LIGNOCELLULOLYTIC ENZYMES BY *Aspergillus* sp. A1 AND *Bacillus* sp. B1
ISOLATED FROM GUT OF *Bulbitermes* sp. IN SOLID STATE FERMENTATION
USING SAWDUST AS SUBSTRATE

NORATIQAH BINTI KAMSANI

UNIVERSITI TEKNOLOGI MALAYSIA
LIGNOCELLULOLYTIC ENZYMES BY Aspergillus sp. A1 AND Bacillus sp. B1 ISOLATED FROM GUT OF Bulbitermes sp. IN SOLID STATE FERMENTATION USING SAWDUST AS SUBSTRATE

NORATIQAH BINTI KAMSANI

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Bioscience)

Faculty of Biosciences and Medical Engineering
Universiti Teknologi Malaysia

JANUARY 2017
Specially dedicated to supportive families and friends who had been an inspiration to me
to be a better person
ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful

Alhamdullillah. Thanks to Allah SWT, whom with His willing giving me the opportunity to complete this study.

I am heartily thankful to my supervisor, Assoc. Prof. Dr. Madihah Md. Salleh, co-supervisors, Dr. Adibah Yahya and Dr. Chong Chun Shiong, whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject. Their invaluable help of constructive comments and suggestions throughout experimental and reporting of findings have contributed to the success of this research. The compliment also goes to my external co-supervisor, Dr. Musaalbakri Abdul Manan, for his thoughts and comments.

I would also like to show my appreciation to the Ministry of Higher Education (MOHE) and University for financial assistances.

My sincere appreciation to all my colleagues in Biorefinery Technology Research Laboratory, Dr. Ang Siow Kuang, Dr. Rachmawaty Muchtar, Puan Huszalina Hussin, Shankar A/L Ramanathan, Ahmad Fawwaz Mohd Raji, Mohd Roslan Ikubar, Chew Yue Ming, Rohaya Mohd Noor, Zul and Syifaa for their kindness and moral support during my study. My appreciation also goes to Puan Fatimah for her generous assistance throughout this study.

Last but not least, my deepest gratitude goes to my beloved parents; Mr Kamsani Suratman and Mrs Azizah Abu Bakar and also to my sisters and brother, Nana, Yan and Emy for their endless love, prayers and encouragement. To those who indirectly contributed in this research (especially for the musicians, café cooker and Nescafe inventor) your kindness and inventions means a lot to me. Thank you very much.
Sawdust is one of the common lignocellulosic waste biomass produced during the process of planning mills, moulding plants and furniture manufacturing. In practice, the sawdust is discarded in landfill areas, causing dust and dirt pollution in nearby localities. Therefore, the need to find an efficient and practical approach to revalorize sawdust as a starting raw material in the production of lignocellulolytic enzymes is essential as a way to manage and turn the residues into value added products. Prospecting for efficient degrading lignocellulose microorganisms is crucial to facilitate the process of lignocellulolytic enzymes production from the lignocellulosic biomass. This study aimed to exploit microorganisms isolated from gut of termite *Bulbitermes* sp. in producing lignocellulolytic enzymes under solid-state fermentation (SSF) system by using untreated sawdust as substrate. Seventeen bacterial and five fungal with positive lignocellulolytic enzymes activities were successfully isolated from the gut of two hundred termites. Four isolates identified as *Aspergillus* sp. A1, *Bacillus* sp. B1, *Bacillus* sp. B2 and *Brevibacillus* sp. Br3 were selected for further characterization. Among the isolates, *Aspergillus* sp. A1 showed highest activities of lignin peroxidase (LiP) (729.12 U/g) and β-glucosidase (22.97 U/g). The highest activities of endoglucanase (138.77 U/g) and manganese peroxidase (MnP) (47.73 U/g) were recorded in *Bacillus* sp. B1. The *Bacillus* sp. B2 produced the highest activities of exoglucanase (32.16 U/g) and laccase (71.18 U/g). The highest xylanase activity (104.96 U/g) was observed in *Brevibacillus* sp. Br3. The *Bacillus* sp. B2 produced the highest activities of endoglucanase, β-glucosidase, xylanase, LiP and laccase were approximated 17–93% higher in co-culture compared to individual culture. Compared to other di-, tri- and quad-mixed culture, *Aspergillus* sp. A1 (A1) and *Bacillus* sp. B1 (B1) co-culture produced the highest lignocellulolytic enzymes activities (endoglucanase, 190.1; exoglucanase, 13.5; β-glucosidase, 33.7; xylanase, 202.5; LiP, 713.5; MnP, 23.3 and laccase, 52.1 U/g). The interaction between A1 and B1 is not antagonistic. Study on the effect of SSF operational variables showed that the use of unsieved sawdust produced significantly higher activities of exoglucanase, xylanase, LiP and laccase as compared to that of sieved sawdust. In addition, temperature, pH and moisture content significantly impacted lignocellulolytic enzymes production. In comparing to control, moistening the unsieved sawdust with Mandel basal medium (pH 8) to 1:2.5 (solid:moisture) ratio, and incubation at 35 °C for 9 days produced 1.2–49.4 fold higher lignocellulolytic enzymes activities. Endoglucanase, β-glucosidase and xylanase could be classified as moderately thermostable enzymes with better stability in acidic pH range. Meanwhile, ligninases possessed thermophilic and alkaliphilic characteristics. The co-culture produced 1.9–11.8 fold higher reducing sugars than those yielded by single cultures in the enzymatic degradation of sawdust. The use of co-culture enzymes also produced 3.6–85.4% higher reducing sugars as well as 1.3–2.3 times higher raffinose, cellobiose, maltose, glucose and xylose concentrations compared to that of commercial cellulase (Celulase) solution. As conclusion, this work has generated a microbial co-culture that could be used for improved lignocellulolytic enzymes and reducing sugars production using untreated sawdust as substrate.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xxii</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xxviii</td>
</tr>
<tr>
<td></td>
<td>LIST OF APPENDICES</td>
<td>xxx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of Research 1
1.2 Objectives 6
1.3 Scope of Research 7
1.4 Significance of the Research 8
1.5 Thesis Organization 9

2 LITERATURE REVIEW 11

2.1 Lignocellulosic Biomass 11
2.2 The Composition of Lignocellulosic Material 13
2.2.1 Cellulose 14
2.2.2 Hemicellulose 16
2.2.3 Lignin 18

2.3 Selection of Lignocellulosic Biomass for Production of Biobased Products 20
2.3.1 Sawdust as Raw Material for Production of High Value Products 21

2.4 Lignocellulose Degradation 24
2.4.1 Acid Degradation 27
2.4.2 Enzymatic Degradation: (Hemi) cellulases 29
2.4.3 Lignin Degrading Enzymes: Ligninases 33

2.5 Lignocellulolytic Enzymes Microbial Producer 36

2.6 Sources of Lignocellulolytic Degrading Microorganisms 42
2.6.1 The Termite 43
2.6.2 Lignocellulolytic Microorganisms from The Gut of Termite 45

2.7 Submerged Fermentation (SmF) 50

2.8 Solid-State Fermentation (SSF) 51
2.8.1 Advantages and Challenges in SSF 54

2.9 SSF Process Conditions for Lignocellulolytic Enzymes Production 56
2.9.1 Particle Size 56
2.9.2 Temperature 57
2.9.3 pH 58
2.9.4 Moisture Content 59

2.10 Co-Culture of Lignocellulolytic Enzymes Microbial Producers 62

2.11 Application of Lignocellulolytic Enzymes 66
2.11.1 Cellulases 66
2.11.2 Xylanase 68
3 MATERIALS AND METHODS

3.1 Research Design
3.1.1 Experimental Design

3.2 Collection of Termites

3.3 Isolation of Microorganisms

3.4 Inocula Preparation

3.5 Screening of Lignocellulolytic Enzymes Microbial Producers
3.5.1 Qualitative Screening

3.6 Solid-State Fermentation (SSF) of Sawdust
3.6.1 Solid Substrate
3.6.2 Inoculum Preparation and Inoculation
3.6.3 Enzymes Production in SSF
3.6.4 Enzymes Extraction

3.7 Reducing Sugar Assay

3.8 Enzymes Assay
3.8.1 Endoglucanase
3.8.2 Exoglucanase
3.8.3 β-glucosidase
3.8.4 Xylanase
3.8.5 Lignin Peroxidase (LiP)
3.8.6 Manganese Peroxidase (MnP)
3.8.7 Laccase

3.9 Protein Assay

3.10 Glucosamine Assay
CULTIVATION AND SELECTION OF
LIGNOCELLULOLYTIC MICROORGANISMS
FROM THE GUT OF Bulbitermes sp. TERMITES IN
SOLID-STATE FERMENTATION OF CHEMICALLY
UNTREATED SAWDUST

4.1 Introduction

4.2 Materials and Methods
 4.2.1 Collection of Termites
 4.2.2 Isolation of Lignocellulolytic Enzymes Producer from Bulbitermes sp. Termite Gut
 4.2.3 Gram Staining
 4.2.4 Preparation of Bacterial and Fungal Inocula
 4.2.5 Qualitative Screening
 4.2.6 Substrate Procurement
 4.2.7 Quantitative Screening
 4.2.8 Enzyme Assays
 4.2.9 Identification of Selected Lignocellulolytic Enzymes-Producing Microorganisms
 4.2.9.1 DNA Extraction
 4.2.9.2 Gel Electrophoresis
 4.2.9.3 Polymerase Chain Reaction (PCR)
 4.2.9.4 Carbon source Utilization Pattern of Selected Enzymes-Producing Microorganisms
 4.2.10 Preparation of Different Cellular Fractions for Enzyme Distribution Studies

4.3 Results and Discussion
 4.3.1 Isolation of Microorganisms from Termite Gut
 4.3.2 Qualitative Screening for Lignocellulolytic Microorganisms
4.3.3 Quantitative Screening for Lignocellulolytic Microorganisms Under SSF condition

4.3.3.1 Cellulases Activities 102
4.3.3.2 Xylanase Activities 104
4.3.3.3 Ligninases Activities 106

4.3.4 Selection of Lignocellulolytic Microorganisms for Further Identification and Characterization Study 108

4.3.4.1 Screening for Intracellular Lignocellulolytic Enzymes Production in Selected Microorganisms 116

4.3.5 Comparative Studies 118

4.4 Conclusion 120

5 PRODUCTION OF LIGNOCELLULLULOLYTIC ENZYMES BY CO-CULTURES OF SELECTED MICROORGANISMS FROM Bulbitermes sp. TERMITE GUT IN SOLID–STATE FERMENTATION OF UNTREATED SAWDUST 121

5.1 Introduction 121

5.2 Materials and Methods 123

5.2.1 Microorganisms and Inocula Preparation 123
5.2.2 Compatibility Test 123
5.2.3 Enzymes Production in Solid-State Fermentation (SSF) of Sawdust 123
5.2.4 Enzymes Assay 124
5.2.5 Statistical Analysis 124

5.3 Results and Discussion 124

5.3.1 Compatibility Test 124
5.3.2 Lignocellulolytic Enzymes Production in Solid-State Fermentation System 125
6 CO-CULTIVATION OF Aspergillus sp. A1 AND Bacillus sp. B1 FOR LIGNOCELLULOLYTIC ENZYMES PRODUCTION IN SOLID-STATE FERMENTATION

6.1 Introduction 138
6.2 Materials and Methods 139
 6.2.1 Strains of Lignocellulolytic Microorganisms 139
 6.2.2 Inocula Preparation 139
 6.2.3 Production of Lignocellulolytic Enzymes by Single and Co-cultures under SSF Condition 140
 6.2.4 Enzyme Assays 140
 6.2.5 Glucosamine Assay 140
 6.2.6 Scanning Electron Microscopy (SEM) 140
 6.2.7 Compatibility Tests 141
 6.2.8 Exopolysaccharide (EPS) Determination 141
 6.2.8.1 EPS Extraction 141
 6.2.8.2 EPS Quantification 142
 6.2.9 Spore Staining with Malachite Green-Safranin 142
 6.2.10 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 143
 6.2.11 Protein Assay 143
6.3 Results and Discussion 144
6.3.1 Effect of Inocula on Lignocellulolytic Enzymes Production

- 144

6.3.2 Compatibility Evaluation

- 146

6.3.3 Endospore and Exopolysaccharides Production

- 151

6.3.4 Effect of Co-Cultivation on Overall Protein Profiles

- 156

6.3.5 Effects of Single and Co-Culture on Lignocellulolytic Enzymes System

- 158
 - 6.3.5.1 Cellulases
 - 158
 - 6.3.5.2 Xylanase
 - 164
 - 6.3.5.3 Ligninases
 - 166

6.3.6 Effects of Single and Co-Culture on N-Acetyl-β-D-Glucosamine (NAG) Production

- 173

6.4 Conclusion

- 175

7 EFFECTS OF OPERATING CONDITIONS ON LIGNOCELLULOLYTIC ENZYMES PRODUCTION IN SOLID-STATE FERMENTATION OF SAWDUST

- 177

7.1 Introduction

- 177

7.2 Materials and Methods

- 178
 - 7.2.1 Preparation of Solid Substrate
 - 178
 - 7.2.2 Microorganisms and Inocula Preparation
 - 178
 - 7.2.3 Lignocellulolytic Enzymes Production by Co-Culture under solid-state fermentation (SSF) condition
 - 179
 - 7.2.4 Enzyme Assays
 - 179
 - 7.2.5 Glucosamine Assay
 - 179
 - 7.2.6 Determination of Moisture Content
 - 180
 - 7.2.7 Improving Process Parameters for Lignocellulolytic Enzymes Production under SSF Using One-Factor-At-a-Time (OFAT) Method
 - 180
8 CHARACTERIZATION OF LIGNOCELLULOLYTIC ENZYMES PRODUCED BY Aspergillus sp. A1 AND Bacillus sp. B1 CO-CULTURE USING UNTREATED SAWDUST AS SUBSTRATE UNDER SOLID-STATE FERMENTATION CONDITION

8.1 Introduction 209
8.2 Materials and Methods 210
 8.2.1 Preparation of Solid Substrate 210
 8.2.2 Microorganisms and Inocula Preparation 210
 8.2.3 Lignocellulolytic Enzymes Production by Co-Culture under Solid-State Fermentation (SSF) condition 210
 8.2.4 Enzyme Assays 211
 8.2.5 Characterization of the Crude Lignocellulolytic Enzymes 211
8.2.5.1 Optimum Temperature and Thermal Stability
8.2.5.2 Optimum pH and pH stability
8.2.6 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Zymogram Analysis

8.3 Results and Discussion
8.3.1 Optimum Temperature and Thermal Stability of Lignocellulolytic Enzymes
8.3.2 Optimum pH and pH Stability of Lignocellulolytic Enzymes
8.3.3 SDS-PAGE and Zymogram of Crude Lignocellulolytic Enzymes

8.4 Conclusion

9 DEGRADATION OF SAWDUST BASED ON SSF STRATEGY FOR PRODUCTION OF REDUCING SUGARS

9.1 Introduction
9.2 Materials and Methods
9.2.1 Microorganisms and Inocular Preparation
9.2.2 Sawdust-Based Biorefining Strategy
9.2.2.1 Solid-State Fermentation (SSF)
9.2.2.2 Enzymatic Degradation
9.2.3 Analytical Methods
9.2.3.1 Enzyme Assays
9.2.3.2 Protein
9.2.3.3 Analysis of Sawdust Sample Composition
9.2.3.3.1 Determination of NDF
9.2.3.3.2 Determination of ADF
9.2.3.3.3 Determination of ADL
9.2.3.4 Fourier Transform Infrared (FTIR) 246
9.2.3.5 Scanning Electron Microscopy (SEM) 246
9.2.3.6 Reducing Sugar Assay 246
9.2.3.7 High Performance Liquid Chromatography (HPLC) 247
9.2.3.8 Total Phenolic and Lignin Content 248
9.2.3.9 Statistical Analysis 248

9.3 Results and Discussion 249
9.3.1 Lignocellulolytic Enzymes Production by Single and Co-Culture of Aspergillus sp. A1 and Bacillus sp. B1 249
9.3.2 Compositional Analysis of Sawdust after Solid-State Fermentation (SSF) 251
9.3.3 Analysis of Sawdust Chemical Structure 253
9.3.4 Microscopic Analysis 257
9.3.5 Enzymatic Degradation of Fermented Sawdust 259
9.3.5.1 Total Phenolic Content and Lignin Concentration 267

9.4 Conclusion 270

10 CONCLUSIONS AND RECOMMENDATIONS 272
10.1 Conclusions 272
10.2 Recommendations 275

REFERENCES 277
Appendices A - E 336-349
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Quantity of biomass produced in Malaysia in 2007</td>
<td>12</td>
</tr>
<tr>
<td>2.2</td>
<td>Chemical compositions of lignocellulosic biomass in Malaysia</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>The comparison of crystalline and amorphous structure of cellulose</td>
<td>15</td>
</tr>
<tr>
<td>2.4</td>
<td>Proximate composition of sawdust</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Sawdust-based product derived from physical-chemical process</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Bioconversion processes of sawdust into various value added products</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Reports on the use of dilute acid degradation to different type of lignocellulosic biomass</td>
<td>28</td>
</tr>
<tr>
<td>2.8</td>
<td>Enzymes involved in the degradation of complex heteroarabinoxylans and galactoglucomannan structure</td>
<td>32</td>
</tr>
<tr>
<td>2.9</td>
<td>Mechanism of lignin biodegradation process</td>
<td>36</td>
</tr>
<tr>
<td>2.10</td>
<td>Cellulases producing microorganisms</td>
<td>38</td>
</tr>
<tr>
<td>2.11</td>
<td>Xylanase producing microorganisms</td>
<td>39</td>
</tr>
<tr>
<td>2.12</td>
<td>Ligninases producing microorganisms</td>
<td>41</td>
</tr>
<tr>
<td>2.13</td>
<td>Insects with reported lignocellulolytic microorganisms inside their gut</td>
<td>42</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2.14</td>
<td>Lignocellulolytic microorganisms isolated from the gut of termites</td>
<td>48</td>
</tr>
<tr>
<td>2.15</td>
<td>Lignocellulosic biomass used as a substrate for production of lignocellulolytic enzymes in SSF and SmF</td>
<td>53</td>
</tr>
<tr>
<td>2.16</td>
<td>Advantages and disadvantages of SSF over SmF</td>
<td>54</td>
</tr>
<tr>
<td>2.17</td>
<td>Process conditions applied in SSF for lignocellulolytic enzymes production by fungi and bacteria</td>
<td>61</td>
</tr>
<tr>
<td>2.18</td>
<td>Compilation of lignocellulolytic enzyme production in fermentation employing single and co-cultures cultivation on different substrate</td>
<td>65</td>
</tr>
<tr>
<td>2.19</td>
<td>Application of cellulases</td>
<td>67</td>
</tr>
<tr>
<td>2.20</td>
<td>Application of xylanase</td>
<td>69</td>
</tr>
<tr>
<td>2.21</td>
<td>Application of ligninases</td>
<td>70</td>
</tr>
<tr>
<td>3.1</td>
<td>Composition of Medium 1</td>
<td>77</td>
</tr>
<tr>
<td>3.2</td>
<td>Composition of Medium 2</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>Composition of CMC agar plates</td>
<td>79</td>
</tr>
<tr>
<td>3.4</td>
<td>Composition of Birchwood xylan agar plates</td>
<td>79</td>
</tr>
<tr>
<td>3.5</td>
<td>Composition of lignin agar plates</td>
<td>80</td>
</tr>
<tr>
<td>3.6</td>
<td>Composition of Production Medium</td>
<td>82</td>
</tr>
<tr>
<td>3.7</td>
<td>Trace elements</td>
<td>82</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of primers for PCR amplification</td>
<td>96</td>
</tr>
<tr>
<td>4.2</td>
<td>Characteristics of thirty bacterial and seven fungal isolates from the gut of Bulbitermes sp. termites</td>
<td>99</td>
</tr>
<tr>
<td>4.3</td>
<td>Qualitative screening for cellulolytic, xylanolytic and ligninolytic activities</td>
<td>100</td>
</tr>
<tr>
<td>4.4</td>
<td>Species of bacteria and fungi determined by amplification of 16S rRNA and ITS primer pairs respectively</td>
<td>111</td>
</tr>
</tbody>
</table>
4.6 Highest enzymatic activities detected in different fractions of *Aspergillus* sp. A1, *Bacillus* sp. B1, *Bacillus* sp. B2 and *Brevibacillus* sp. Br3

4.7 Cellulases, xylanase and ligninases production from bacteria and fungi isolated from/associated with the guts of termite under different substrate and fermentation system

5.1 Enzymes produced by *Aspergillus* sp. A1, *Bacillus* sp. B1, *Bacillus* sp. B2 and *Brevibacillus* sp. Br3 in SSF using saw dust as substrate

5.2 Comparison of volumetric productivity of cellulases, xylanase and ligninases from different fungal co-cultures under SSF

6.1 Comparison of growth (mg NAG/g) and lignocellulolytic enzyme activities (U/g) between single and co-culture after 9 days of SSF

6.2 Volumetric productivity of endoglucanase by single and co-culture of *Aspergillus* sp. A1 and *Bacillus* sp. B1

6.3 Volumetric productivity of exoglucanase by single and co-culture of *Aspergillus* sp. A1 and *Bacillus* sp. B1

6.4 Volumetric productivity of β-glucosidase by single and co-culture of *Aspergillus* sp. A1 and *Bacillus* sp. B1

6.5 Volumetric productivity of xylanase by single and co-culture of *Aspergillus* sp. A1 and *Bacillus* sp. B1

6.6 Volumetric productivity of LiP by single and co-culture of *Aspergillus* sp. A1 and *Bacillus* sp. B1

6.7 Volumetric productivity of MnP by single and co-culture of *Aspergillus* sp. A1 and *Bacillus* sp. B1

6.8 Volumetric productivity of laccase by single and co-culture of *Aspergillus* sp. A1 and *Bacillus* sp. B1

6.9 Rate of N-acetyl-d-glucosamine production by single and co-culture of *Aspergillus* sp. A1 and *Bacillus* sp. B1
7.1 Variation of process factors for lignocellulolytic enzymes production

7.2 Effect of sawdust particle sizes on NAG and final moisture content

7.3 Effect of incubation temperature on NAG and final moisture content

7.4 Effect of pH on NAG and final moisture content

7.5 Effect of initial moisture content on NAG and final moisture content

7.6 Lignocellulolytic enzymes activities in different SSF condition by A1B1 co-culture

8.1 Optimum temperature of lignocellulolytic enzymes from Aspergillus sp. A1 and Bacillus sp. B1 co-culture grown in SSF of sawdust

8.2 Temperature stability for lignocellulolytic enzymes of Aspergillus sp. A1 and Bacillus sp. B1 grown under SSF of sawdust.

8.3 Optimum pH of lignocellulolytic enzymes from Aspergillus sp. A1 and Bacillus sp. B1 co-culture grown under SSF of sawdust

8.4 pH stability for lignocellulolytic enzymes of Aspergillus sp. A1 and Bacillus sp. B1 grown in SSF of sawdust

8.5 Comparison of optimum temperature, pH and stability of cellulases, xylanase and ligninases produced by lignocellulolytic fungal and bacteria.

8.6 Molecular mass of endoglucanase, xylanase and laccase from Aspergillus sp. A1 and Bacillus sp. B1 co-culture.

9.1 Retention time of sugar standards

9.2 Lignocellulolytic enzymes activities produced by single and co-cultures of Aspergillus sp. A1 and Bacillus sp. B1 under SSF condition
9.3 Characteristics of the band assignments and wavenumbers in FTIR analysis 254

9.4 Ratios of the intensity of lignin, cellulose and hemicellulose bands for fermented and non-fermented samples before and after SSF 257

9.5 Total reducing sugar produced during enzymatic degradation of fermented and non-fermented sawdust using commercial cellulase of Celluclast and on site-crude enzyme extract from single and co-cultures of Aspergillus sp. A1 and Bacillus sp. B1 261

9.6 Comparison of lignocellulolytic enzymes activities of differently sourced enzymes used in enzymatic degradation of sawdust 262

9.7 Comparison of soluble protein concentration of differently sourced enzymes used in enzymatic degradation of sawdust 263
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Diagrammatic illustration of the framework of lignocellulose</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Structure of cellulose</td>
<td>15</td>
</tr>
<tr>
<td>2.3</td>
<td>Structure of hemicellulose</td>
<td>17</td>
</tr>
<tr>
<td>2.4</td>
<td>Structure of lignin</td>
<td>19</td>
</tr>
<tr>
<td>2.5</td>
<td>Overview of lignocellulose degradation via acidic and enzymatic</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>approach</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Schematic presentations of cellulases sites of action on the cellulose</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>polymer liberating glucose</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>Specific attack sites for xylanolytic enzymes on the structure of</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>xylan</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>Enzymatic attack on galactoglucomannan structure</td>
<td>33</td>
</tr>
<tr>
<td>2.9</td>
<td>Lignin biodegradation process</td>
<td>35</td>
</tr>
<tr>
<td>2.10</td>
<td>Castes for termites (Isoptera)</td>
<td>44</td>
</tr>
<tr>
<td>3.1</td>
<td>Outline of this study</td>
<td>73</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental design</td>
<td>75</td>
</tr>
<tr>
<td>4.1</td>
<td>Screening of cellulases producing bacteria isolated from</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Bulbitermes sp. termite gut</td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Screening of cellulases producing fungi isolated from</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Bulbitermes sp. termite gut</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Screening of xylanase producing bacteria isolated from</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Bulbitermes sp. termite gut</td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Screening of xylanase producing fungi isolated from</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>Bulbitermes sp. termite gut</td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>Screening of ligninases producing bacteria isolated from Bulbitermes sp. termite gut</td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>Screening of ligninases producing fungi isolated from Bulbitermes sp. termite gut</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>Gel electrophoresis of PCR product</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Partial internal transcribing spacer sequence of fungal isolate A1</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Partial 16S rRNA gene sequence of bacterial isolate B1</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>Partial 16S rRNA gene sequence of bacterial isolate B2</td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>Partial 16S rRNA gene sequence of bacterial isolate Br3</td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>Neighbour-joining phylogenetic tree</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Compatibility evaluation</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Activities of endoglucanase produced in monocultures and co-cultures in SSF</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Activities of exoglucanase produced in monocultures and co-cultures in solid-state fermentation</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Activities of β-glucosidase produced in monocultures and co-cultures in solid-state fermentation</td>
<td></td>
</tr>
<tr>
<td>5.5</td>
<td>Activities of xylanase produced in monocultures and co-cultures in solid-state fermentation</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Activities of LiP produced in monocultures and co-cultures in solid-state fermentation</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Activities of MnP produced in monocultures and co-cultures in solid-state fermentation</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>Activities of laccase produced in monocultures and co-cultures in solid-state fermentation</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Images of Aspergillus sp. A1 and Bacillus sp. B1 by SEM</td>
<td></td>
</tr>
<tr>
<td>6.2</td>
<td>Image of the fermented sawdust</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Co-cultivation of Aspergillus sp. A1 and Bacillus sp. B1 on solid basal medium + 2% saw dust</td>
<td></td>
</tr>
<tr>
<td>6.4</td>
<td>SEM micrographs of sawdust under 5000 × magnification</td>
<td></td>
</tr>
</tbody>
</table>
6.5 Malachite green staining
6.6 Time course of EPSs production with single culture and co-culture
6.7 Protein profiles of *Bacillus* sp. B1, *Aspergillus* sp. A1 and combination of both after growth for 9 days in SSF of sawdust
6.8 Time course of total protein with single culture and co-culture
6.9 Time course of endoglucanase activities with single culture and co-culture
6.10 Time course of exoglucanase activities with single culture and co-culture
6.11 Time course of β-glucosidase activities with single culture and co-culture
6.12 Time course of xylanase activities with single culture and co-culture
6.13 Time course of LiP activities with single culture and co-culture
6.14 Time course of MnP activities with single culture and co-culture
6.15 Time course of laccase activities with single culture and co-culture
6.16 Time course of N-acetyl-ᴅ-glucosamine with single culture and co-culture
7.1 Effect of sawdust particle sizes on cellulases and xylanase activities under SSF by A1B1 co-culture
7.2 Effect of sawdust particle sizes on ligninases under SSF by A1B1 co-culture
7.3 Effect of incubation temperature on cellulases and xylanase activities under SSF by A1B1 co-culture
7.4 Effect of incubation temperature on ligninases under SSF by A1B1 co-culture

7.5 Effect of initial medium pH on cellulases and xylanase activities under SSF by A1B1 co-culture

7.6 Effect of initial medium pH on ligninases under SSF by A1B1 co-culture

7.7 Effect of initial moisture content on cellulases and xylanase activities under SSF by A1B1 co-culture

7.8 Effect of initial moisture content on ligninases under SSF by A1B1 co-culture

7.9 Summary on the effect of co-culture and improvement of operating conditions on endoglucanase activity

7.10 Summary on the effect of co-culture and improvement of operating conditions on exoglucanase activity

7.11 Summary on the effect of co-culture and improvement of operating conditions on β-glucosidase activity

7.12 Summary on the effect of co-culture and improvement of operating conditions on xylanase activity

7.13 Summary on the effect of co-culture and improvement of operating conditions on LiP activity

7.14 Summary on the effect of co-culture and improvement of operating conditions on MnP activity

7.15 Summary on the effect of co-culture and improvement of operating conditions on laccase activity

8.1 Effect of temperature on the activities of endoglucanase, exoglucanase, β-glucosidase and xylanase produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture

8.2 Effect of temperature on the activities of LiP, MnP and laccase produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture
8.3 Effect of temperature on the stability of endoglucanase produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture

8.4 Effect of temperature on the stability of exoglucanase produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture

8.5 Effect of temperature on the stability of β-glucosidase produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture

8.6 Effect of temperature on the stability of xylanase produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture

8.7 Effect of temperature on the stability of LiP produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture

8.8 Effect of temperature on the stability of MnP produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture

8.9 Effect of temperature on the stability of laccase produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture

8.10 Effect of pH on the activities of endoglucanase, exoglucanase, β-glucosidase and xylanase produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture

8.11 Effect of pH on the activities of LiP, MnP and laccase produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture

8.12 Effect of pH on the stability of endoglucanase produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture

8.13 Effect of pH on the stability of exoglucanase produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture

8.14 Effect of pH on the stability of β-glucosidase produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture

8.15 Effect of pH on the stability of xylanase produced by *Aspergillus* sp. A1 and *Bacillus* sp. B1 co-culture
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.16</td>
<td>Effect of pH on the stability of LiP produced by Aspergillus sp. A1 and Bacillus sp. B1 co-culture</td>
<td>229</td>
</tr>
<tr>
<td>8.17</td>
<td>Effect of pH on the stability of MnP produced by Aspergillus sp. A1 and Bacillus sp. B1 co-culture</td>
<td>231</td>
</tr>
<tr>
<td>8.18</td>
<td>Effect of pH on the stability of laccase produced by Aspergillus sp. A1 and Bacillus sp. B1 co-culture</td>
<td>232</td>
</tr>
<tr>
<td>8.19</td>
<td>SDS-PAGE of the crude enzyme</td>
<td>235</td>
</tr>
<tr>
<td>9.1</td>
<td>The schematic diagram of sawdust-SSF based biorefining process</td>
<td>241</td>
</tr>
<tr>
<td>9.2</td>
<td>Chemical composition of raw, non-fermented and fermented sawdust after 9 days of SSF (dry matter basis)</td>
<td>251</td>
</tr>
<tr>
<td>9.3</td>
<td>FTIR spectra of sawdust</td>
<td>255</td>
</tr>
<tr>
<td>9.4</td>
<td>Images of sawdust by SEM</td>
<td>258</td>
</tr>
<tr>
<td>9.5</td>
<td>Sugars standard chromatogram</td>
<td>265</td>
</tr>
<tr>
<td>9.6</td>
<td>HPLC analysis of sugars content in enzymatic degradation extract of single and co-culture fermented sawdust using Aspergillus sp. A1 and Bacillus sp. B1 co-culture crude enzyme</td>
<td>266</td>
</tr>
<tr>
<td>9.7</td>
<td>HPLC analysis of sugars content in enzymatic degradation extract of single and co-culture fermented sawdust using commercial cellulase of Celluclast</td>
<td>266</td>
</tr>
<tr>
<td>9.8</td>
<td>Total phenolic content and lignin concentration in enzymatic degradation extract of single and co-culture fermented sawdust using Aspergillus sp. A1 and Bacillus sp. B1 co-culture crude enzyme</td>
<td>268</td>
</tr>
<tr>
<td>9.9</td>
<td>Total phenolic content and lignin concentration in enzymatic degradation extract of single and co-culture fermented sawdust using commercial cellulase of Celluclast</td>
<td>269</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>Acid Detergent Fibre</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CMC</td>
<td>Carboxymethyl cellulose</td>
</tr>
<tr>
<td>DNS</td>
<td>Dinitrosalicylic acid</td>
</tr>
<tr>
<td>EPS</td>
<td>Exopolysaccharides</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>H\textsubscript{2}SO\textsubscript{4}</td>
<td>Sulphuric acid</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>H\textsubscript{2}O\textsubscript{2}</td>
<td>Hydrogen Peroxides</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>L</td>
<td>Liter</td>
</tr>
<tr>
<td>LiP</td>
<td>Lignin peroxidase</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mL</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter</td>
</tr>
<tr>
<td>MnP</td>
<td>Manganese peroxidase</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>NA</td>
<td>Not available</td>
</tr>
<tr>
<td>NAG</td>
<td>N-Acetyl-d-Glucosamine</td>
</tr>
<tr>
<td>NDF</td>
<td>Neutral Detergent Fibre</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>PDA</td>
<td>Potato Dextrose Agar</td>
</tr>
<tr>
<td>pNPG</td>
<td>p-nitrophenyl β-D-glucoside</td>
</tr>
<tr>
<td>RID</td>
<td>Refractive Index Detector</td>
</tr>
<tr>
<td>rpm</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfate</td>
</tr>
<tr>
<td>SmF</td>
<td>Submerged Fermentation</td>
</tr>
<tr>
<td>SSF</td>
<td>Solid-State Fermentation</td>
</tr>
<tr>
<td>U/g</td>
<td>Unit of enzyme per gram</td>
</tr>
<tr>
<td>U/Lh</td>
<td>Unit per litre per hour</td>
</tr>
<tr>
<td>v/v</td>
<td>Volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>Weight per volume</td>
</tr>
<tr>
<td>μL</td>
<td>Micro liter</td>
</tr>
<tr>
<td>μm</td>
<td>Micro meter</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Reducing Sugar Assay – DNS Method</td>
<td>336</td>
</tr>
<tr>
<td>B</td>
<td>Determination of Endoglucanase Activity</td>
<td>338</td>
</tr>
<tr>
<td>C</td>
<td>Determination of Exoglucanase Activity</td>
<td>341</td>
</tr>
<tr>
<td>D</td>
<td>Determination of β-glucosidase Activity</td>
<td>344</td>
</tr>
<tr>
<td>E</td>
<td>Determination of Xylanase Activity</td>
<td>347</td>
</tr>
<tr>
<td>F</td>
<td>Determination of LiP Activity</td>
<td>350</td>
</tr>
<tr>
<td>G</td>
<td>Determination of MnP Activity</td>
<td>352</td>
</tr>
<tr>
<td>H</td>
<td>Determination of Laccase Activity</td>
<td>354</td>
</tr>
<tr>
<td>I</td>
<td>Determination of Protein Content</td>
<td>356</td>
</tr>
<tr>
<td>J</td>
<td>Glucosamine Assay</td>
<td>358</td>
</tr>
<tr>
<td>K</td>
<td>Quantification of Exopolysaccharide (EPS)</td>
<td>361</td>
</tr>
<tr>
<td>L</td>
<td>Buffer Composition</td>
<td>363</td>
</tr>
<tr>
<td>M</td>
<td>Determination of Neutral Detergent Fibre (NDF)</td>
<td>365</td>
</tr>
<tr>
<td>N</td>
<td>Determination of Acid Detergent Fibre (ADF)</td>
<td>366</td>
</tr>
<tr>
<td>O</td>
<td>Determination of Acid Detergent Lignin (ADL)</td>
<td>367</td>
</tr>
<tr>
<td>P</td>
<td>HPLC analysis</td>
<td>368</td>
</tr>
<tr>
<td>Q</td>
<td>Total Phenolic Content (TPC) Assay</td>
<td>369</td>
</tr>
<tr>
<td>R</td>
<td>Determination of Lignin Concentration</td>
<td>371</td>
</tr>
<tr>
<td>S</td>
<td>Spore count Using Hemocytometer</td>
<td>373</td>
</tr>
<tr>
<td>T</td>
<td>Publication</td>
<td>375</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Background of Research

Wood-based industry in Malaysia began in the early 1900s (Ramasamy et al., 2015). Starting with only to meet the domestic demand at the time, wood-based activities in Malaysia such as logging, sawmilling, primary and secondary manufacturing, have played an important role in the economic development of the country, in which they contributed 2% of the Malaysian Gross Domestic Product (GDP) and 2.7% of the country’s total merchandise exports (Malaysian Timber Council, 2014). In year 2014, Malaysia has produced 3,218,515 m3 of logs, 1,893,949 m3 of sawn timber and 3,099,371 m3 of plywood, with Japan, USA and India are the top three leading export destinations for these local timber products. The export of Malaysian wood-based products has recorded a positive growth of 5.1% with total exports of RM 20.5 billion (Malaysian Timber Council, 2014). Wooden furniture remained as the biggest export item contributing RM 6.3 billion, followed by plywood (RM 5.2 billion), sawntimber (RM 2.5 billion), logs (RM 2.1 billion) and Builders’ Carpentry and Joinery (BCJ) (RM 1 billion). While these wood-based industries generate profits, they also yielded a huge amount of wood wastes, which can potentially give rise to environmentally sensitive disposal issues. The issues are particularly obvious in sawmills where most of the manufacturing technology in used is old and obsolete (Tye et al., 2011).
It was reported that the generation of wood wastes in the sawmilling sector of Peninsular Malaysia was approximately 45 to 50% of the total volume of saw-log input (Ramasamy et al., 2015). The production of the wood waste can be found in the form of off-cuts, slabs, shavings, bark and sawdust (Mekhilef et al., 2011). As one of the most common residues found in wood-manufacturing entities, sawdust is largely produced during the process of planning mills, moulding plants and furniture manufacturing (Rafiqul and Sakinah, 2012). In practise, the residues are left accumulated or discarded in landfill areas, causing environmental pollution through the generation of dust and dirt. Moreover, dumping sawdust to landfills involves additional cost due to its handling and transportation, which is another burden for the industries. Burning had also been applied as one of the economical method to dispose sawdust. However, the high sulphur content of wood may result in the formation of sulphur dioxide during incineration, thereby aggravating air pollution and decreasing air quality in the vicinity (Buraimoh et al., 2015). In view of these issues, research on the utilization of sawdust to turn into value-added products is of high interest as a way to manage wood residues, especially in the country like Malaysia which has a total of 3975 wood-based manufacturing entities operating within the country (Ramasamy et al., 2015).

Sawdust had been used as a raw material in the derivation of biochar (Ghani et al., 2013), commercial mineral-bonded cement composites (Frybort et al., 2008) and as bulking agent in the composting systems (Zhou et al., 2014). The utilization of sawdust also includes as a source of fuel for the cyclone gasification system (Miskam et al., 2009) and for energy generation in the boilers (Ramasamy et al., 2015). Sawdust gained another credit in biomass research area for being classified as lignocellulosic material with significant proportion of cellulose, hemicellulose and lignin constituted in its chemical composition. On a dry basis, sawdust contains cellulose (31.99%), hemicellulose (13.33%) and lignin (44.36%) with the rest consisting of extractives and ash (Belewu, 2006). Several potential value-added products could be derived from biodegradation of these lignocellulose components. Degradation of cellulose and hemicellulose polymers could produce hexose or pentose sugars which served as important raw material for ethanol production, while lignin degradation has huge potential for the synthesis of a number of useful
chemicals such as vanillin, phenol, quinone and acetic acids (Hamid et al., 2014). Biodegradation of cellulose, hemicellulose and lignin from lignocellulosic residue is very much associated to the efficiencies of lignocellulolytic enzymes to degrade the lignocellulose components (Sánchez, 2009). The effectiveness of the enzymatic mixture is highly dependent on their specific functionality to degrade specific type of lignocellulosic material. The use of same material for enzymes production and degradation was suggested to produce enzymes composition that might be then tailored for degradation functionality of that specific material (Pensupa et al., 2013). It is therefore logical and necessary to produce on-site, tailor-made lignocellulolytic enzymes that are optimized for biodegradation of specific lignocellulosics material.

Due to their degrading capabilities, lignocellulolytic enzymes find application in various type of industrial field such as textile, detergent, food, animal feed, pulp and paper (Niladevi, 2007; Singh et al., 2007). The field of industrial enzymes production represents the heart of biotechnology. It was estimated that the global market for commercial enzymes reached $3.3 billion in 2010, with the annual growth rate of 6% over 5-year forecast period (Thomas et al., 2013). One of the major issues faced by the global enzymes manufacturing companies is the high cost of raw material, which contributes 40‒60% of the total production cost (Singhania et al., 2010). Therefore, efforts were made to reduce the cost of production by using cheaper and abundantly available substrates to produce enzymes with high activity (Alam et al., 2009a; Jabasingh and Nachiyar, 2011; Bansal et al., 2012; Yoon et al., 2014). At present, there are limited studies that describe the utilization of sawdust as a substrate for the production of lignocellulolytic enzymes (Liu et al., 2006; Poorna and Prema, 2007; Bansal et al., 2012). The sawdust was either used as the minor substrate or been chemically pretreated prior to fermentations. None have focused on the use of untreated sawdust as a sole substrate for enzymes production. The use of untreated substrate is preferred because additional pre-treatment process with either acidic or alkaline solvents may eventually produce by-products such as furfural, 5-hydroxymethyl-2 furfural, acetic acid, phenols, heavy metals, levulinic acids and formic acids, with inhibitory effects to the microbial growth and respiration (Ang et al., 2013).
Lignocellulosic materials are fermented by lignocellulolytic microorganisms in the process to produce lignocellulolytic enzymes. The fermentation can be conducted via two different fermentation approaches, submerged fermentation or solid state fermentation (Hansen et al., 2015). Submerged fermentation (SmF) has been the most popular and conventional fermentation technology used by enzymes manufacturing companies such as Novozymes and Genencor (Singhania et al., 2010). However, in nature, the growth and lignocellulose utilization of microorganisms secreting lignocellulolytic enzymes are more closely resemble solid-state fermentation (SSF) condition than the presence of excess water provided by SmF (Hansen et al., 2015). SSF is the fermentation method that is carried out without apparent presence of water, but with sufficient moisture to support the growth of microorganisms on the solid matrix (Pandey, 2003). One of the most added advantages offered by SSF is that enzymes titer is higher than those obtained from SmF (Couto and Sanromán, 2005). This advantage has been associated with a larger biomass and lower product breakdown as observed in SSF process (Viniegra-González et al., 2003). In addition, energy expenditure is lower for SSF compared to SmF since less water is needed, no mechanical mixing and less energy requirement in downstream processing (Hansen et al., 2015). Furthermore, higher concentration of products can be obtained from SSF, making purification works such as concentration and freeze drying are undesirable (Zhuang et al., 2007).

The lignocellulolytic enzymes production also depends on the type of microbial strain and the strains giving higher activities on lignocellulosic material in SSF condition are important. Aspergillus, Trichoderma, Rhizopus, Fusarium and Penicillium are some of the fungi genera reported able to produce lignocellulolytic enzymes in SSF (Hansen et al., 2015). For bacteria, Bacillus and Streptomyces are the most common been reported (Krishna, 1999; Niladevi et al., 2007). The fungal and bacterial strains were isolated from substrata containing lignocellulosic carbon source such as residues from different agricultural sectors, soil and debris from cereal production (Jabasingh and Nachiyar, 2011; Irfan et al., 2012; Ang et al., 2013). Another interesting source to prospect for lignocellulolytic microorganisms is from the guts of insects. Some insects relied upon their gut microbial community to degrade lignocellulosic material as their nutrient sources. One of these insects is
Termite. Termites were reported to harbouring diverse array of lignocellulolytic microorganisms inside their gut (Dheeran et al., 2012). Several lignocellulolytic microorganisms such as Pseudomonas, Bacillus, Enterobacter, Streptomyces, Paenibacillus, Aspergillus and Sporothrix had been successfully isolated from termite species of Coptotermes curvignathus (Ramin et al., 2009), Reticulitermes santonensis (Matkar et al., 2013) and Amitermes hastatus (Le Roes-Hill et al., 2011). However, the capability of the microorganisms originated from termite’s gut to produce lignocellulolytic enzymes have only been studied in culture employing SmF technique. The potential of microorganisms isolated from termite gut in producing lignocellulolytic enzymes under SSF remained to be addressed.

Earlier reports are available for the production of lignocellulolytic enzymes by single culture of bacteria and fungi from termite gut (Wenzel et al., 2002; Ramin et al., 2009; Le Roes-Hill et al., 2011; Dheeran et al., 2012). However, a single microorganism cannot produce all the enzymes necessary for complete bioconversion of lignocellulose and different microorganisms are normally co-exist symbiotically on solid substrates in nature (Yoon et al., 2014). Thus, co-culturing of microorganisms which act synergistically for rapid bioconversion of lignocellulosic biomass under SSF, is attractive (Wang et al., 2006; Kumar et al., 2008a). Co-culture defined as inoculation of different specified microbial strains under aseptic conditions, had been used to achieve improved production of biologically active compounds such as organic acids, vitamins and antibiotics (Bader et al., 2010). Similarly, co-culture is beneficial for production of lignocellulolytic enzymes during biodegradation of lignocellulosic substrate (Brijwani et al., 2010; Dhillon et al., 2011; Kolasa et al., 2014) as they offer higher productivity of enzymes and better adaptability compared to single culture (Dashtban et al., 2010). Hence, it is hypothesized that through co-culture techniques, improved level of lignocellulolytic enzymes produced by synergistic interactions between different microorganisms may be achieved in single process. It may further eliminates the requirement to cultivate multiple single cultures separately, followed by enzymes blending which then increases the cost of double equipment needed (Kolasa et al., 2014). As termite gut was known to contain dense population of microbiota that work co-operatively in
lignocellulosic material decomposition, co-culturing microorganisms originated from such sources remained as an interesting topic to be further explored.

1.2 Objectives

The objectives of this research are as follows:

1. To isolate, screen and identify the termite guts microorganisms with the capability to produce lignocellulolytic enzymes in SSF using untreated sawdust as substrate.
2. To construct and to evaluate the compatibility of the members in microbial co-culture with promising level of lignocellulolytic enzymes activities. The profile of lignocellulolytic enzymes produced by both single and microbial co-culture and its relation with exopolysaccharides production, N-acetyl-ᴅ-glucosamine and protein concentration will be analysed.
3. To study the effect of sawdust particle size, incubation temperature, pH and moisture content on the production of lignocellulolytic enzymes by varying one variable at a time.
4. To characterize the lignocellulolytic enzymes produced by a selected microbial co-culture in terms of its optimum pH, optimum temperature, pH stability and thermal stability. A sawdust-based biorefining strategy for reducing sugars production will be developed.
1.3 Scope of the Research

This study focused in investigating the capability of termite gut’s microorganisms to produce lignocellulolytic enzymes under SSF by using untreated sawdust as solid substrate. The bacterial and fungal isolates from *Bulbitermes* sp. termite gut were screened through qualitative approach by using plate base technique and the lignocellulolytic activities were assessed quantitatively in SSF condition. Lignocellulolytic activities were calculated based on the endoglucanase, exoglucanase, β-glucosidase, xylanase, lignin peroxidase, manganese peroxidase and laccase activities. The isolates with highest lignocellulolytic activities were selected, identified and further used for the development of microbial co-culture.

The effect of sawdust particle size, incubation temperature, pH of the medium and moisture content on lignocellulolytic enzymes production were studied. An optimal condition for the enzymes production was set. Lignocellulolytic enzymes obtained from the optimal SSF condition were characterized by means of determination of their optimal temperature, pH, and stability.

The biodegradation potential by single and microbial co-culture cultivated under SSF were studied. A sawdust-based biorefining strategy was developed by extracting the lignocellulolytic enzymes produced from SSF process and then used to hydrolyse the fermented sawdust. The amounts of reducing sugars obtained after the hydrolysis process were measured.
1.4 Significance of the Research

As Malaysia has significant amount of woody-based activities such as logging and saw-milling, the mass generation of sawdust as the most common wood residues produced by the forestry related industries, can potentially give rise to environmentally sensitive disposal issues (Hoi, 2003). This had urged the need to properly utilize the sawdust to turn into various value-added products including as raw material for the production of lignocellulolytic enzymes. Below are several identified issues which make the current research is significance:

i. Improper management of wood residues including sawdust can give an adverse effect towards the air quality, which remained an issue to be solved by the parties involved including the local community, the wood-based industries themselves and the government enforcement bodies. Sawdust is therefore proposed as an alternative raw material that serves as substrate for the production of lignocellulolytic enzymes.

ii. The afore mentioned suggestion is in line with the Malaysian government effort in exploiting the country’s biomass resources up to its optimum level as outlined in National Biomass Strategy 2020 (Agensi Inovasi Malaysia, 2011). From Malaysian perspectives as an important global exporter for wood-based products, the use of sawdust for lignocellulolytic enzymes production is a promising technology to add more value to the wood residues as well as providing more opportunities to achieve economic advancement for the industrial player.

iii. The cost of raw material contributes for about 40‒60 % of the total enzyme production cost. A cheaper alternative substrate can be prospected as a way to reduce the production cost by using the raw untreated sawdust as sole substrate in the process of lignocellulolytic enzymes production. The lack of chemical or/and physical pre-treatment step during the substrate preparation stage could further reduce the cost of overall enzyme production. Furthermore, enzymes production in SSF can also facilitates a lower capital operating cost due to less water requirements and lower energy expenditures. This study is regarded as the first to describe the use of untreated sawdust as a sole solid support in SSF for lignocellulolytic enzymes production.
iv. Investigation to find new isolates from habitats containing lignocellulosic substrates with the capability to produce lignocellulolytic enzymes are relatively simple strategies to obtain higher titre of enzymatic activities in facilitating the biomass degradation process. Since termite gut stands as a rich source to prospect for diverse and efficient lignocellulose degrading microorganisms, the current study described the potential of termite gut microorganisms in producing lignocellulolytic enzymes and also degrading untreated sawdust under SSF condition.

v. Although several studies have described the capability of termite gut microorganisms to exhibit lignocellulolytic activities, none has reported the effect when the microorganisms are co-cultured together. As termite gut holds a dense population of microorganisms, co-culturing may provide an insight into types of interactions existed between the guts microbiota.

vi. Knowledge on self-production of lignocellulolytic enzymes is essential as tailor-made enzymatic mixtures that are optimized for the degradation of specific type of lignocellulosics remains as a strategic issue to be considered during the development of a sustainable biomass-biorefinery process. The use of same material for enzyme production and degradation process could be a way to obtain optimal degradation results of that specific material. Therefore, cultivation of microorganisms on sawdust was projected to produce lignocellulolytic enzymes with specific functionality to degrade sawdust and simultaneously promoting a greener technology as a way to manage woody residues in Malaysia.

1.5 Thesis Organization

This thesis is organized into ten chapters. Chapter 2 covers relevant literatures on the availability of lignocellulosic biomass in Malaysia, structure of lignocellulose and the potential of sawdust to be used as raw material for production of high value products. This chapter provides an overview of lignocellululose degradation via acidic and enzymatic approach, and the role played by lignocellulolytic enzymes (cellulases, xylanase and ligninases) in the enzymatic degradation process. The source to prospect for lignocellulololytic microorganisms
and the plausibility of termite gut to serve as a good reservoir for isolation of such microorganisms were explained. This chapter also deals with information on SmF and SSF as well as important SSF process variables related to the production of lignocellulolytic enzymes. The positive role of microbial co-culture in lignocellulolytic enzymes production was also reviewed. Literatures related to application of lignocellulolytic enzymes in various industries are briefly summarized.

Chapter 3 describes the general experimental procedures performed in this research. All common methods and procedures are placed in this chapter and be referred to in specific chapters, respectively.

The results and discussions are divided into six main chapters. Chapter 4 describes the isolation, screening and identification of lignocellulolytic microorganisms from Bulbitermes sp. termite gut. Chapter 5 presents the development of microbial co-culture from the selected lignocellulolytic microorganisms in order to improve the enzymatic activities. In Chapter 6, a thorough comparison was made between the lignocellulolytic enzymes activities produced by microbial co-culture with its respective single culture member. The profile of lignocellulolytic activities together with its relation with exopolysaccharides production, N-acetyl-D-glucosamine and protein concentration was described. Chapter 7 provided the evaluation of the effect of SSF operating parameters on lignocellulolytic enzymes activities. Chapter 8 presents the characteristics of lignocellulolytic enzymes produced by microbial co-culture in terms of optimal temperature and pH, temperature and pH stability. Activity staining and molecular mass of lignocellulolytic enzymes on SDS-PAGE gel were determined. The capability of single and microbial co-culture of termite gut’s microorganisms to degrade lignocellulose and the development of sawdust-based biorefinery strategy were presented in Chapter 9.

The conclusions from this research are given in Chapter 10. This chapter also states specific achievements, problems and some recommendations for future work.
10.2 Recommendations

The utilization of sawdust as a raw material for the production of highly valuable lignocellulolytic enzymes and fermentable sugars will not only fetch valuable remuneration for wood-based industries, but also help mitigate environmental pollution. In addition, through the study of microorganisms and their enzymatic activities, the mechanisms of efficient lignocellulose degradation in the termite gut may then could be elucidated, findings which have significant potential in biorefinery industries. The defined microbial co-culture also stands as a useful technique to improve the titre of lignocellulolytic enzymes activities and therefore worthy of future study. Some recommendations for future studies are outlined as follows:

i. As sawdust was observed to contain high content of lignin, it is very interesting to extract the lignin through enzymatic or biological approach as this natural polymer can serve as a base for different materials application in the fields of bioplastics, (nano) composites and nanoparticles.

ii. Since termite is one of the insects with a dense population of microorganisms living symbiotically inside its guts it is highly expected that the termite gut also resides microorganism that could influence the performance of the fermentation system, including hydrogen yield. Biohydrogen is regarded as one of potentially advantageous alternative energy to minimise or even eliminate the dependability on fossil fuels. Future research should consider prospecting and characterising hydrogen-producing microorganisms from the guts of termites.

iii. To obtain the best production of enzymes, identification of optimal ratio between the two microorganisms in a co-cultivation is necessary. The addition of termite extract into the medium or substrate can also be considered as a strategy to enhance the growth of microorganisms isolated from the termite gut. It is also feasible to construct an efficient
lignocellulolytic enzymes producing-co-culture for reducing sugars preparation from lignocellulosic biomass by adjusting the microbial constituent proportions in the consortium.

iv. The present study was able to show that reducing sugars can be produced from the enzymatic degradation of sawdust. Future studies should focus to investigate whether the reducing sugars can be further fermented by microorganisms to make ethanol from sawdust.

v. Static tray fermentation is often used for large-scale production of enzymes, as it offers potential benefits over bioreactors, such as simple technique, trays can be stacked over one another in shelves and higher yields. Solid-state tray fermentation could be possibly used to achieve higher yield of lignocellulolytic enzymes due to the capacity to put high substrate loading, large area for microorganism to grow and easy handling bioreactor as compared to immersion, packed-bed and rotating drum bioreactor. A more comprehensive study is needed to provide information about the production of lignocellulolytic enzymes in solid-state tray fermentation employing co-culture of selected microorganisms.
REFERENCES

UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT

Author's full name: NORATIQAH BINTI KAMSANI
Date of birth: 13TH SEPTEMBER 1987
Title: LIGNOCELLULOLYTIC ENZYMES BY Aspergillus sp. A1 AND Bacillus sp. B1 ISOLATED FROM GUT OF Bubitermes sp. IN SOLID STATE FERMENTATION USING SAWDUST AS SUBSTRATE
Academic Session: 2016/2017 (1)

I declare that this thesis is classified as:

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)*
☒ OPEN ACCESS I agree that my thesis to be published as online open access (full text)

I acknowledged that Universiti Teknologi Malaysia reserves the right as follows:

1. The thesis is the property of Universiti Teknologi Malaysia.
2. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

Signature: ____________________________
(P.M. DR MADIHAH MD. SALLEH)
NAME OF SUPERVISOR

Date: 17th January 2017

Signature of Supervisor:

Signature: ____________________________
(NEW IC NO. /PASSPORT NO.)

Date: 17th January 2017

NOTES: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.

Draft Report from the Pacific Northwest National Laboratory and National Renewable Energy Lab.

Li, A. H., Lin, C. W. and Tran, D. T. (2011). Optimizing the response surface for producing ethanol from avicel by *Brevibacillus* strain AHPC8120. *Journal of The Taiwan Institute of Chemical Engineers.* 42, 787-792.

β-1, 4-xylanase KRICT PX-3 from whole genome sequence of Paenibacillus
terrae HPL-003. Enzyme and Microbial Technology. 54, 1-7.

Song, J. M. and Wei, D. Z. (2010). Production and characterization of cellulases and
xylanases of Cellulosimicrobium cellulans grown in pretreated and extracted
bagasse and minimal nutrient medium M9. Biomass and Bioenergy. 34, 1930-
1934.

Song, L., Yu, H., Ma, F. and Zhang, X. (2013). Biological pretreatment under non-
sterile conditions for enzymatic hydrolysis of corn stover. BioResources. 8,
3802-3816.

Srebotnik, E. and Hammel, K. E. (2000). Degradation of nonphenolic lignin by the
laccase/1-hydroxybenzotriazole system. Journal of Biotechnology. 81, 179-
188.

grape juice clarification. Journal of Fermentation and Bioengineering. 73,
241-243.

Enzymatic polishing of jute/cotton blended fabrics. Journal of Fermentation
and Bioengineering. 81, 18-20.

Sridevi, A., Narasimha, G., Ramanjaneyulu, G., Dileepkumar, K., Reddy, B. R. and
niger cellulase. 3 Biotech. 5, 883-892.

Current Science. 77, 137-142.

Improved production of reducing sugars from rice straw using crude cellulase
activated with Fe₃O₄/Alginate nanocomposite. Bioresource Technology. 183,
262-266.

Subramaniyan, S. and Prema, P. (2002). Biotechnology of microbial xylanases:
Enzymology, molecular biology and application. Critical Reviews in
Biotechnology. 22, 33-64.

without protease activity in Bacillus sp. by selection of nitrogen source.

