THE EFFECT OF CALCINATION TEMPERATURE ON THE STRUCTURE AND PHOTOCATALYTIC ACTIVITY OF CARBON-DOPED TITANIUM DIOXIDE PREPARED VIA SOL-GEL ROUTE

NOR ARBANI BINTI SEAN

UNIVERSITI TEKNOLOGI MALAYSIA
THE EFFECT OF CALCINATION TEMPERATURE ON THE STRUCTURE
AND PHOTOCATALYTIC ACTIVITY OF CARBON-DOPED TITANIUM
DIOXIDE PREPARED VIA SOL-GEL ROUTE

NOR ARBANI BINTI SEAN

A report submitted in partial fulfilment of the
requirements for the award of the degree of
Master of Science (Chemistry)

Faculty of Science
Universiti Teknologi Malaysia

FEBRUARY 2017
Specially dedicated to my beloved
MOM, Miskiah
DAD, Sean
SISTERS, Kartini and Tumirah
BROTHER, Mohd Khairul

Thank you very much for the prayer, love and support.
ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, praise to Allah, with all His kindness and mercy, had gave me the chance to complete this thesis with a success. I would like to express special thanks to my supervisor, Prof. Dr. Hadi Nur for the valuable advices and guidance throughout this project. This project could not have completed without his guidance.

I would like to thanks all the lecturers in the Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia. Thanks for enhance my knowledge in Chemistry and these knowledge really helps in accomplishing this project.

Besides, I would like to express thousands of appreciations to all laboratory assistants for providing me technical support and guidance throughout my project.

Last but not least, I would like to thank my beloved family, my mother (Miskiah binti Likan), my father (Sean bin Rani) and my siblings for giving me endless prayer, love and support and also my fellow friends for being supportive and considerate when I was in need for their help.

Thank you.
ABSTRACT

The outstanding accomplishment by Fujishima and Honda (1972) on the discovery of photocatalytic water splitting by titanium dioxide (TiO$_2$) electrodes results in the extensive study of TiO$_2$ for air and water purification for environmental applications. Despite all the advantages provided from TiO$_2$ compared to other semiconductor photocatalysts, its two main concern issues, which are large band gap energy (E_g) and high recombination rate of photogenerated electrons (e) and holes (h') pairs, restrain its usage in practical applications. Therefore, the development of visible light active TiO$_2$ become the challenge of researchers in the field of semiconductors photocatalysis. This study has been designated to the development of modified TiO$_2$ photocatalyst to enhance its photocatalytic activity into visible range and increase the charge carrier separation for more beneficial applications by carbon doping modification. Carbon-doped TiO$_2$ (C-TiO$_2$) nanoparticles with amorphous, anatase and mixed anatase/rutile phase were successfully synthesized via a simple and low-cost sol-gel route based on the self-assembly technique exploiting polyoxyethylenesorbitan monooleate (Tween 80) as a carbon source and calcined at 300-600 °C. The as-prepared powders were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), diffuse reflectance ultraviolet-visible spectroscopy (DR UV-Vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), and UV-Visible spectrophotometry (UV-Vis). With prolonged calcination temperature, the crystallite size and E_g were increased and the level of carbon doping decreased. All the nanoparticles showed high absorption in UV and visible light region. This is due to the reduction of E_g and the formation of sub-band observed by UV-Vis and PL spectrum, respectively. The formation of sub-band widens the absorption towards the visible light region. The potential of using the synthesized C-TiO$_2$ nanoparticles for photocatalytic environment remediation was demonstrated by the degradation of phenolphthalein (PHP) under UV and visible light irradiation. These photocatalytic activities were attributed to the level of carbon doping and crystallite structure. Carbon acts as an electron-trapping agent and causes structural defects as observed by PL spectrum. Obviously, it produces a low rate of recombination of e/h' as observed by PL spectroscopy which will have high separation of charge carrier and better performance of the photocatalytic activity. It was revealed that the amorphous C-TiO$_2$ is inert and the samples calcined from 400 °C to 600 °C have a decreasing trend of photocatalytic activity with the increased in size of nanoparticles. Among all, C-TiO$_2$ photocatalyst calcined at 400℃ was found to be more effective with an ideal amount of carbon, the presence of hydroxyl group, better crystallinity of amorphous-anatase mixture, and the existence of sub-band which reduces the band gap energy. Thus, exhibits high degradation percentage of PHP under UV and visible light irradiations, leading to as much as 3.7 and 11.89 % respectively. As a result, carbon doping modification is an appropriate strategy to enhance the photocatalytic activity by improving visible-light absorption and e/h' separation.
ABSTRAK

Pencapaian cemerlang yang diperolehi oleh Fujishima dan Honda (1972) mengenai penemuan fotomangkin pembahagi air pada elektrod titanium dioksida (TiO₂) telah menyebabkan banyak kajian mengenai TiO₂ dalam aktiviti pembersihan udara dan air untuk aplikasi alam sekitar. Walaupun TiO₂ memberikan banyak kelebihan berbanding fotomangkin semikonduktor yang lain, dua permasalahan utamanya iaitu tenaga jurang jalur (Eg) yang besar dan kadar penggabungan semula pasangan elektron yang tinggi telah menyebabkan penggunaannya di dalam aplikasi praktikal terhad. Oleh itu, penghasilan TiO₂ yang aktif di bawah sinaran cahaya nampak menjadi cabaran kepada para penyelidik di dalam bidang fotopemangkinan semikonduktor. Kajian tersebut meliputi penghasilan fotomangkin TiO₂ yang diubahsuai untuk meningkatkan aktiviti fotopemangkinan di bawah sinaran cahaya nampak dan meningkatkan kadar pemisahan pembawa cas untuk aplikasi yang lebih bermanfaat melalui pendopan karbon. Nanopartikel TiO₂ yang didopkan dengan karbon (C-TiO₂) yang berfasa amorfus, anatase dan campuran fasa anatase/rutil telah berjaya disintesis melalui kaedah sol-gel yang mudah dan berkonsistensi dalam teknik pemasangan diri dengan mengexplotasi polioktitesorbitan monooleate (Tween 80) sebagai sumber karbon dan dikalsin pada suhu 300-600 °C. Serbuk yang terhasil dicirikan dengan menggunakan spektroskopi infra-merah transformasi Fourier (FTIR), spektroskopi pantulan serakan ultralembayung (DR-UV), pembelauan X-Ray (XRD), mikroskopi pengimbas elektron (SEM) spektroskopi foropendarcahaya (PL), dan juga spektroskopi ultralembayung-cahaya nampak (UV-Vis). Dengan suhu pengkalsinan yang berpanjangan, saiz kristal dan Eg telah meningkat dan tahap karbon yang didopkan berkurangan. Kebanyakan nanopartikel menunjukkan penyerapan yang tinggi di bawah sinaran UV dan cahaya nampak. Ini adalah disebabkan oleh pengurangan E_g dan pembentukan beberapa jalur tambahan seperti yang dapat dilihat pada keputusan spektrum UV-Vis dan PL. Potensi nanopartikel C-TiO₂ dalam pemulihan alam sekitar dengan menggunakan fotomangkin telah dibuktikan melalui degradasi fenofoletain (PHP) di bawah sinaran UV dan cahaya nampak. Aktiviti fotopemangkinan yang bertambah baik telah didati dengan tahap karbon yang didopkan dan struktur kristal itu sendiri. Karbon bertindak sebagai agen pemerangkap elektron dan menyebabkan kecacatan struktur seperti yang diperhatikan di dalam spektrum PL. Jelas sekali, ia menghasilkan kadar penggabungan semula e/h⁺ yang rendah seperti yang diperhatikan di dalam spektroskopi PL yang mempunyai kadar pemisahan pembawa cas yang tinggi dan aktiviti fotopemangkinan yang lebih baik. Ia telah membuktikan bahawa amorfus C-TiO₂ adalah lengai dan sampel yang dikalsin dari suhu 400 °C sehingga 600 °C mempunyai penurunan aktiviti fotopemangkinan dengan peningkatan dalam saiz nanopartikel. Antara semua, fotomangkin C-TiO₂ yang dikalsin pada 400 °C didapati lebih berkesan dengan jumlah yang ideal bagi karbon, kehadiran kumpulan hidroksil, penghaluran yang lebih baik, dan kewujudan jalur tambahan yang mengurangkan tenaga jurang jalur. Oleh itu, mempamerkan peratusan kemerosotan PHP yang tinggi di bawah sinaran UV dan cahaya nampak, yang membawa kepada sebanyak 3.7 dan 11.89 % masing-masing. Kesimpulannya, pengubahsuai pengdopan karbon adalah salah satu strategi yang sesuai bagi meningkatkan aktiviti fotopemangkinan dengan menggalakkan penyerapan cahaya nampak dan pemisahan e⁻/h⁺.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SUPERVISOR DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>AUTHOR’S DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLE</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURE</td>
<td>xii</td>
</tr>
<tr>
<td></td>
<td>LIST OF SCHEME</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xvi</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background of Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Statement of Problem</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Objectives of Study</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Scope of Study</td>
<td>6</td>
</tr>
<tr>
<td>1.5</td>
<td>Hypothesis of Study</td>
<td>6</td>
</tr>
<tr>
<td>1.6</td>
<td>Significance of Study</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Photocatalysis</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Titanium Dioxide (TiO₂)</td>
<td>13</td>
</tr>
<tr>
<td>2.2.1</td>
<td>TiO₂ Photocatalyst</td>
<td>13</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Modification of TiO₂ Photocatalyst</td>
<td>17</td>
</tr>
</tbody>
</table>
2.2.2.1 Carbon-Doped TiO₂ Photocatalyst

2.2.2.2 Photoactivation Mechanism of Carbon-Doped TiO₂ Photocatalyst

2.3 Theory of Carbon-Doped TiO₂

2.3.1 Structural Properties of Carbon-Doped TiO₂

2.3.2 Electronic Band Structures of Carbon-Doped TiO₂

2.4 Sol-Gel Methods

2.4.1 Carbon-Doped TiO₂ Synthesized via Sol-Gel Route

2.5 Polyoxyethylenesorbitan Monooleate Surfactant

2.6 Phenolphthalein

3 RESEARCH METHODOLOGY

3.1 Introduction

3.2 Chemicals and Reagents

3.3 Characterization

3.4 Preparation of Photocatalyst

3.4.1 Preparation of Carbon-Doped TiO₂ and Undoped TiO₂ Photocatalyst

3.5 Preparation of Solution

3.5.1 Preparation of Stock Solution of Phenolphthalein

3.6 Photoreactor System

3.7 Photocatalytic Activity

3.7.1 Photodegradation of Phenolphthalein Under UV Light Irradiation

3.7.2 Photodegradation of Phenolphthalein Under Visible Light Irradiation
4 RESULTS AND DISCUSSIONS

4.1 Introduction 41

4.2 Synthesis of C- TiO₂ at Different Calcination Temperature 41

4.3 Surface Chemical Analysis of C-Doped TiO₂ 42

4.4 Crystallographic Study of C-Doped TiO₂ 45

4.5 Morphological Properties of C-Doped TiO₂ 49

4.6 Optical Properties of C-Doped TiO₂ 51

4.7 Photocatalytic Activity 61

4.7.1 Adsorption-Desorption Equilibrium Throughout Degradation 63

4.7.2 Photocatalytic Activity under UV and Visible Light 64

4.8 Summary 68

5 CONCLUSION AND SUGGESTIONS 69

5.1 Conclusion 69

5.2 Future Works 70

REFERENCES 71
LIST OF TABLE

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The band position of some common semiconductor photocatalysts in aqueous solution</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Properties of titanium dioxide in anatase and rutile crystal</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Several C-TiO₂ photocatalysts synthesized via a sol-gel route</td>
<td>29</td>
</tr>
<tr>
<td>2.4</td>
<td>List of non-ionic surfactants available in the industry</td>
<td>30</td>
</tr>
<tr>
<td>4.1</td>
<td>Size comparisons between reference anatase TiO₂, undoped TiO₂ and its carbon-doped TiO₂ calcined at different calcination temperature</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Energy gap of samples as calculated from optical absorption spectra</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Calculated conduction and valence band edge positions of TiO₂ based photocatalysts by using Mulliken electronegativity</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Energy gap of samples as calculated from PL spectra</td>
<td>60</td>
</tr>
</tbody>
</table>
LIST OF FIGURE

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Spectrum of solar irradiance, I, compared with that of a 5770 K blackbody radiator. The blue dotted line shows the spectrum of radiation reaching the surface of the Earth</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Energy band in solids (a) insulator, (b) semiconductor and (c) conductor</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Process occurring on bare TiO$_2$ particles after UV excitation</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Bulk structures of titanium dioxide (a) anatase, (b) rutile and (c) brookite</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>The tetragonal bulk unit cell of (a) anatase and (b) rutile dimension</td>
<td>15</td>
</tr>
<tr>
<td>2.5</td>
<td>Mechanism of TiO$_2$ photocatalysis ($h\nu_1$) pure TiO$_2$; ($h\nu_2$) metal-doped TiO$_2$ and ($h\nu_3$) nonmetal-doped TiO$_2$</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Proposed schematic illustration of the photocatalytic mechanism of C-doped TiO$_2$ nanoparticles under visible light irradiation</td>
<td>20</td>
</tr>
<tr>
<td>2.7</td>
<td>Partial geometry of TiO2 models for (a) one substitutional C atom to O (C${S\cdot O}$), (b) one substitutional C atom to Ti (C${S\cdot Ti}$), (c) one interstitial C atom (C${I}$), and (d) one interstitial C atom nearby an oxygen vacancy (C$_{I+V\cdot O}$) in the anatase TiO$_2$ supercell.</td>
<td>22</td>
</tr>
<tr>
<td>2.8</td>
<td>(a) DOS and (b) PDOS for 96 atoms anatase supercell with C replaced O</td>
<td>24</td>
</tr>
<tr>
<td>2.9</td>
<td>The calculated (a) TDOS and (b) PDOS for C</td>
<td>25</td>
</tr>
</tbody>
</table>
mono-doping of anatase C@O

2.10 Model for the anatase C-doping Ti₉₉O₁₀₀ at different substitutional

2.11 Schematic illustration of an (a) amphiphile component and (b) the orientation of amphiphile at the phase boundary

2.12 Structure of polyoxyethylenesorbitan monooleate (Tween 80)

2.13 Structural formula of phenolphthalein

3.1 A flow chart for the photocatalysts preparation, characterization and their photocatalytic activity

3.2 Scheme summarized the procedure for the TiO₂-based photocatalyst

3.3 Test system design under (a) visible light and (b) UV light irradiation

4.1 Photograph of (a) Reference, (b) Undoped TiO₂, (c) C-TiO₂-300, (d) C-TiO₂-400, (e) C-TiO₂-500 and (f) C-TiO₂-600

4.2 FTIR spectra of (a) reference, undoped TiO₂ and C-TiO₂-400 and (b) all the C-TiO₂ samples

4.3 XRD pattern of nanocrystalline reference anatase

4.4 XRD pattern of prepared TiO₂ and C-TiO₂ samples at different calcination temperature

4.5 SEM micrographs of (a) reference anatase TiO₂, as-prepared (b) undoped TiO₂, (c) C-TiO₂-300, (d) C-TiO₂-400, (e) C-TiO₂-500 and (f) C-TiO₂-600

4.6 (a) UV-vis diffuse reflectance spectra of reference anatase TiO₂, undoped TiO₂ and C-TiO₂ calcined at a different temperature. (b) The plot of (FR hv)² versus hv using the Kubelka-Munk function and the Tauc equation

4.7 The proposed conduction and valence band edge position of TiO₂ based photocatalysts

4.8 The photoluminescence spectra for (a) Reference
anatase TiO$_2$, Undoped TiO$_2$ and Doped TiO$_2$ calcined at 400°C, and (b) C-TiO$_2$ calcined at different temperatures

4.9 The proposed illustration of the electrons excitation of the prepared photocatalysts

4.10 The (a) UV-Vis spectra of PHP solutions with different concentrations, and a (b) calibration curve for phenolphthalein absorption peak at 228 nm in UV-Vis spectrum

4.11 Variation of light absorbance of PHP with the presence of C-TiO$_2$-400 photocatalyst under different light irradiations (I: Adsorption, II: Desorption, and III: Degradation)

4.12 Percent of degradation (%) of PHP in the presence of a different catalyst under (a) UV and (b) visible light radiation

4.13 Imperfections of the crystal structure
LIST OF SCHEME

<table>
<thead>
<tr>
<th>SCHEME NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Mid-gap states in the semiconductor band gap after C replaced O</td>
<td>24</td>
</tr>
<tr>
<td>2.2</td>
<td>A typical procedure in preparing TiO$_2$ based photocatalyst via sol-gel method</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>The synthesis of phenolphthalein</td>
<td>31</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>%D</td>
<td>Percent of degradation</td>
<td></td>
</tr>
<tr>
<td>ATR</td>
<td>Attenuated total reflectance</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
<td></td>
</tr>
<tr>
<td>CB</td>
<td>Conduction band</td>
<td></td>
</tr>
<tr>
<td>DFT</td>
<td>Density functional theory</td>
<td></td>
</tr>
<tr>
<td>DR</td>
<td>Diffuse reflectance</td>
<td></td>
</tr>
<tr>
<td>e'</td>
<td>Electron</td>
<td></td>
</tr>
<tr>
<td>E_g</td>
<td>Band gap energy</td>
<td></td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier transform infrared spectroscopy</td>
<td></td>
</tr>
<tr>
<td>h^+</td>
<td>Positive hole</td>
<td></td>
</tr>
<tr>
<td>nm</td>
<td>Nanometre</td>
<td></td>
</tr>
<tr>
<td>OH</td>
<td>Hydroxyl</td>
<td></td>
</tr>
<tr>
<td>OV</td>
<td>Oxygen vacancies</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Pollutant</td>
<td></td>
</tr>
<tr>
<td>PHP</td>
<td>Phenolphthalein</td>
<td></td>
</tr>
<tr>
<td>PL</td>
<td>Photoluminescence</td>
<td></td>
</tr>
<tr>
<td>POPs</td>
<td>Persistent organic pollutants</td>
<td></td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
<td></td>
</tr>
<tr>
<td>TiO_2</td>
<td>Titanium dioxide</td>
<td></td>
</tr>
<tr>
<td>TTIP</td>
<td>Titanium tetraisopropoxide</td>
<td></td>
</tr>
<tr>
<td>Tween 80</td>
<td>Polyoxyethylenesorbitan monooleate</td>
<td></td>
</tr>
<tr>
<td>UV-Vis</td>
<td>Ultraviolet-visible</td>
<td></td>
</tr>
<tr>
<td>VB</td>
<td>Valence band</td>
<td></td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Study

Nowadays, the crisis brought by ‘greenhouse effect’ has become a great issue in many countries. This is due to the combustion of the toxic organic pollutants released from industries into water, air, and soil. Since the first discovery of photocatalytic water splitting on titanium dioxide (TiO$_2$) electrodes in 1972 by Fujishima and Honda, scientists have done many studies on the photocatalytic activity of TiO$_2$ to deal with these challenges (Fujishima and Honda, 1972).

TiO$_2$, which is among the most basic materials in our daily life, represents an effective photocatalyst for water and air purification (Fujishima et al., 2000). Additionally, it is also associated with self-cleaning technology that is responsible for the development of green living environment (Zhang Li, 2013). The photocatalyst is the substance which can absorb light quanta of appropriate wavelengths depending on the band structure (Banerjee et al., 2015). The process in which this substance is being utilized in the chemical reaction is called photocatalysis (Etacheri et al., 2015). In order to develop an efficient photocatalyst, the catalyst should satisfy high stability in extreme environment, photoactive, photo-stable and low cost (Mills et al., 1993; Pelaez et al., 2012a).

The most commonly used photocatalysts are metal oxides such as TiO$_2$, ZnO, Fe$_2$O$_3$, WO$_3$, and SnO$_2$ (Etacheri et al., 2015; Fujishima and Honda, 1972; Santhi et
al., 2016; Tayyebi et al., 2016; Uddin et al., 2016; Wang et al., 2016). Among all, TiO$_2$ is a widely used semiconductor since it provides all the special characteristics in all the aspects mentioned above.

However, despite all the advantages provided by TiO$_2$ compared to other semiconductor photocatalysts, there are two main concern issues that restrain its usage in practical applications. Firstly, TiO$_2$ has a large band gap, which is 3.2 eV, and require UV light for the excitation of electrons to take place. This has limited its photocatalytic activity under solar energy or visible light, which is the most abundant light in the electromagnetic spectrum. Figure 1.1 shows the solar spectrum in different spectral irradiance. Secondly, TiO$_2$ possesses fast electrons (e$^-$) and holes (h$^+$) recombination that will decrease the photocatalytic activity. Therefore, for more beneficial photocatalytic applications, it is essential to develop a system that producing TiO$_2$ with high efficiency under visible light region.

![Figure 1.1: Spectrum of solar irradiance, I, compared with that of a 5770 K blackbody radiator. The blue dotted line shows the spectrum of radiation reaching the surface of the Earth (Gray et al., 2010; Lean, 1991).](image-url)
Many studies have been designated to improve the production of highly reactive TiO$_2$ under visible light. Visible light activated TiO$_2$ photocatalyst can be prepared by using dye sensitization (Saien and Mesgari, 2016), noble metal loading (Kmetyko et al., 2016), transition metal addition (Yadav et al., 2016) and non-metal doping (Wang et al., 2012). Noble metals such as Ag, Au, Pt and Pd or the combinations of these metals with TiO$_2$ were of the particular interest due to its well-known properties of improving the photocatalytic efficiency of TiO$_2$ under visible light irradiation. They can act as an electron trap and delay the recombination of the e^-/h^+ pair through the promotion of the interfacial charge transfer (Fagan et al., 2016). However, due to some problems associated with metal doping, which the metals introduced were not incorporated into the TiO$_2$ framework, and block the reaction sites on the TiO$_2$ surface, non-metal elements such as carbon and nitrogen were studied comprehensively (Zhu et al., 2006).

The use of non-metal as doping material such as nitrogen (Than et al., 2017), sulfur (Seo et al., 2016), fluorine (Zhang et al., 2016), iodine (Wang et al., 2016) and carbon (Zhang et al., 2016) is able to control the stability of the TiO$_2$ and also enhance the visible light irradiation. Carbon was found to be more efficient compared to most of the non-metal elements due to its useful properties. Carbon has high electrical and thermal conductivity, high chemical stability, low thermal expansion coefficient, high lubricity, light weight, possibility to have various pores, non-toxic and radiation resistant (Zaleska, 2008).

Since the first report on carbon-modified TiO$_2$ reported by Kisch and co-workers, many physical and chemical investigations were done for the synthesis of carbon-doped titanium dioxide (Sakthivel and Kisch, 2003). Its ability to narrow down the band gap of TiO$_2$ significantly increases the photocatalytic activity towards visible light irradiation compared to pure anatase TiO$_2$ (Zhang et al., 2016).

Previously, it has been reported that the use of self-assembly surfactant-based sol-gel methods is effective ways to design the structural properties of TiO$_2$ from molecular precursors (Choi et al., 2006; Zhu et al., 2006). Hydrocarbon surfactants
were added to act as carbon doping precursor to enhance the photocatalytic activity of TiO₂ under visible light.

Regardless of the numerous studies based on visible light active carbon-doped TiO₂ photocatalyst, the relationship between the synthesis method, optical properties, structural properties and the efficiency of the visible light photocatalytic activity remain controversial and still need to be investigated. Thus, in this research, a simple and low-cost process was established for the synthesis of visible light active C-TiO₂ photocatalysts via the sol-gel route of precursor titanium tetraisopropoxide (TTIP), at different calcination temperature of 300 °C to 600 °C for 3 hours.

1.2 Statement of Problem

The utilization of TiO₂ photocatalyst in air and water treatment promises better views as it provides high efficiency in the degradation of organic pollutants (Zaleska, 2008). However, its wide scale of practical application is limited by its large band gap energy (3.2 eV), which allows the only small amount of solar energy to be used. Also, the high recombination rate of photogenerated e⁻ and h⁺ that occurs reduces its photocatalytic activity efficiency, which resulting in low degradation percentage of organic pollutants. Previously, these problems had been solved by developing an effective TiO₂ photocatalyst with a reduced band gap and make it reactive under visible light region. However, most of the techniques used to synthesize the material are expensive, hard to control and chemically unstable (Pelaez et al., 2012). In order to overcome all these problems, a mild and easily controlled sol-gel technique had been chosen to be the promising way to develop highly reactive C-doped TiO₂ under visible light irradiation, with the utilization of polyoxyethylenelesorbitan monooleate (Tween 80) surfactant as a carbon source, and titanium tetraisopropoxide (TTIP) as the TiO₂ precursor.
Tween 80 was selected as carbon source material since it contain high number of carbon, easy to obtain, cheap, and highly miscible in aqueous solution compared to other carbon source material, such as carbon nanotube (CNT) (Wongaree et al., 2015), regenerated cellulose membrane (RCM) (M.A. Mohamed et al., 2016), and resorcinol-furfural (Shao et al., 2013). Besides that, C-doping promises a high number of photogenerated electrons and defect sites, which able to trap mobile electrons and lower the recombination rate of \(\text{e}^-/\text{h}^+ \), thereby resulted in the high photocatalytic activity of TiO\(_2\) photocatalysts.

The effect of calcination temperature towards the synthesized C-TiO\(_2\) was characterized by several analytical instruments. The surface bonding of C-TiO\(_2\) was first studied using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), while the morphological and physical properties were characterized by scanning electron microscope (SEM), and X-ray diffraction (XRD) spectrometer. The optical properties were characterized using diffuse reflectance ultraviolet-visible (DR UV-Vis) spectrometer and photoluminescence (PL) spectrometer.

1.3 Objectives of Study

The objectives of this study are:

- To synthesize carbon-doped TiO\(_2\) photocatalyst by the self-assembly surfactant sol-gel method at different calcination temperature.

- To study the effect of calcination temperature of the prepared carbon-doped TiO\(_2\) by using ATR-FTIR, DR UV-Vis, SEM, XRD, and PL.

- To evaluate the photocatalytic performance of carbon-doped TiO\(_2\) under UV and visible light irradiances by using DR UV-Vis spectroscopy for phenolphthalein degradation.
1.4 Scope of Study

The research covered the synthesis of C-TiO$_2$ photocatalyst via self-assembly surfactant-based sol-gel method at different calcination temperature. The non-ionic surfactant (Tween 80) was used as the source of carbon material. The photocatalyst was characterized further using XRD, SEM, DR-UV spectrophotometer, ATR-FTIR, and PL. The photodegradation of phenolphthalein was carried out in the presence of UV and visible light and was monitored using diffuse reflectance ultraviolet-visible (DR UV-Vis) spectrometer.

1.5 Hypothesis of Study

Non-metal doping has proved to be an efficient way in modifying the structure of TiO$_2$ photocatalysts so that it can easily absorb visible light which is abundant in the solar irradiation. It is also responsible for reducing the band gap energy by the formation of sub-band between the valence band and conduction band. In addition, through this doping modification, the rate of recombination of e$^-$/h$^+$ has been reported to decrease as the defect sites created by the carbon-doping act as electron trapping agent that delay the rate of e$^-$/h$^+$ recombination. This is useful for the oxidation of organic pollutants in the environment. Therefore, non-metal doping seems to be an effective way in enhancing photocatalytic activity of TiO$_2$ photocatalysts.

1.6 Significant of Study

The development of TiO$_2$ photocatalysts has led to its usage in many fields including in the degradation of organic pollutants in waste and wastewater treatment. Despite all the advantages provided by TiO$_2$ photocatalysts, some modifications have been made to increase its efficiency on the photocatalytic activity and the most
prominent method to be used is by carbon-doping. Therefore, this research will provide an understanding of the synthetic method used to develop C-doped TiO$_2$ photocatalyst which relates to their optical and structural properties. This photocatalyst will ultimately reduce the band gap of TiO$_2$ as well as the rate of e^-/h^+ recombination. As a consequence, this would drive the use of photocatalyst which only use the sunlight for any reaction to occur without the use of any conventional method that is hard to control and time-consuming.
REFERENCES

Ciftci, G., Durmus, M., Senkuytu, E., & Kilic, A. (2009). Structural and

Environmental. 125: 331–349.

