OPTIMIZATION OF TITANIUM EXTRACTION FROM DRINKING WATER TREATMENT PLANT RESIDUE AS POTENTIAL PHOTOCATALYST

NOR SYAHIDAH BINTI ZULKAPLI

UNIVERSITI TEKNOLOGI MALAYSIA
OPTIMIZATION OF TITANIUM RECOVERY FROM DRINKING WATER TREATMENT PLANT RESIDUE AS POTENTIAL PHOTOCATALYST

NOR SYAHIDAH BINTI ZULKAPLI

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Environment)

Faculty of Civil Engineering
Universiti Teknologi Malaysia

MAY 2017
To my beloved parents..
ACKNOWLEDGEMENT

In the name of Allah, the Most Beneficent, the Most Merciful

I am profoundly grateful to my supervisors Assoc. Prof. Dr. Mohd Fadhil Md Din (main), Assoc. Prof. Dr. Zaiton Abd Majid, Prof. Kenzo Iwao and Prof. Yo Ichikawa for their thoughtful guidance, both intentional and unintentional, on all matters of science and life. I am also grateful to receive financial support from Ministry of Higher Education (MOHE) Fundamental Research Grant Scheme Vote No. 4F472 and UTM Zamalah Scholarship.

I wish to extend a special thanks to all my colleagues and fellow lab-mates especially Nur Azmira Zainuddin and Dianah Mazlan for their great support and guidance. I also deeply appreciated my friends, Nur Hidayah, Liyana Amalina, Norsahida Azri, Nur Royhaila, Zetty Azalea, Arif Budiman and Faisal Hussin for their continuous encouragement and sincere enthusiasm which helped me to stay on-track.

I owe the greatest debt of gratitude to my parents and siblings whose infallible belief was the pillar of my strength. For all this and much more, I dedicate this thesis to them.
Titanium dioxide (TiO₂) is known for its excellent photocatalytic activity and many industries have now shifted their efforts to recover TiO₂ from secondary sources. Hydrometallurgy techniques which comprise of leaching, purification and precipitation have been commonly used to recover TiO₂. However, this technique involves many processes and further work is needed to improve the laboratory process. This study aims to optimize the titanium leaching from drinking water treatment plant (DWTP) residue using response surface methodology (RSM). The parameters studied were acid concentration, temperature and solid to liquid ratio. The purification work was carried out using solvent extraction and the percentage recovery of titanium using Cyanex 272 and Cyanex 301 were investigated. The final product of TiO₂ was obtained via precipitation using magnesium oxide. From the characterization study, it was found that the DWTP residue was poorly crystalline and predominantly consists of kaolinite and quartz with minor constituent of hematite, illite and anatase. Experimental results showed that a maximum leaching of titanium was obtained at 66% with optimum condition were found to be at 5.5 M acid concentration, 62°C heating temperature and 10 g/L solid to liquid ratio. In solvent extraction, the best titanium recovery was achieved at 86% using Cyanex 272 with low extraction of aluminium and iron. In contrast, Cyanex 301 showed 60% titanium recovery with 54% of aluminium was extracted into the organic phase. The X-ray Fluorescence (XRF) analysis indicated that 71% of TiO₂ was produced. In addition, X-ray Diffraction (XRD) confirmed the formation of TiO₂ with the crystalline anatase phase detected at 20 values of 25.3°, 37.8°, 48.0°. FESEM micrograph of TiO₂ showed that the aggregates were present in the form of uniform spherical shape with considerable variation of particle size. The photocatalytic activity of the final product TiO₂ under UV light irradiation showed maximum degradation (84%) with 0.5 g/L TiO₂ loaded in methylene blue solution. At similar amount of loaded TiO₂, the findings indicated that almost 50% of the fungi growth was inhibited within 14 days. Additionally, zero inhibition of fungi growth was observed without the presence of TiO₂. In summary, the photocatalyst TiO₂ had been successfully recovered from DWTP residue using an optimized leaching process, hence contributes to the improvement of hydrometallurgy technique.
ABSTRAK

Titanium dioksida (TiO₂) dikenali antara pemangkin yang terbaik dan kebanyak industri kini berusaha untuk mendapatkan TiO₂ daripada sumber sekunder. Teknik hidrometalurgi yang terdiri daripada pelarutan, purifikasi dan pemendakan kebiasaannya digunakan bagi mendapatkan TiO₂. Walau bagaimanapun, teknik ini melibatkan proses yang banyak dan kajian lanjutan diperlukan bagi meningkatkan kualiti kerja makmal. Kajian ini bertujuan untuk mengoptimumkan proses pelarutan titanium daripada bahan baki rawatan air minuman (DWTP) dengan menggunakan kaedah gerak balas permukaan (RSM). Parameter yang dikaji ialah kepekatan asid, suhu dan nisbah pepejal kepada cecair. Proses penulenan telah dilakukan dengan menggunakan kaedah pengekstrakan pelarut dan kadar peratusan pengekstrakan titanium telah diselidik menggunakan bahan organik iaitu Cyanex 272 dan Cyanex 301. Hasil akhir TiO₂ telah diperolehi melalui kaedah pemendakan yang menggunakan magnesium oksida. Penilaian produk TiO₂ sebagai bahan pemangkin telah dijalankan dengan menggunakan metilena biru dan kula di bawah sinaran cahaya UV. Hasil kajian perincian mendapati bahan baki DWTP mempunyai struktur kristal yang lemah dan kebanyakannya terdiri daripada kaolinit dan kuarza dengan sebilangan kecil bijih besi, ilit dan anatase. Hasil eksperimen menunjukkan bahawa pengekstrakan titanium yang maksimum telah diperolehi sebanyak 66% pada keadaan optimum dengan kepekatan asid 5.5 M, suhu pemanasan 62°C dan nisbah pepejal kepada cecair 10 g/L. Dalam pengekstrakan pelarut, 86% titanium telah diekstrak menggunakan Cyanex 272 dengan peratusan aluminium dan ferum yang rendah. Hasil perbandingan menunjukkan Cyanex 301 telah mengekstrak titanium sebanyak 60% dan aluminium yang turut diekstrak dalam fasa organik adalah 54%. Analisis X-ray Fluorescence (XRF) menunjukkan sebanyak 71% TiO₂ telah dihasilkan. Pembelauan X-ray (XRD) telah membuktikan pembentukan fasa berhablur anatase pada nilai 2θ adalah 25.3°, 37.8°, 48.0°. Mikrograf FESEM menunjukkan gumpalan TiO₂ berbentuk sfera yang tidak sekata dengan pelbagai saiz zarah. Proses pemangkinan di bawah sinaran UV menggunakan produk TiO₂ menunjukkan penguraian maksimum (87%) apabila 0.5 g/L TiO₂ dimasukkan dalam larutan metilena biru. Pada jumlah yang sama, hasil eksperimen menunjukkan bahawa hampir 50% daripada pertumbuhan kulat telah dihalang dalam tempoh 14 hari. Pertumbuhan kulat secara maksimum telah diperhatikan apabila tiada kehadiran TiO₂. Secara ringkas, bahan pemangkin TiO₂ telah berjaya dihasilkan daripada bahan baki DWTP dengan menggunakan kaedah pelarutan yang telah dioptimumkan, dan sekaligus menambah baik kaedah hidrometalurgi.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of Study 1
1.2 Problem Statement 3
1.3 Objective of Study 4
1.4 Scope of Study 4
1.5 Significance of Study 5

2 LITERATURE REVIEW 6

2.1 Titanium Dioxide 6
2.1.1 Mechanism of Photocatalytic Activity 7
2.1.2 Environmental Application using TiO₂ Photocatalyst 9
2.2 Drinking Water Treatment Plant Residue 11
2.3 Metallurgical Extraction of Titanium
 2.3.1 Pyrometallurgical Process
 2.3.2 Hydrometallurgical Process
 2.3.3 Bio-metallurgical Process

2.4 Response Surface Methodology
 2.4.1 Optimization of Titanium Leaching

2.5 Solid to Liquid Extraction
 2.5.1 Sulphate Leaching
 2.5.2 Chloride Leaching

2.6 Solvent Extraction
 2.6.1 Amine Extractant
 2.6.2 Organophosphorus Extractant

3 RESEARCH METHODOLOGY

3.1 Introduction
 3.1.1 Chemicals and Materials
 3.1.2 Apparatus and Equipment

3.2 Characterization Studies

3.3 Design of Experiment

3.4 Preparation of Drinking Water Treatment Plant Residue

3.5 Solid-Liquid Extraction (Leaching)
 3.5.1 Type of Acid
 3.5.2 Concentration of Acid
 3.5.3 Temperature
 3.5.4 Solid/Liquid ratio

3.6 Optimization of Leaching by Response Surface Methodology

3.7 Purification of Titanium Dioxide
 3.7.1 Liquid-liquid (Solvent) Extraction
 3.7.2 Stripping of Titanium Loaded in Organic Phase
 3.7.3 Precipitation of Titanium Dioxide
3.8 Photocatalytic Activity of Recovered Titanium Dioxide

3.8.1 Photocatalytic Degradation of Methylene Blue

3.8.2 Photocatalytic Inactivation of *F. equiseti*

4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Characterization of DWTP Residue and Leaching By-Product

4.2.1 Metal Oxide Composition

4.2.2 Structural Properties

4.2.3 Morphological Properties

4.3 Solid-Liquid Extraction (Leaching)

4.3.1 Type of Acid

4.3.2 Concentration of Acid

4.3.3 Temperature

4.3.4 Solid to Liquid Ratio

4.4 Optimization via Response Surface Methodology

4.4.1 Analysis of Variance

4.4.2 Response Surface and Model Term Interaction

4.4.3 Optimization Response and Validation Results

4.5 Purification of Titanium from Sulphate Leached Solution

4.5.1 Solvent Extraction

4.5.1.1 Type of Extractant

4.5.2 Characterization of Titanium Dioxide

4.5.2.1 Metal Oxide Composition

4.5.2.2 Structural Properties

4.5.2.3 Morphological Properties

4.6 Photocatalytic Activity of Recovered TiO₂
4.6.1 Photo-degradation of Methylene Blue 73
 4.6.1.1 UV Irradiation Time 74
 4.6.1.2 Amount of Loaded TiO$_2$ 75
4.6.2 Inactivation of *Fusarium equiseti* 75
 4.6.2.1 Isolation and Identification of Fungal Strain 76
 4.6.2.2 Effect of Loaded TiO$_2$ 78

5 CONCLUSION AND RECOMMENDATION 80
 5.1 Conclusion 80
 5.2 Recommendation 81

REFERENCES 82 - 96
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Photocatalytic Mechanism of TiO$_2$</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Metal oxide composition of DWTP sludge in several countries</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Optimum condition for titanium leaching from ilmenite</td>
<td>19</td>
</tr>
<tr>
<td>2.4</td>
<td>Dissolution mechanism of titanium and iron from ilmenite</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Commonly used organophosphorus reagents for SX</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>List of Chemicals and Materials</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Chemical Properties of Methylene Blue</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>List of Apparatus and Equipment</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Characterization Studies</td>
<td>32 - 35</td>
</tr>
<tr>
<td>3.5</td>
<td>Independent variables and their levels in the experimental design</td>
<td>40</td>
</tr>
<tr>
<td>3.6</td>
<td>Experimental design matrix of central composite design, actual and coded values</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Metal oxide composition of DWTP residue</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Metal oxide composition of DWTP residue and leaching by-product</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Chemical formula of mineral phase detected in DWTP residue and leaching by-product</td>
<td>50</td>
</tr>
<tr>
<td>4.4</td>
<td>Mineral phases and peak positioned (20) for DWTP residue and leaching by-product</td>
<td>50</td>
</tr>
<tr>
<td>4.5</td>
<td>Assignment of vibration bands in DWTP and leach by-product</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>Table CCD layout, actual and predicted response</td>
<td>61</td>
</tr>
<tr>
<td>4.7</td>
<td>Analysis of variance (ANOVA) of CCD design</td>
<td>62</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>4.8</td>
<td>The optimal leaching condition for maximum recovery of titanium</td>
<td>67</td>
</tr>
<tr>
<td>4.9</td>
<td>Composition of sulphate solution before and after extraction with Cyanex 272 and Cyanex 301</td>
<td>68</td>
</tr>
<tr>
<td>4.10</td>
<td>XRF analysis of final product TiO$_2$</td>
<td>70</td>
</tr>
<tr>
<td>4.11</td>
<td>Observation on the growth of fungi with and without loaded TiO$_2$ under UV irradiation</td>
<td>78</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Schematic illustration of the process occurring on TiO₂ photocatalyst following electronic excitation</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Schematic diagram of hydrometallurgical process</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Hydrometallurgical route</td>
<td>16</td>
</tr>
<tr>
<td>3.1</td>
<td>Experimental Design Layout</td>
<td>36</td>
</tr>
<tr>
<td>3.2</td>
<td>Drinking Water Treatment Plant Semangar (Sludge lagoon)</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Preparation of DWTP residue</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Leaching of DWTP residue</td>
<td>38</td>
</tr>
<tr>
<td>3.5</td>
<td>Home built-photocatalytic reactor</td>
<td>43</td>
</tr>
<tr>
<td>4.1</td>
<td>Diffractogram of DWTP residue and leaching by-product</td>
<td>49</td>
</tr>
<tr>
<td>4.2</td>
<td>FTIR spectra of DWTP residue and leaching by-product</td>
<td>51</td>
</tr>
<tr>
<td>4.3</td>
<td>SEM micrographs of (a) DWTP residue and (b) leaching by-product with 300x magnification</td>
<td>53</td>
</tr>
<tr>
<td>4.4</td>
<td>FESEM micrograph of DWTP residue and leaching by-product with 5000x (left column) and 50000x magnification (right column)</td>
<td>54</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of type of acid on Ti, Al, and Fe recovery</td>
<td>56</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of acid concentration on Ti, Al, and Fe recovery</td>
<td>57</td>
</tr>
<tr>
<td>4.7</td>
<td>Effect of temperature on Ti, Al, and Fe recovery</td>
<td>58</td>
</tr>
<tr>
<td>4.8</td>
<td>Effect of solid/liquid ratio on Ti, Al, and Fe recovery</td>
<td>59</td>
</tr>
<tr>
<td>4.9</td>
<td>Fit plot of regression model for titanium leaching from the experimental design</td>
<td>60</td>
</tr>
</tbody>
</table>
4.10 Response surface and contour lines for the interactive effect of acid concentration and different temperature at 0.01 solid/liquid ratio on the titanium recovery

4.11 Response surface and contour lines for the interactive effect of acid concentration and solid/liquid ratio at 60°C on the titanium recovery

4.12 Response surface and contour lines for the interactive effect of temperature and solid/liquid ratio at 5 M acid concentration on the titanium recovery

4.13 Final product of recovered TiO₂

4.14 Diffractogram of final product of TiO₂ precipitate

4.15 FESEM image of final product of TiO₂ precipitate

4.16 Calibration curve of methylene blue

4.17 Effect of time on photo-degradation of methylene blue

4.18 Effect of amount of catalyst loading on photo-degradation of methylene blue

4.19 (a) Macroscopic and (b) microscopic image of isolate wild fungi grown on PDA after 7 days at room temperature

4.20 Sequence of PCR product of fungal strain A

4.21 Phylogenetic tree of fungus *F. equiseti*
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DWTP</td>
<td>Drinking water treatment plant</td>
</tr>
<tr>
<td>TiO₂</td>
<td>Titanium Dioxide</td>
</tr>
<tr>
<td>RSM</td>
<td>Response Surface Methology</td>
</tr>
<tr>
<td>CCD</td>
<td>Central Composite Design</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>XRF</td>
<td>X-ray Fluorescence</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
<tr>
<td>ICP</td>
<td>Inductively Coupled Plasma</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>FESEM</td>
<td>Field Emission Scanning Electron Microscopy</td>
</tr>
<tr>
<td>g/L</td>
<td>Gram/litre</td>
</tr>
<tr>
<td>SX</td>
<td>Solvent Extraction</td>
</tr>
<tr>
<td>MB</td>
<td>Methylene Blue</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of study

Titanium dioxide (TiO$_2$) is an oxide of titanium that occurs naturally and it is proven to be effective for its catalytic properties. Research on photocatalytic degradation of organic pollutants and microorganism has been in a continuous expansion in the recent decades and TiO$_2$ is still by far the most used photocatalyst (Fresno et al., 2014). The use of semiconductor photocatalyst have shown to be advantageous and useful in the treatment of waste water pollutants such as methylene blue because of its high stability in biological and chemical environment (Mohapatra and Parida, 2006; Arbuj et al., 2010). In addition, the biodeterioration of aesthetic and structural damage of construction materials is prominently caused by the presence of numerous microbial cells, particularly tangles of fungal hyphae, as well as dust. As a consequence, there is a need to develop an antimicrobial coating that employs the application of TiO$_2$ photocatalytic reactions to protect the external building elements from the bio-deterioration of microorganisms, especially fungi.

Current emphasis on industrialization and rapid growth of technology has led to a high demand of titanium. Due to the increment of titanium consumption, the primary source of titanium (rutile) is reported to become scarce (Zhang et al., 2011a). As a consequence, most of the titanium dioxide (TiO$_2$) are synthesized using various physical and chemical methods. Some of the commonly used synthetic methods to produce TiO$_2$ are chemical vapor deposition (CVD) (Karaman et al., 2013), oxidation of titanium tetrachloride (Wang et al., 2012), sol gel technique
(Blanco et al., 2015; Leyva-Porras et al., 2015; Pazokifard et al., 2015) and thermal decomposition of titanium alkoxides (Li et al., 2015). The synthesizing of TiO$_2$ using the available methods are often involves rigorous reaction, high energy consumption and potentially hazardous.

Alternatively, the recovery of titanium from secondary sources is preferable as this would unlock large tonnage of remaining raw sludge as feed material for production of desired metal oxide. Since decades ago, many studies were conducted on the recovery of titanium from various kind of secondary sources for instance blast furnace slag (Zhang et al., 2007), red mud (Agatzini-Leonardou et al., 2008), sand beach (Begum et al., 2012), titanium slag (Liu et al., 2013) and submerged-arc welding slag (Annoni et al., 2013).

On a global scale, available literature estimates that 10,000 tons of drinking water treatment plant (DWTP) residue is produced daily in most municipalities worldwide and directly disposed to a landfill (Babatunde and Zhao, 2006). To date, it has been widely used in the buildings and construction materials such as cement (Rodríguez et al., 2010) and ceramics (Teixeira et al., 2011). DWTP residue is mainly consists of clay, fine silt and sediment which are primarily composed of Si, Ti, Al, Fe, Mg, Ca, Na and K (Tour, 1989). Titanium is among one of the most valuable components found in the residue and therefore it can be used as secondary raw material for recovery of titanium.

The previous literatures stated that the method for metal extraction is classified into pyro-metallurgical, hydro-metallurgical and bio-metallurgical. The pyro-metallurgical extraction of titanium normally involved smelting, roasting and refining (Lasheen, 2008). However, this process has been criticised for many years due to high emission of carbon footprint. The bio-metallurgical process involving bacterial leaching has been reported to give poor recovery of titanium (Jonglertjunya and Rubcumintara, 2013). Hydrometallurgical process involves leaching via chemical method and further purifications technique such as solvent extraction is required to concentrate the metals (Borsalani et al., 2011; Swamidoss and Malkhede, 2014).
Acid extraction has been acknowledged as an efficient method in metal recovery as most of the inorganic constituent including titanium are destabilized at low pH range. Direct acid leaching may also offer high solubility of metal complex and high leaching rates. The extraction of various metals including zinc (Oustadakis et al., 2010), chromium (Jiang et al., 2014), aluminium (Shemi et al., 2014; Nayak and Panda, 2010), cobalt (Liu et al., 2015), among others, were successfully performed using sulphuric acid.

It is crucial to determine the most significant variable and interaction between two variables in an experiment which can be achieved using a statistical design analysis (Somasundaram et al., 2014). Nowadays, the uses of Response Surface Methodology (RSM) has been studied extensively mainly on the metal recovery including copper (Somasundaram et al., 2014), aluminium (Shemi et al., 2014), zinc (Zhang et al., 2010), chromium (Sahu et al., 2009), cadmium (Iqbal et al., 2016), vanadium and nickel (Nazari et al., 2014), manganese (Azizi et al., 2012) and gold (Ha et al., 2014). In this study, the application of RSM to design an optimum hydrometallurgical technique is aimed at maximum recovery of titanium from DWTP residue.

1.2 Problem statement

The hydrometallurgical technique is chosen as it provides several substantial advantages including the ability to control the level of impurities, high potentials for metal recovery and suitability for small scale application. However, this technique is divided into many levels of processes which is leaching, purification that involves solvent extraction with stripping and finally precipitation process. This consequently prolonged the experimental work, making it laborious and difficulty to reach the optimal conditions due to the fact that the interaction between variables is ignored. Among the possible approaches, a statistical design method of RSM is found to be practical. This method could reduce a number of experiments to be done in the lab work where this method will be suggesting the best experimental condition based on
the design model. In this study, the optimization of hydrometallurgical technique mainly on the leaching part is highlighted.

1.3 **Objectives of the study**

The optimization of the hydrometallurgy technique to recover TiO$_2$ from DWTP residue is divided into first and second objective. The third objective refers to the photocatalytic application of the recovered TiO$_2$. The objectives of the research are simplified as follows:

i) To optimize the parameters affecting leaching of titanium which include acid concentration, temperature and solid to liquid ratio using RSM
ii) To investigate on the types of organic extractants on the recovery of titanium.
iii) To evaluate the photocatalytic activity of recovered TiO$_2$ against methylene blue and *F. equiseti* under UV light irradiation.

1.4 **Scope of the study**

This part is discussed according to the objectives; (i) optimization of leaching process, (ii) purification process using solvent extraction and (iii) photocatalytic activity of recovered TiO$_2$.

In the first objective, three independent variables namely acid concentration, temperature and solid to liquid ratio were optimized using central composite design (CCD) of RSM. The concentration of metals in the leached solution was determined using Inductively Coupled Plasma – Optical Emission Spectrometer (ICP-OES). The chemical composition and properties of DWTP residue and leaching by-product were analyzed using X-ray Fluorescence (XRF) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, X-ray Diffraction (XRD) spectroscopy, Scanning Electron Microscope (SEM) and Field Emission Scanning Electron Microscope (FESEM).
For second objective, the purification of sulphate leached solution was conducted using solvent extraction. Two types of selective anionic extractants (Cyanex 272 and Cyanex 301) were evaluated. The stripping of titanium was performed using HCl and final TiO$_2$ was obtained via precipitation with light magnesium oxide. The produced TiO$_2$ was calcined at 550ºC and further characterized using XRF, XRD and FESEM analysis.

In the third objective, the photocatalytic activity of TiO$_2$ was evaluated by the degradation of the organic dye pollutant, methylene blue (MB) in water under UV light irradiation. The amount of TiO$_2$ loaded into the MB solution was varied and the degradation rate of MB was observed within four hours under UV irradiation. Then, similar amount of TiO$_2$ loaded obtained from the photocatalytic activity of MB was used against isolated fungi. Fungi sample was collected at C07 UTM exterior building and the fungi sample was identified using polymerase chain reaction (PCR). The efficacy of TiO$_2$ against fungi was observed at the time intervals of 1, 7, and 14 days by measuring the diameter of fungal colonies.

1.5 Significant of the study

The main aim of this study is to recover TiO$_2$ from DWTP residue using a hydrometallurgical technique. Optimization of this technique is necessary as it can reduce the laborious work and for more feasible metal recovery in full-scale applications. This study will also contribute as a promising technique for the recovery of titanium from different kind of sources. Apart from that, product of this research which is TiO$_2$ can be further utilized as a photocatalyst material. Photocatalytic application can provide solutions for many of the environmental challenges as most of the organic pollutants will undergo degradation to produce less harmful or non-harmful substances under UV light irradiation.
REFERENCES

Reszczyńska, J., Grzyb, T., Sobczak, J. W., Lisowski, W., Gazda, M., Ohtani, B. and Zaleska, A. (2015). Visible Light Activity of Rare Earth Metal Doped (Er$^{3+}$, Yb$^{3+}$ or Er$^{3+}$/Yb$^{3+}$) Titania Photocatalysts. *Applied Catalysis B: Environmental*, 163, 40-49.

