tr>
<td>PLA</td>
<td>Poly(lactic acid)</td>
</tr>
<tr>
<td>PGA</td>
<td>Poly(glycolic acid)</td>
</tr>
<tr>
<td>PCL</td>
<td>Poly(caprolactone)</td>
</tr>
<tr>
<td>SLS</td>
<td>Surface layer</td>
</tr>
<tr>
<td>CL</td>
<td>Core layer</td>
</tr>
<tr>
<td>FFA</td>
<td>Free fatty acids</td>
</tr>
<tr>
<td>AMPS</td>
<td>Antimicrobial peptides</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysachharide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified eagles medium</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>HSF</td>
<td>Human skin fibroblast</td>
</tr>
<tr>
<td>ATCC</td>
<td>American Type Culture Collection</td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated total reflectance</td>
</tr>
<tr>
<td>BUARL</td>
<td>Balai Ungku Aziz Research Laboratory</td>
</tr>
<tr>
<td>ASTM</td>
<td>American for Testing and Materials</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Pictures of triple layered membranes</td>
<td>90</td>
</tr>
<tr>
<td>B</td>
<td>Pictures of bacteria from streak/spread plate method used for antibacterial testing</td>
<td>91</td>
</tr>
<tr>
<td>C</td>
<td>Pictures gram staining of bacteria</td>
<td>92</td>
</tr>
<tr>
<td>D</td>
<td>Method to produce an equivalent cell concentration of 10^8 colony forming units per millilitre (cfu/mL)</td>
<td>92</td>
</tr>
<tr>
<td>E</td>
<td>Preliminary Method of Agar Diffusion Test</td>
<td>93</td>
</tr>
<tr>
<td>F</td>
<td>Preliminary Result of Agar Diffusion Test</td>
<td>94</td>
</tr>
<tr>
<td>G</td>
<td>Publications</td>
<td>95</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of the Study

In dental practice, guided tissue regeneration (GTR) membrane is a well-established therapy in the treatment of mandible and alveolar bone defects that is infected by periodontal disease [1-2]. The concept of GTR is to act as a barrier in preventing the down-growth of epithelial and connective tissues into the defect [2]. Therefore, the defects will provide a medium for periodontal regeneration without the interruption of other tissues [3]. A synthetic resorbable membrane is widely used in the application of clinical medicine [2-5]. However, an inflammatory reaction by the accumulation of acidic degradation products in the polylactic acid membranes has been reported [4-7]. These significant disadvantages presented by the previous GTR membranes demonstrate that the “ideal” periodontal membrane for periodontal regenerative therapy is not yet to be found [1-2].

Several periodontal pathogens are responsible for the failure of bone regeneration process [3-4]. Indeed, the presence of periodontal pathogens such as *Porphyromonas gingivalis* (*P. gingivalis*) may affect the success of periodontal
regeneration [8]. Machtei et al. suggested that, periodontal pathogens should be controlled in the site of membrane insertion in order to ensure a successful regeneration [8]. Therefore, it is extremely paramount to control and reduce bacterial contamination on the membrane in order to enhance periodontal regeneration [1]. Several antibiotics and antibacterial agents have been used extensively to overcome this problem [9]. Multiple researchers have successfully incorporated tetracycline hydrochloride (TCH) and metronidazole benzoate into different polymeric solutions, with the aim in developing a material for therapeutic purpose [2-3,10]. However, there are very few studies which explored the incorporation of antibacterial agents into the GTR membrane [5].

Lauric acid (LA) is one of the typical free fatty acids found in human sebum and natural products such as coconut palm and milk [10]. It has strong antimicrobial activity while not inducing any cytotoxicity effect to human sebocytes [10]. Lauric acid, an amphiphilic molecules, consists of hydrophobic hydrocarbon [11] chain and hydrophilic carboxylic acid head group, which makes it suitable for antibacterial application [10-12]. Furthermore, it has the greatest antimicrobial activity among all medium chain aliphatic fatty acids [12]. The mechanism by which this lipid kills bacteria has been reported where previous microscopy studies demonstrated that the lipid disrupted bacterial cell membrane [13].

Although LA exerts strong antimicrobial activity against many microorganisms, it is still unknown if it has similar effect on the periodontal therapy or whether it can be used as a natural antimicrobial agent in the GTR membrane [13]. Therefore, this study aimed to determine the antibacterial efficacy and cytocompatibility of the recently developed functionally-graded GTR membrane composed of poly(lactic-co-glycolic acid) (PLGA), nanoapatite (NAp) and LA. The percentage of each material was controlled to provide an optimum antibacterial effect without causing the cells to dysfunction.

1.2 Problem Statement
Guided tissue regeneration membrane is a well-established therapy in the treatment of mandible and alveolar bone defects [14]. However, there are several problems and limitations which may arise following the restoration of GTR membrane such as inflammation reaction occurs due to accumulation of acidic degradation products from the resorbable membrane [94]. The membrane function in assisting periodontal regeneration is deteriorated by the presence of periodontal pathogens such as *P. gingivalis, Fusobacterium nucleatum* (*F. nucleatum*) and *Actinobacillus actinomycetemcomitans* (*A. actinomycetemcomitans*) [15]. In order to protect the periodontal defect from bacterial invasion, multiple antibiotics are currently used, thus increasing the risks of bacterial resistance and side effects. Problems concerned over bacterial resistance and side effects by the systemic administration and localized release of antibiotics cannot be ignored in GTR surgical intervention [8]. None have reported about the incorporation of the antibacterial properties of lauric acid into the GTR membrane. Therefore, this work will investigate the potential of lauric acid as the naturally derived antimicrobial agent in GTR barrier membrane.

1.3 Objectives of the Study

1. To prepare and characterize the developed functionally-graded GTR membrane composed of PLGA, NAp and LA.
2. To determine the antibacterial properties of the membrane against *P. gingivalis* and *F. nucleatum*.
3. To determine the cytocompatibility of the membrane towards fibroblast cells.

1.4 Scope of the Research

Functionally-graded GTR membranes composed of PLGA, NAp and LA were prepared using thermally induced phase separation (TIPS) and solvent leaching techniques. The
membranes were characterized by using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Antibacterial properties of the membranes were investigated against two types of bacteria: *P. gingivalis* and *F. nucleatum*. Cytocompatibility of the membranes was assessed by conducting MTT assays on fibroblast cells.

1.5 Significance of the Study

The prepared functionally-graded GTR membrane is able to address the current problems in the treatment of mandible and alveolar bone defects caused by periodontal diseases. The three functionally-graded layers is an effective barrier function that meets the unique needs of hard and soft tissues. Inflammatory reaction due to the formation of excessive degradation product is therefore very unlikely. The addition of NAp on the bone-sided layer can greatly enhance bone regeneration process. The incorporation of LA into the soft-tissue-sided layer will selectively target and kill periodontal bacteria. The use of natural derived LA will eliminate the disadvantage of bacterial resistance from antibiotic. The developed functionally-graded GTR membrane will be subjected to a patent filling once its efficacy is scientifically proven.
REFERENCES

57. Toma, M., Toma, I., Velasco, D., Potel, C., Limeres, J., and Diz, P. Susceptibility of Oral Obligate Anaerobes to Telithromycin, Moxifloxacin and

86. Kuula, H., Salo, T., Pirilä, E., Tuomainen, A. M., Jauhiainen, M., Uitto, V.-J., Tjäderhane, L., Pussinen, P. J., and Sorsa, T. Local and Systemic Responses in

APPENDIX

Appendix A Triple layered membrane